#caspase-1
Explore tagged Tumblr posts
cancer-researcher · 2 months ago
Text
youtube
0 notes
bigfatbreak · 11 months ago
Text
here's the next part of the gala arc btw, dropkicks this onto my blog
(1) (2) (here)
Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media
bonus: Bitterbug's design
Tumblr media
bonus bonus! Unused concept art for a "Princess" Caspases design for Marinette - another type of Viceroy butterfly is the Queen variant, so this was based off its caterpillar stage. Would've been a fun play on words, but for plot reasons, Tom has Marinette looking as closely like Ladybug as he can manage.
Tumblr media
5K notes · View notes
myrawjcsmicasereports · 1 month ago
Text
Retinal and choroidal vascular drop out in a case of severe phenotype of Flammer Syndrome. Rescue of the ischemic-preconditioning mimicking action of endogenous Erythropoietin (EPO) by off-label intra vitreal injection of recombinant human EPO (rhEPO) by Claude Boscher in Journal of Clinical Case Reports Medical Images and Health Sciences
Abstract
Background: Erythropoietin (EPO) is a pleiotropic anti-apoptotic, neurotrophic, anti-inflammatory, and pro-angiogenic endogenous agent, in addition to its effect on erythropoiesis. Exogenous EPO is currently used notably in human spinal cord trauma, and pilot studies in ocular diseases have been reported. Its action has been shown in all (neurons, glia, retinal pigment epithelium, and endothelial) retinal cells. Patients affected by the Flammer Syndrome (FS) (secondary to Endothelin (ET)-related endothelial dysfunction) are exposed to ischemic accidents in the microcirculation, notably the retina and optic nerve.
Case Presentation: A 54 years old female patient with a diagnosis of venous occlusion OR since three weeks presented on March 3, 2019. A severe Flammer phenotype and underlying non arteritic ischemic optic neuropathy; retinal and choroidal drop-out were obviated. Investigation and follow-up were performed for 36 months with Retinal Multimodal Imaging (Visual field, SD-OCT, OCT- Angiography, Indo Cyanin Green Cine-Video Angiography). Recombinant human EPO (rhEPO)(EPREX®)(2000 units, 0.05 cc) off-label intravitreal injection was performed twice at one month interval. Visual acuity rapidly improved from 20/200 to 20/63 with disparition of the initial altitudinal scotoma after the first rhEPO injection, to 20/40 after the second injection, and gradually up to 20/32, by month 5 to month 36. Secondary cystoid macular edema developed ten days after the first injection, that was not treated via anti-VEGF therapy, and resolved after the second rhEPO injection. PR1 layer integrity, as well as protective macular gliosis were fully restored. Some level of ischemia persisted in the deep capillary plexus and at the optic disc.
Conclusion: Patients with FS are submitted to chronic ischemia and paroxystic ischemia/reperfusion injury that drive survival physiological adaptations via  the hypoxic-preconditioning mimicking effect of endogenous EPO, that becomes overwhelmed in case of acute hypoxic stress threshold above resilience limits. Intra vitreal exogenous rhEPO injection restores retinal hypoxic-preconditioning adaptation capacity, provided it is timely administrated. Intra vitreal rhEPO might be beneficial in other retinal diseases of ischemic and inflammatory nature.
Key words : Erythropoietin, retinal vein occlusion, anterior ischemic optic neuropathy, Flammer syndrome, Primary Vascular Dysfunction, anti-VEGF therapy, Endothelin, microcirculation, off-label therapy.
