#data bias
Explore tagged Tumblr posts
itellmyselfsecrets · 1 year ago
Text
“Sex is not the reason women are excluded from data. Gender is. The female body is not the problem. The problem is the social meaning that we ascribe to that body, and a socially determined failure to account for it…The gender data gap is both a cause, and a consequence of the type of unthinking that conceives of humanity as almost exclusively male…Seeing men as the human default is fundamental to the structure of human society…If human evolution is driven by men, are women even human?” - Caroline Criado Perez (Invisible Women: Data Bias in a World Designed for Men)
12 notes · View notes
skannar · 1 year ago
Text
I love good Audiobooks on new tech.
2 notes · View notes
d0nutzgg · 2 years ago
Text
The Implications of Algorithmic Bias and How To Mitigate It
AI has the potential to transform our world in ways we can't even imagine. From self-driving cars to personalized medicine, it's making our lives easier and more efficient. However, with this power comes the responsibility to consider the ethical implications and challenges that come with the use of AI. One of the most significant ethical concerns with AI is algorithmic bias.
Algorithmic bias occurs when a machine learning model is trained on data that is disproportionate from one demographic group, it may make inaccurate predictions for other groups, leading to discrimination. This can be a major problem when AI systems are used in decision-making contexts, such as in healthcare or criminal justice, where fairness is crucial.
But there are ways engineers can mitigate algorithmic bias in their models to help promote equality. One important step is to ensure that the data used to train the model is representative of the population it will be used on. Additionally, engineers should test their models on a diverse set of data to identify any potential biases and correct them.
Another key step is to be transparent about the decisions made by the model, and to provide an interpretable explanation of how it reaches its decisions. This can help to ensure that the model is held accountable for any discriminatory decisions it makes.
Finally, it's important to engage with stakeholders, including individuals and communities who may be affected by the model's decisions, to understand their concerns and incorporate them into the development process.
As engineers, we have a responsibility to ensure that our AI models are fair, transparent and accountable. By taking these steps, we can help to promote equality and ensure that the benefits of AI are enjoyed by everyone.
2 notes · View notes
jcmarchi · 15 days ago
Text
Tackling Misinformation: How AI Chatbots Are Helping Debunk Conspiracy Theories
New Post has been published on https://thedigitalinsider.com/tackling-misinformation-how-ai-chatbots-are-helping-debunk-conspiracy-theories/
Tackling Misinformation: How AI Chatbots Are Helping Debunk Conspiracy Theories
Misinformation and conspiracy theories are major challenges in the digital age. While the Internet is a powerful tool for information exchange, it has also become a hotbed for false information. Conspiracy theories, once limited to small groups, now have the power to influence global events and threaten public safety. These theories, often spread through social media, contribute to political polarization, public health risks, and mistrust in established institutions.
The COVID-19 pandemic highlighted the severe consequences of misinformation. The World Health Organization (WHO) called this an “infodemic,” where false information about the virus, treatments, vaccines, and origins spread faster than the virus itself. Traditional fact-checking methods, like human fact-checkers and media literacy programs, needed to catch up with the volume and speed of misinformation. This urgent need for a scalable solution led to the rise of Artificial Intelligence (AI) chatbots as essential tools in combating misinformation.
AI chatbots are not just a technological novelty. They represent a new approach to fact-checking and information dissemination. These bots engage users in real-time conversations, identify and respond to false information, provide evidence-based corrections, and help create a more informed public.
The Rise of Conspiracy Theories
Conspiracy theories have been around for centuries. They often emerge during uncertainty and change, offering simple, sensationalist explanations for complex events. These narratives have always fascinated people, from rumors about secret societies to government cover-ups. In the past, their spread was limited by slower information channels like printed pamphlets, word-of-mouth, and small community gatherings.
The digital age has changed this dramatically. The Internet and social media platforms like Facebook, Twitter, YouTube, and TikTok have become echo chambers where misinformation booms. Algorithms designed to keep users engaged often prioritize sensational content, allowing false claims to spread quickly. For example, a report by the Center for Countering Digital Hate (CCDH) found that just twelve individuals and organizations, known as the “disinformation dozen,” were responsible for nearly 65% of anti-vaccine misinformation on social media in 2023. This shows how a small group can have a huge impact online.
The consequences of this unchecked spread of misinformation are serious. Conspiracy theories weaken trust in science, media, and democratic institutions. They can lead to public health crises, as seen during the COVID-19 pandemic, where false information about vaccines and treatments hindered efforts to control the virus. In politics, misinformation fuels division and makes it harder to have rational, fact-based discussions. A 2023 study by the Harvard Kennedy School’s Misinformation Review found that many Americans reported encountering false political information online, highlighting the widespread nature of the problem. As these trends continue, the need for effective tools to combat misinformation is more urgent than ever.