Introduction
Retinal Venous Occlusion (RVO) treatment still carries insufficiencies and contradictions (1) due to the incomplete deciphering of the pathophysiology and of its complex multifactorial nature, with overlooking of factors other than VEGF up-regulation, notably the roles of  retinal venous tone and Endothelin-1 (ET) (2-5), and of endothelial caspase-9 activation (6). Flammer Syndrome (FS)( (Primary Vascular Dysfunction) is related to a non atherosclerotic ET-related endothelial dysfunction in a context of frequent hypotension and increased oxidative stress (OS), that alienates organs perfusion, with notably changeable functional altered regulation of blood flow (7-9), but the pathophysiology remains uncompletely  elucidated (8). FS is more frequent in females, and does not seem to be expressed among outdoors workers, implying an influence of sex hormons and light (7)(9). ET is the most potent pro-proliferative, pro-fibrotic, pro-oxidative and pro-inflammatory vasoconstrictor, currently considered involved in many diseases other than cardio-vascular ones, and is notably an inducer of neuronal apoptosis (10). It is produced by endothelial (EC), smooth vascular muscles (SVMC) and kidney medullar cells,  and binds the surface Receptors  ET-A on SVMC and ET-B on EC,  in an autocrine and paracrine fashion. Schematically, binding on SVMC Receptors (i.e. through local diffusion in fenestrated capillaries or dysfunctioning EC) and on EC ones (i.e. by circulating ET) induce respectively arterial and venous vasoconstriction, and vasodilation, the latter via Nitrite oxide (NO) synthesis. ET production is stimulated notably by Angiotensin 2, insulin, cortisol, hypoxia, and antagonized by endothelial gaseous NO, itself induced by flow shear stress. Schematically but not exclusively, vascular tone is maintained by a complex regulation of ET-NO balance (8) (10-11).  Both decrease of NO and increase of ET production are both a cause and consequence of inflammation, OS  and endothelial dysfunction, that accordingly favour vasoconstriction; in addition ET competes for L-arginine substrate with NO synthase, thereby reducing NO bioavailability, a mechanism obviated notably in carotid plaques and amaurosis fugax (reviewed in 11).
Severe FS phenotypes are rare. Within the eye, circulating ET reaches retinal VSMC in case of Blood-Retinal-Barrier (BRB) rupture and diffuses freely via the fenestrated choroidal circulation, notably around the optic nerve (ON) head behind the lamina cribrosa, and may induce all pathologies related to acute ocular blood flow decrease (2-3)(5)(7-9). We previously reported two severe cases with rapid onset of monocular cecity and low vision, of respectively RVO in altitude and non arteritic  ischemic optic neuropathy (NAION) (Boscher et al, Société Francaise d'Ophtalmologie and Retina Society, 2015 annual meetings).
Exogenous Recombinant human EPO (rhEPO) has been shown  effective in humans for spinal cord injury (12), neurodegenerative and chronic kidney diseases (CKD) (reviewed in 13). Endogenous EPO is released physiologically in the circulation by the kidney and liver; it may be secreted in addition by all cells in response to hypoxic stress, and it is the prevailing pathway induced via genes up-regulation by the transcription factor Hypoxia Inducible Factor 1 alpha, among angiogenesis (VEGF pathway), vasomotor regulation (inducible NO synthase), antioxidation, and energy metabolism (14). EPO Receptor signaling induces cell proliferation, survival and differentiation (reviewed in 13), and targets multiple non hematopoietic pathways as well as the long-known effect on erythropoiesis (reviewed in 15). Of particular interest here, are its synergistic anti-inflammatory, neural antiapoptotic (16) pro-survival and  pro-regenerative (17) actions upon hypoxic injury, that were long-suggested to be also indirect, via blockade of ET release by astrocytes, and assimilated to ET-A blockers action (18). Quite interestingly, endogenous EPO’s pleiotropic effects were long-summarized (back to 2002), as “mimicking hypoxic-preconditioning” by Dawson (19), a concept applied to the retina (20). EPO Receptors are present in all retinal cells and their rescue activation targets all retinal cells, i.e. retinal EC, neurons (photoreceptors (PR), ganglion (RGG) and  bipolar cells), retinal pigment epithelium (RPE) osmotic function through restoration of the BRB, and  glial cells (reviewed in 21), and the optic nerve (reviewed in 22).  RhEPO has been tested experimentally in animal models of glaucoma, retinal ischemia-reperfusion (I/R) and light phototoxicity, via multiple routes (systemic, subconjunctival, retrobulbar and intravitreal injection (IVI) (reviewed in 23), and used successfully via IVI in human pilot studies, notably first in diabetic macular edema (24) (reviewed in 25 and 26). It failed to improve neuroprotection in association to corticosteroids in optic neuritis, likely for bias reasons (reviewed in 22). Of specific relation to the current case, it has been reported in NAION (27) (reviewed in 28) and traumatic ON injury (29 Rashad), and in one case of acute severe central RVO (CRVO) (Luscan and Roche, Société Francaise d’Ophtalmologie 2017 annual meeting). In addition EPO RPE gene therapy was recently suggested to prevent retinal degeneration induced by OS in a rodent model of dry Age Macular Degeneration (AMD) (30).
Case Report Presentation
This 54 years female patient was first visited on March 2019 4th, seeking for second opinion for ongoing vision deterioration OR on a daily basis, since around 3 weeks. Sub-central RVO (CRVO) OR had been diagnosed on February 27th; available SD-OCT macular volume was increased with  epiretinal marked hyperreflectivity, one available Fluorescein angiography picture showed a non-filled superior CRVO, and a vast central ischemia involving the macular and paraoptic territories. Of note there was ON edema with a para-papillary hemorrage nasal to the disc on the available colour fundus picture.
At presentation on March 4, Best Corrected Visual Acuity (BCVA) was reduced at 20/100 OR (20/25 OS). The patient described periods of acutely excruciating retro-orbital pain in the OR. Intraocular pressure was normal, at 12 OR and 18 OS (pachymetry was at 490 microns in both eyes). The dilated fundus examination was similar to the previous color picture and  did not disclose peripheral hemorrages recalling extended peripheral retinal ischemia. Humphrey Visual Field disclosed an altitudinal inferior scotoma and a peripheral inferior scotoma OR and was in the normal range OS, i.e. did not recall normal tension glaucoma OS . There were no papillary drusen on the autofluorescence picture, ON volume was increased  (11.77 mm3 OR versus 5.75 OS) on SD-OCT (Heidelberg Engineering®) OR,  Retinal Nerve Fiber (RNFL) and RGC layers thicknesses were normal  Marked epimacular hypereflectivity OR with foveolar depression inversion, moderately increased total volume and central foveolar thickness (CFT) (428 microns versus 328 OS), and a whitish aspect of the supero-temporal internal retinal layers recalling ischemic edema, were present . EDI CFT was incresead at 315 microns (versus 273 microns OS), with focal pachyvessels on the video mapping . OCT-Angiography disclosed focal perfusion defects in both the retinal and chorio-capillaris circulations , and central alterations of the PR1 layer on en-face OCT
Altogether the clinical picture evoked a NAION with venous sub-occlusion, recalling Fraenkel’s et al early hypothesis of an ET interstitial diffusion-related venous vasoconstriction behind the lamina cribrosa (2), as much as a rupture of the BRB was present in the optic nerve area (hemorrage along the optic disc). Choroidal vascular drop-out was suggested by the severity and rapidity of the VF impairment (31). The extremely rapid development of a significant “epiretinal membrane”, that we interpreted as a reactive - and protective, in absence of cystoid macular edema (CME) - ET 2-induced astrocytic proliferation (reviewed in 32), was as an additional  sign of severe ischemia.