How AI Chatbots Are Equipped to Combat Misinformation
AI chatbots are emerging as powerful tools to fight misinformation. They use AI and Natural Language Processing (NLP) to interact with users in a human-like way. Unlike traditional fact-checking websites or apps, AI chatbots can have dynamic conversations. They provide personalized responses to users’ questions and concerns, making them particularly effective in dealing with conspiracy theories’ complex and emotional nature.
These chatbots use advanced NLP algorithms to understand and interpret human language. They analyze the intent and context behind a user’s query. When a user submits a statement or question, the chatbot looks for keywords and patterns that match known misinformation or conspiracy theories. For example, suppose a user mentions a claim about vaccine safety. In that case, the chatbot cross-references this claim with a database of verified information from reputable sources like the WHO and CDC or independent fact-checkers like Snopes.
One of AI chatbots’ biggest strengths is real-time fact-checking. They can instantly access vast databases of verified information, allowing them to present users with evidence-based responses tailored to the specific misinformation in question. They offer direct corrections and provide explanations, sources, and follow-up information to help users understand the broader context. These bots operate 24/7 and can handle thousands of interactions simultaneously, offering scalability far beyond what human fact-checkers can provide.
Several case studies show the effectiveness of AI chatbots in combating misinformation. During the COVID-19 pandemic, organizations like the WHO used AI chatbots to address widespread myths about the virus and vaccines. These chatbots provided accurate information, corrected misconceptions, and guided users to additional resources.
AI Chatbots Case Studies from MIT and UNICEF
Research has shown that AI chatbots can significantly reduce belief in conspiracy theories and misinformation. For example, MIT Sloan Research shows that AI chatbots, like GPT-4 Turbo, can dramatically reduce belief in conspiracy theories. The study engaged over 2,000 participants in personalized, evidence-based dialogues with the AI, leading to an average 20% reduction in belief in various conspiracy theories. Remarkably, about one-quarter of participants who initially believed in a conspiracy shifted to uncertainty after their interaction. These effects were durable, lasting for at least two months post-conversation.
Likewise, UNICEF’s U-Report chatbot was important in combating misinformation during the COVID-19 pandemic, particularly in regions with limited access to reliable information. The chatbot provided real-time health information to millions of young people across Africa and other areas, directly addressing COVID-19 and vaccine safety
concerns.
The chatbot played a vital role in enhancing trust in verified health sources by allowing users to ask questions and receive credible answers. It was especially effective in communities where misinformation was extensive, and literacy levels were low, helping to reduce the spread of false claims. This engagement with young users proved vital in promoting accurate information and debunking myths during the health crisis.
Challenges, Limitations, and Future Prospects of AI Chatbots in Tackling Misinformation
Despite their effectiveness, AI chatbots face several challenges. They are only as effective as the data they are trained on, and incomplete or biased datasets can limit their ability to address all forms of misinformation. Additionally, conspiracy theories are constantly evolving, requiring regular updates to the chatbots.
Bias and fairness are also among the concerns. Chatbots may reflect the biases in their training data, potentially skewing responses. For example, a chatbot trained in Western media might not fully understand non-Western misinformation. Diversifying training data and ongoing monitoring can help ensure balanced responses.
User engagement is another hurdle. It cannot be easy to convince individuals deeply ingrained in their beliefs to interact with AI chatbots. Transparency about data sources and offering verification options can build trust. Using a non-confrontational, empathetic tone can also make interactions more constructive.
The future of AI chatbots in combating misinformation looks promising. Advancements in AI technology, such as deep learning and AI-driven moderation systems, will enhance chatbots’ capabilities. Moreover, collaboration between AI chatbots and human fact-checkers can provide a robust approach to misinformation.
Beyond health and political misinformation, AI chatbots can promote media literacy and critical thinking in educational settings and serve as automated advisors in workplaces. Policymakers can support the effective and responsible use of AI through regulations encouraging transparency, data privacy, and ethical use.
The Bottom Line
In conclusion, AI chatbots have emerged as powerful tools in fighting misinformation and conspiracy theories. They offer scalable, real-time solutions that surpass the capacity of human fact-checkers. Delivering personalized, evidence-based responses helps build trust in credible information and promotes informed decision-making.