The mention of the retro-orbital pain evoking a “ciliary angor”, the absence of any inflammatory syndrome and of the usual metabolic syndrome in the emergency blood test, oriented the etiology towards a FS. And indeed anamnesis collected many features of the FS, i.e. hypotension (“non dipper” profile with one symptomatic nocturnal episode of hypotension on the MAPA), migrains, hypersensitivity to cold, stress, noise, smells, and medicines, history of a spontaneously resolutive hydrops six months earlier, and of paroxystic episods of vertigo (which had driven a prior negative brain RMI investigation for Multiple Sclerosis, a frequent record among FS patients (33) and of paroxystic visual field alterations (7)(9), that were actually recorded several times along the follow-up.
The diagnosis of FS was eventually confirmed in the Ophthalmology Department in Basel University on April 10th, with elevated retinal venous pressure (20 to 25mmHg versus 10-15 OS) (4)(7)(9), reduced perfusion in the central retinal artery and veins on ocular Doppler (respectively 8.3 cm/second OR velocity versus 14.1 mmHg OS, and 3.1/second OR versus 5.9 cm OS), and impaired vasodilation upon flicker light-dependant shear stress on the Dynamic Vessel Analyser testing (7-9). In addition atherosclerotic plaques were absent on carotid Doppler.
On March 4th, the patient was at length informed about the FS, a possible off label rhEPO IVI, and a related written informed consent on the ratio risk-benefits was delivered.
By March 7th, she returned on an emergency basis because of vision worsening OR. VA was unchanged, intraocular pressure was at 13, but Visual Field showed a worsening of the central and inferior scotomas with a decreased foveolar threshold, from 33 to 29 decibels. SD-OCT showed a 10% increase in the CFT volume.
On the very same day, an off label rhEPO IVI OR (EPREX® 2000 units, 0,05 cc in a pre-filled syringe) was performed in the operating theater, i.e. the dose reported  by Modarres et al (27), and twenty times inferior to the usual weekly intravenous dose for treatment of chronic anemia secondary to CKD. Intra venous acetazolamide (500 milligrams) was performed prior to the injection, to prevent any increase in intra-ocular pressure. The patient was discharged with a prescription of chlorydrate betaxolol (Betoptic® 0.5 %) two drops a day, and high dose daily magnesium supplementation (600 mgr).
Incidentally the patient developed bradycardia the day after, after altogether instillation of 4 drops of betaxolol only, that was replaced by acetazolamide drops, i.e. a typical hypersensitivity reaction to medications in the FS (7)(9).
Subjective vision improvement was recorded as early as D1 after injection. By March 18 th, eleven days post rhEPO IVI, BCVA was improved at 20/63, the altitudinal scotoma had resolved (Fig. 5), Posterior Vitreous Detachment had developed with a disturbing marked Weiss ring, optic disc swelling had decreased; vasculogenesis within the retinal plexi and some regression of PR1 alterations  were visible on OCT-en face. Indeed by 11 days post EPO significant functional, neuronal and vascular rescue were observed, while the natural evolution had been seriously vision threatening.
However cystoid ME (CME) had developed . Indo Cyanin Green-Cine Video Angiography (ICG-CVA) OR, performed on March 23, i.e. 16 days after the rhEPO IVI, showed a persistent drop in ocular perfusion: ciliary and central retinal artery perfusion timings were dramatically delayed at respectively 21 and 25 seconds, central retinal vein perfusion initiated by 35 seconds, was pulsatile, and completed by 50 seconds only (video 3). Choroidal pachyveins matching the ones on SD-OCT video mapping were present in the temporal superior and inferior fields, and crossed the macula; capillary exclusion territories were present in the macula and around the optic disc.
By April 1, 23 days after the rhEPO injection, VA was unchanged, but CME and perfusion voids in the superficial deep capillary plexi and choriocapillaris were worsened, and optic disc swelling had recurred back to baseline, in a context of repeated episodes of systemic hypotension; and actually Nifepidin-Ratiopharm® oral drops (34), that had been delivered via a Temporary Use Authorization from the central Pharmacology Department in Assistance Publique Hopitaux de Paris, had had to be stopped because of hypersensitivity.
A second off label rhEPO IVI was performed in the same conditions on April 3, i.e. approximately one month after the first one.