While data bias and user engagement persist, advancements in AI and collaboration with human fact-checkers hold promise for an even stronger impact. With responsible deployment, AI chatbots can play a vital role in developing a more informed and truthful society.
0 notes
rachel-sylvan-author · 6 months ago
Text
Tumblr media
"Invisible Women" by Caroline Criado-Perez
Thank you @womensbookclub_paris for the rec! ❤️
0 notes
filehulk · 1 year ago
Text
Natural Language Processing with ChatGPT: Unlocking Human-Like Conversations
Natural Language Processing (NLP) has witnessed significant advancements in recent years, empowering machines to understand and generate human-like text. One remarkable breakthrough in this domain is ChatGPT, a cutting-edge language model that leverages state-of-the-art techniques to engage in conversational exchanges. In this article, we delve into the underlying technology of ChatGPT, its…
Tumblr media
View On WordPress
1 note · View note
selfindulgentcompetition · 2 months ago
Text
TRYING AGAIN WITH CLEARER WORDING. PLS READ BEFORE VOTING
*Meaning: When did you stop wearing a mask to a majority of your public activities? Wearing a mask when you feel sick or very rarely for specific events/reasons counts as “stopping”
[More Questions Here]
623 notes · View notes
ouaw-facts-i-just-made-up · 2 months ago
Text
YOU, the person who watches Once Upon A Witchlight, are autistic
159 notes · View notes
markscherz · 4 months ago
Note
Are you familiar with this frog?
Tumblr media Tumblr media
Yeah pretty sure that's Larry from down the pub. 'Ullo, Larry!
But in all seriousness, I'm afraid I cannot help without location information. Orientation within Bufonidae without location is a nightmare. If this is Africa, we're talking genus Sclerophrys. If it's the USA, it's probably Anaxyrus. If it's Europe, it's probably Bufo. If it's South America we're in Rhinella territory. And so on, and so forth.
171 notes · View notes
itellmyselfsecrets · 2 years ago
Text
“Most of recorded human history is one big data gap. Starting with the theory of Man the Hunter, the chroniclers of the past have left little space for women's role in the evolution of humanity, whether cultural or biological. Instead, the lives of men have been taken to represent those of humans overall.” - Caroline Criado Perez (Invisible Women: Data Bias in a World Designed for Men)
10 notes · View notes
skannar · 1 year ago
Text
0 notes
mostlysignssomeportents · 1 year ago
Text
The surprising truth about data-driven dictatorships
Tumblr media
Here’s the “dictator’s dilemma”: they want to block their country’s frustrated elites from mobilizing against them, so they censor public communications; but they also want to know what their people truly believe, so they can head off simmering resentments before they boil over into regime-toppling revolutions.
These two strategies are in tension: the more you censor, the less you know about the true feelings of your citizens and the easier it will be to miss serious problems until they spill over into the streets (think: the fall of the Berlin Wall or Tunisia before the Arab Spring). Dictators try to square this circle with things like private opinion polling or petition systems, but these capture a small slice of the potentially destabiziling moods circulating in the body politic.
Enter AI: back in 2018, Yuval Harari proposed that AI would supercharge dictatorships by mining and summarizing the public mood — as captured on social media — allowing dictators to tack into serious discontent and diffuse it before it erupted into unequenchable wildfire:
https://www.theatlantic.com/magazine/archive/2018/10/yuval-noah-harari-technology-tyranny/568330/
Harari wrote that “the desire to concentrate all information and power in one place may become [dictators] decisive advantage in the 21st century.” But other political scientists sharply disagreed. Last year, Henry Farrell, Jeremy Wallace and Abraham Newman published a thoroughgoing rebuttal to Harari in Foreign Affairs:
https://www.foreignaffairs.com/world/spirals-delusion-artificial-intelligence-decision-making
They argued that — like everyone who gets excited about AI, only to have their hopes dashed — dictators seeking to use AI to understand the public mood would run into serious training data bias problems. After all, people living under dictatorships know that spouting off about their discontent and desire for change is a risky business, so they will self-censor on social media. That’s true even if a person isn’t afraid of retaliation: if you know that using certain words or phrases in a post will get it autoblocked by a censorbot, what’s the point of trying to use those words?
The phrase “Garbage In, Garbage Out” dates back to 1957. That’s how long we’ve known that a computer that operates on bad data will barf up bad conclusions. But this is a very inconvenient truth for AI weirdos: having given up on manually assembling training data based on careful human judgment with multiple review steps, the AI industry “pivoted” to mass ingestion of scraped data from the whole internet.
But adding more unreliable data to an unreliable dataset doesn’t improve its reliability. GIGO is the iron law of computing, and you can’t repeal it by shoveling more garbage into the top of the training funnel:
https://memex.craphound.com/2018/05/29/garbage-in-garbage-out-machine-learning-has-not-repealed-the-iron-law-of-computer-science/
When it comes to “AI” that’s used for decision support — that is, when an algorithm tells humans what to do and they do it — then you get something worse than Garbage In, Garbage Out — you get Garbage In, Garbage Out, Garbage Back In Again. That’s when the AI spits out something wrong, and then another AI sucks up that wrong conclusion and uses it to generate more conclusions.
To see this in action, consider the deeply flawed predictive policing systems that cities around the world rely on. These systems suck up crime data from the cops, then predict where crime is going to be, and send cops to those “hotspots” to do things like throw Black kids up against a wall and make them turn out their pockets, or pull over drivers and search their cars after pretending to have smelled cannabis.
The problem here is that “crime the police detected” isn’t the same as “crime.” You only find crime where you look for it. For example, there are far more incidents of domestic abuse reported in apartment buildings than in fully detached homes. That’s not because apartment dwellers are more likely to be wife-beaters: it’s because domestic abuse is most often reported by a neighbor who hears it through the walls.
So if your cops practice racially biased policing (I know, this is hard to imagine, but stay with me /s), then the crime they detect will already be a function of bias. If you only ever throw Black kids up against a wall and turn out their pockets, then every knife and dime-bag you find in someone’s pockets will come from some Black kid the cops decided to harass.
That’s life without AI. But now let’s throw in predictive policing: feed your “knives found in pockets” data to an algorithm and ask it to predict where there are more knives in pockets, and it will send you back to that Black neighborhood and tell you do throw even more Black kids up against a wall and search their pockets. The more you do this, the more knives you’ll find, and the more you’ll go back and do it again.
This is what Patrick Ball from the Human Rights Data Analysis Group calls “empiricism washing”: take a biased procedure and feed it to an algorithm, and then you get to go and do more biased procedures, and whenever anyone accuses you of bias, you can insist that you’re just following an empirical conclusion of a neutral algorithm, because “math can’t be racist.”
HRDAG has done excellent work on this, finding a natural experiment that makes the problem of GIGOGBI crystal clear. The National Survey On Drug Use and Health produces the gold standard snapshot of drug use in America. Kristian Lum and William Isaac took Oakland’s drug arrest data from 2010 and asked Predpol, a leading predictive policing product, to predict where Oakland’s 2011 drug use would take place.
Tumblr media
[Image ID: (a) Number of drug arrests made by Oakland police department, 2010. (1) West Oakland, (2) International Boulevard. (b) Estimated number of drug users, based on 2011 National Survey on Drug Use and Health]
Then, they compared those predictions to the outcomes of the 2011 survey, which shows where actual drug use took place. The two maps couldn’t be more different:
https://rss.onlinelibrary.wiley.com/doi/full/10.1111/j.1740-9713.2016.00960.x
Predpol told cops to go and look for drug use in a predominantly Black, working class neighborhood. Meanwhile the NSDUH survey showed the actual drug use took place all over Oakland, with a higher concentration in the Berkeley-neighboring student neighborhood.
What’s even more vivid is what happens when you simulate running Predpol on the new arrest data that would be generated by cops following its recommendations. If the cops went to that Black neighborhood and found more drugs there and told Predpol about it, the recommendation gets stronger and more confident.
In other words, GIGOGBI is a system for concentrating bias. Even trace amounts of bias in the original training data get refined and magnified when they are output though a decision support system that directs humans to go an act on that output. Algorithms are to bias what centrifuges are to radioactive ore: a way to turn minute amounts of bias into pluripotent, indestructible toxic waste.
There’s a great name for an AI that’s trained on an AI’s output, courtesy of Jathan Sadowski: “Habsburg AI.”
And that brings me back to the Dictator’s Dilemma. If your citizens are self-censoring in order to avoid retaliation or algorithmic shadowbanning, then the AI you train on their posts in order to find out what they’re really thinking will steer you in the opposite direction, so you make bad policies that make people angrier and destabilize things more.
Or at least, that was Farrell(et al)’s theory. And for many years, that’s where the debate over AI and dictatorship has stalled: theory vs theory. But now, there’s some empirical data on this, thanks to the “The Digital Dictator’s Dilemma,” a new paper from UCSD PhD candidate Eddie Yang:
https://www.eddieyang.net/research/DDD.pdf
Yang figured out a way to test these dueling hypotheses. He got 10 million Chinese social media posts from the start of the pandemic, before companies like Weibo were required to censor certain pandemic-related posts as politically sensitive. Yang treats these posts as a robust snapshot of public opinion: because there was no censorship of pandemic-related chatter, Chinese users were free to post anything they wanted without having to self-censor for fear of retaliation or deletion.
Next, Yang acquired the censorship model used by a real Chinese social media company to decide which posts should be blocked. Using this, he was able to determine which of the posts in the original set would be censored today in China.
That means that Yang knows that the “real” sentiment in the Chinese social media snapshot is, and what Chinese authorities would believe it to be if Chinese users were self-censoring all the posts that would be flagged by censorware today.
From here, Yang was able to play with the knobs, and determine how “preference-falsification” (when users lie about their feelings) and self-censorship would give a dictatorship a misleading view of public sentiment. What he finds is that the more repressive a regime is — the more people are incentivized to falsify or censor their views — the worse the system gets at uncovering the true public mood.
What’s more, adding additional (bad) data to the system doesn’t fix this “missing data” problem. GIGO remains an iron law of computing in this context, too.
But it gets better (or worse, I guess): Yang models a “crisis” scenario in which users stop self-censoring and start articulating their true views (because they’ve run out of fucks to give). This is the most dangerous moment for a dictator, and depending on the dictatorship handles it, they either get another decade or rule, or they wake up with guillotines on their lawns.
But “crisis” is where AI performs the worst. Trained on the “status quo” data where users are continuously self-censoring and preference-falsifying, AI has no clue how to handle the unvarnished truth. Both its recommendations about what to censor and its summaries of public sentiment are the least accurate when crisis erupts.
But here’s an interesting wrinkle: Yang scraped a bunch of Chinese users’ posts from Twitter — which the Chinese government doesn’t get to censor (yet) or spy on (yet) — and fed them to the model. He hypothesized that when Chinese users post to American social media, they don’t self-censor or preference-falsify, so this data should help the model improve its accuracy.
He was right — the model got significantly better once it ingested data from Twitter than when it was working solely from Weibo posts. And Yang notes that dictatorships all over the world are widely understood to be scraping western/northern social media.
But even though Twitter data improved the model’s accuracy, it was still wildly inaccurate, compared to the same model trained on a full set of un-self-censored, un-falsified data. GIGO is not an option, it’s the law (of computing).
Writing about the study on Crooked Timber, Farrell notes that as the world fills up with “garbage and noise” (he invokes Philip K Dick’s delighted coinage “gubbish”), “approximately correct knowledge becomes the scarce and valuable resource.”
https://crookedtimber.org/2023/07/25/51610/
This “probably approximately correct knowledge” comes from humans, not LLMs or AI, and so “the social applications of machine learning in non-authoritarian societies are just as parasitic on these forms of human knowledge production as authoritarian governments.”
Tumblr media
The Clarion Science Fiction and Fantasy Writers’ Workshop summer fundraiser is almost over! I am an alum, instructor and volunteer board member for this nonprofit workshop whose alums include Octavia Butler, Kim Stanley Robinson, Bruce Sterling, Nalo Hopkinson, Kameron Hurley, Nnedi Okorafor, Lucius Shepard, and Ted Chiang! Your donations will help us subsidize tuition for students, making Clarion — and sf/f — more accessible for all kinds of writers.
Tumblr media
Libro.fm is the indie-bookstore-friendly, DRM-free audiobook alternative to Audible, the Amazon-owned monopolist that locks every book you buy to Amazon forever. When you buy a book on Libro, they share some of the purchase price with a local indie bookstore of your choosing (Libro is the best partner I have in selling my own DRM-free audiobooks!). As of today, Libro is even better, because it’s available in five new territories and currencies: Canada, the UK, the EU, Australia and New Zealand!
Tumblr media
[Image ID: An altered image of the Nuremberg rally, with ranked lines of soldiers facing a towering figure in a many-ribboned soldier's coat. He wears a high-peaked cap with a microchip in place of insignia. His head has been replaced with the menacing red eye of HAL9000 from Stanley Kubrick's '2001: A Space Odyssey.' The sky behind him is filled with a 'code waterfall' from 'The Matrix.']
Tumblr media
Image: Cryteria (modified) https://commons.wikimedia.org/wiki/File:HAL9000.svg
CC BY 3.0 https://creativecommons.org/licenses/by/3.0/deed.en
 — 
Raimond Spekking (modified) https://commons.wikimedia.org/wiki/File:Acer_Extensa_5220_-_Columbia_MB_06236-1N_-_Intel_Celeron_M_530_-_SLA2G_-_in_Socket_479-5029.jpg
CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0/deed.en
 — 
Russian Airborne Troops (modified) https://commons.wikimedia.org/wiki/File:Vladislav_Achalov_at_the_Airborne_Troops_Day_in_Moscow_%E2%80%93_August_2,_2008.jpg
“Soldiers of Russia” Cultural Center (modified) https://commons.wikimedia.org/wiki/File:Col._Leonid_Khabarov_in_an_everyday_service_uniform.JPG
CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0/deed.en
832 notes · View notes
jcmarchi · 3 months ago
Text
Audio-Powered Robots: A New Frontier in AI Development
New Post has been published on https://thedigitalinsider.com/audio-powered-robots-a-new-frontier-in-ai-development/
Audio-Powered Robots: A New Frontier in AI Development
Audio integration in robotics marks a significant advancement in Artificial Intelligence (AI). Imagine robots that can navigate and interact with their surroundings by both seeing and hearing. Audio-powered robots are making this possible, enhancing their ability to perform tasks more efficiently and intuitively. This development can affect various areas, including domestic settings, industrial environments, and healthcare.
Audio-powered robots use advanced audio processing technologies to understand and respond to sounds, which allows them to operate with greater independence and accuracy. They can follow verbal commands, recognize different sounds, and distinguish between subtle audio cues. This capability enables robots to react appropriately in various situations, making them more versatile and effective. As technology progresses, the applications of audio-powered robots will broaden, improving efficiency, safety, and quality of life across many sectors. Thus, the future of robotics is expected to be more promising with the addition of audio capabilities.
The Evolution and Importance of Audio in AI and Robotics
Integrating audio into robotics has always been challenging. Early attempts were quite basic, using simple sound detection mechanisms. However, as AI technology has progressed, so have robots’ audio processing capabilities. Key advancements in this field include the development of sensitive microphones, sophisticated sound recognition algorithms, and the application of machine learning and neural networks. These innovations have greatly enhanced robots’ ability to accurately interpret and respond to sound.
Vision-based approaches in robotics often need to catch up in dynamic and complex environments where sound is critical. For instance, visual data alone might not capture the state of cooking in a kitchen, while the sound of sizzling onions provides immediate context. Audio complements visual data, creating a richer, multi-sensory input that enhances a robot’s understanding of its environment.
The importance of sound in real-world scenarios cannot be overlooked. Detecting a knock at the door, distinguishing between appliance sounds, or identifying people based on footsteps are tasks where audio is invaluable. Likewise, in a home setting, a robot can respond to a crying baby, while in an industrial environment, it can identify machinery issues by recognizing abnormal sounds. In healthcare, robots can monitor patients by listening for distress signals.
As technology evolves, the role of audio in robotics will become even more significant, leading to robots that are more aware and capable of interacting with their surroundings in nuanced, human-like ways.
Applications and Use Cases
Audio-powered robots have many applications, significantly enhancing daily tasks and operations. In homes, these robots can respond to verbal commands to control appliances, assist in cooking by identifying sounds during different stages of food preparation, and provide companionship through conversations. Devices like Google Assistant and Amazon Alexa show how audio-powered robots transform home life by playing music, providing weather updates, setting reminders, and controlling smart home devices.
Robots with audio capabilities operate more efficiently in noisy industrial settings. They can distinguish between different machine sounds to monitor equipment status, identify potential issues from unusual noises, and communicate with human workers in real-time, improving safety and productivity. For instance, on a busy factory floor, a robot can detect a malfunctioning machine’s sound and alert maintenance personnel immediately, preventing downtime and accidents.
In healthcare, audio-powered robots have great significance. They can monitor patients for signs of distress, assist in elderly care by responding to calls for help, and offer therapeutic support through interactive sessions. They can detect irregular breathing or coughing, prompt timely medical intervention, and ensure the safety of elderly residents by listening for falls or distress sounds.
In educational environments, these robots can serve as tutors, aiding in language learning through interactive conversations, providing pronunciation feedback, and engaging students in educational games. Their ability to process and respond to audio makes them effective tools for enhancing the learning experience, simulating real-life conversations, and helping students practice speaking and listening skills. The versatility and responsiveness of audio-powered robots make them valuable across these diverse fields.
Current State, Technological Foundations, and Recent Developments in Audio-Powered Robots
Today’s audio-powered robots have advanced audio processing hardware and software to perform complex tasks. Key features and capabilities of these robots include Natural Language Processing (NLP), speech recognition, and audio synthesis. NLP allows robots to understand and generate human language, making interactions more natural and intuitive. Speech recognition enables robots to accurately interpret verbal commands and respond appropriately, while audio synthesis allows them to generate realistic sounds and speech.
The speech recognition algorithms in these robots can transcribe spoken words into text, while NLP algorithms interpret the meaning behind the words. Audio synthesis algorithms can generate human-like speech or other sounds, enhancing the robot’s communication ability. Integrating audio with other sensory inputs, such as visual and tactile data, creates a multi-sensory experience that enhances the robot’s understanding of its environment, allowing it to perform tasks more accurately and efficiently.
Recent developments in the field highlight ongoing advancements. A notable example is the research conducted by Stanford’s Robotics and Embodied AI Lab. This project involves collecting audio data using a GoPro camera and a gripper with a microphone, enabling robots to perform household tasks based on audio cues. The results have shown that combining vision and sound improves the robots’ performance, making them more effective at identifying objects and navigating environments.
Another significant example is Osaka University’s Alter 3, a robot that uses visual and audio cues to interact with humans. Alter 3’s ability to engage in conversations and respond to environmental sounds demonstrates the potential of audio-powered robots in social and interactive contexts. These projects reveal the practical benefits of integrating audio in robotics, highlighting how these robots solve everyday problems, enhance productivity, and improve quality of life.
Combining advanced technological foundations with ongoing research and development makes audio-powered robots more capable and versatile. This sophisticated hardware and software integration ensures these robots can perform tasks more efficiently, making significant strides in various domains.
Challenges and Ethical Considerations
While advancements in audio-powered robots are impressive, several challenges and ethical considerations must be addressed.
Privacy is a major concern, as robots continuously listening to their environment can inadvertently capture sensitive information. Therefore, ensuring that audio data is collected, stored, and used securely and ethically is essential.
Bias in audio data is another challenge. Robots may perform poorly in real-world settings if the data does not represent diverse accents, languages, and sound environments. Addressing these biases requires careful selection and processing of training data to ensure inclusivity.
Safety implications also need consideration. In noisy environments, distinguishing important sounds from background noise can be challenging. Ensuring robots can accurately interpret audio cues without compromising safety is essential.
Other challenges include noise reduction, accuracy, and processing power. Developing algorithms to filter out irrelevant noise and accurately interpret audio signals is complex and requires ongoing research. Likewise, enhancing real-time audio processing without significant delays is important for practical applications.
The societal impacts of audio-powered robots include potential job displacement, increased dependency on technology, and the digital divide. As robots become more capable, they may replace human workers in some roles, leading to job losses. Moreover, reliance on advanced technology may aggravate existing inequalities. Hence, proactive measures, such as retraining programs and policies for equitable access, are necessary to address these impacts.
The Bottom Line
In conclusion, audio-powered robots represent a groundbreaking advancement in AI, enhancing their ability to perform tasks more efficiently and intuitively. Despite challenges such as privacy concerns, data bias, and safety implications, ongoing research and ethical considerations promise a future where these robots seamlessly integrate into our daily lives. From home assistance to industrial and healthcare applications, the potential of audio-powered robots is vast, and their continued development will significantly improve the quality of life across many sectors.
0 notes
butch-reidentified · 9 months ago
Text
MRA's love to claim that if women were in charge the world would go to shit bc we'd "get our periods and declare war," which is obviously a batshit insane, uneducated, and maximally misogynistic belief to begin with. I shouldn't have to tell you that our periods don't actually make us emotionally unstable, that in fact fewer than 20% of college-age women (women who aren't even old enough for the prefrontal cortex to finish developing, and thus are far from old enough to, for example, be eligible to run for US president) even report "severe" psychological symptoms of PMS - and this includes symptoms like depressed mood and anxiety.
in fact, PMS isn't even something all women experience. and of those who do, there's a huge variety of ways it can present. most symptoms women associate with PMS are not emotional: bloating, body soreness, headaches, oversleeping, food cravings, nausea/vomiting, hot flashes, breast tenderness....
from the article linked above: "Definitions of PMS and diagnostic criteria to identify cases have varied substantially over the years and across studies, in large part due to the heterogeneity of women’s menstrual symptom experience. Over 150 symptoms have been associated with PMS."
overwhelmingly, research shows that the effect of PMS on women in the workplace is the same as that of any other medical problem/illness: some people miss some work if it's severe enough. which, considering that symptoms can often include various types of pain that can be quite severe, as well as common illness symptoms like nausea and vomiting, it makes perfect sense that some women would need to take a day off or leave a bit early at times. what the research does NOT say is that PMS causes women to behave in irrational ways that negatively impact the quality of her work.
so let's be truthful. why would female leaders mean more war when women and girls are so overwhelmingly and horrifically sexually victimized as a result?
if most women don't even experience severe mood symptoms with PMS, and having mood symptoms doesn't mean one is unable to control her actions/behaviors (I know this concept of self-control is foreign to most men, but we're pretty good at it!), and there's absolutely zero evidence to suggest that severe PMS mood symptoms would or could ever lead to declaring war, and women old enough to hold office in most countries have many years of experience managing their pre/peri-menstrual symptoms (if they even have any), and most world leaders are past the age women stop even having periods at all, and we see that women in other leadership positions are absolutely crushing it all over the world, and there IS significant evidence showing that women in numerous fields actually outperform male peers (despite feeling significantly less respected in higher-rank positions than males feel, as well as feeling more discouraged and frustrated) and are more emotionally intelligent, there IS evidence that women are less influenced by and better at regulating anger in the workplace, and there IS indisputable evidence that men are more violent than women in general, regardless of the reason, and there IS indisputable evidence that women and girls suffer mass victimization by men during wartime... then maybe, just maybe, women are actually less likely than men to start wars. but there's only one way to find out for sure 😏
99 notes · View notes
waitineedaname · 10 months ago
Text
Finally, after months of work, I have completed it: the collection of all* character appearances in Fullmetal Alchemist: Brotherhood!
edit: if you want a more detailed spreadsheet on the homunculi in particular, @vuullets has a collection of all homunculi appearances in the manga! you can find it here
Some notes on this spreadsheet:
there are spoilers. obviously. proceed with caution
timestamps indicate when a character first appears in a scene, not every time they appear. if the scene changes to one without that character, and then we return to that character in another scene, that's another timestamp for a new appearance
all timestamps are approximate, give or take a few seconds based on how quickly I could pause the show
only unique flashbacks count as an appearance. if the flashback is to something we've seen in a previous episode, that is not counted as a unique appearance, but if it provides something new that we haven't seen before, it counts!
I didn't include background easter egg appearances, like when you can see Mei in the background at a train station before she's introduced
I didn't actually do all characters. there are a lot of characters, and I am just one person. sorry if you're a big fan of minor members of the military, i just couldn't do it
since Greed is kind of a special case, he deserves a specific explanation: OG Greed and Greedling are not counted as separate characters, they're both just Greed. when Greed is in control of Ling's body, that counts as an appearance for Greed, and it's not an appearance for Ling unless he's in control. if they're both in a scene together (talking in the mindscape, for example, or switching control back and forth) they each get a timestamp for when they first appear/speak in a scene
feel free to use this as a reference! I made this as a useful tool for myself, and because I'm a nerd about data. if you are also a nerd about data, I tallied up some stats, which I'll put under the cut:
only six characters broke 30 episodes. the characters with the most appearances are Edward (60), Alphonse (58), Mustang (45), Hawkeye (42), Scar (40), and Winry (31).
next highest on the list are Alex Armstrong and Mei (tied for 29), King Bradley (28), Hohenheim (26), and Ling (25).
the homunculus in the most episodes is Wrath (28), and the one in the least is Lust (11)
as previously mentioned, Alex Armstrong and Mei are in the same number of episodes (29), as are Olivier Armstrong and Marcoh (24), and Buccaneer and Ross (18)
Hughes is in only 10 episodes, the same number as Grumman and Fu
Yoki is in a whopping 23 episodes. what the fuck
the chimera in the most episodes is Zampano (21), closely followed by Darius and Jerso (20), with Heinkel falling behind at 16. The Devil's Nest chimeras are only in 2 episodes, with the exception of Bido, who is in 3
83 notes · View notes
mathysphere · 1 year ago
Text
Tumblr media
Fun fact! 'Funny cross stitch' is the 16ᵗʰ most common tag given to cross-stitch listings on Etsy (right after 'pdf cross stitch' and before 'cute cross stitch'). But how many of those patterns are actually funny? What's the average humor level? And which among them is the funniest? I think it's time we found out!
Click Here* [2024 UPDATE: now here!] to cast your vote on any of 997 different 'funny' cross-stitch patterns, all randomly scraped from Etsy throughout the year, and check back later this month for the results!
Patterns pictured here: [dark sense] [keith haring] [love] [pew pew] [gnomes]
*the site is uhhhh a little hacked-together, so if it crashes lemme know and I'll fix it. website design is my passion
117 notes · View notes