Evolution was favourable as early as the day after EPO injection 2: VA was improved at 20/40, CME was reduced, and perfusion improved in the superficial retinal plexus as well as in the choriocapillaris. By week 4 after EPO injection 2, CME was much decreased, i.e. without anti VEGF injection. On august 19th, by week 18 after EPO 2, perfusion on ICG-CVA was greatly improved , with ciliary timing at 18 seconds, central retinal artery at 20 seconds and venous return from 23 to 36 seconds, still pulsatile. Capillary exclusion territories were visible in the macula and temporal to the macula after the capillary flood time that went on by 20.5 until 22.5 seconds (video 4); they  were no longer persistent at intermediate and late timings.
Last complete follow-up was recorded on January 7, 2021, at 22 months from EPO injection 2. BCVA was at 20/40, ON volume had dropped at 7.46 mm3, a sequaelar superior deficit was present in the RNFL  with some  corresponding residual defects on the inferior para central Visual Field , CFT was at 384 mm3 with an epimacular hyperreflectivity without ME, EDI CFT was dropped at 230 microns. Perfusion on ICG-CVA was not normalized, but even more improved, with ciliary timing at 15 seconds, central retinal artery at 16 seconds and venous return from 22 to 31 seconds, still pulsatile , indicating that VP was still above IOP. OCT-A showed persisting perfusion voids, especially at  the optic disc and within the deep retinal capillary plexus. The latter were present at some degree in the OS as well . Choriocapillaris and PR1 layer were dramatically improved.
Last recorded BCVA was at 20/32 by February 14, 2022, at 34 months from EPO 2. SD-OCT showed stable gliosis hypertrophy and mild alterations of the external layers .
Discussion
What was striking in the initial clinical phenotype of CRVO  was  the contrast between the moderate venous dilation,  and the intensity of ischemia, that were illustrating the pioneer hypothesis of Professor Flammer‘s team regarding the pivotal role of ET in VO (2), recently confirmed (3)(35), i.e. the local venous constriction backwards the lamina cribrosa, induced by diffusion of ET-1 within the vascular interstitium, in reaction to hypoxia. NAION was actually the primary and prevailing alteration, and ocular hypoperfusion was confirmed via ICG-CVA, as well as by the ocular Doppler performed in Basel. ICG-CVA confirmed the choroidal drop-out suggested by the severity of the VF impairment (31) and by OCT-A in the choriocapillaris. Venous pressure measurement, which instrumentation is now available (8), should become part of routine eye examination in case of RVO, as it is key to guide cases analysis and personalized therapeutical options.
Indeed, the endogenous EPO pathway is the dominant one activated by hypoxia and is synergetic with the VEGF pathway, and coherently it is expressed along to VEGF in the vitreous in human RVO (36). Diseases develop when the individual limiting  stress threshold for efficient adaptative reactive capacity gets overwhelmed. In this case by Week 3 after symtoms onset,  neuronal and vascular resilience mechanisms were no longer operative, but the BRB, compromised at the ON, was still maintained in the retina.
As mentioned in the introduction, the scientific rationale for the use of EPO was well demonstrated by that time, as well as the capacities of exogenous EPO to mimic endogenous EPO vasculogenesis, neurogenesis and  synaptogenesis, restoration of  the balance between ET-1 and NO. Improvement of chorioretinal blood flow was actually illustrated by the evolution of the choriocapillaris perfusion on repeated OCT-A and ICG-CVA. The anti-apoptotic effect of EPO (16) seems as much appropriate in case of RVO as the caspase-9 activation is possibly another overlooked co-factor (6).
All the conditions for translation into off label clinical use were present: severe vision loss with daily worsening and  unlikely spontaneous favourable  evolution, absence of toxicity in the human pilot studies, of contradictory comorbidities and co-medications, and of context of intraocular neovascularization that might be exacerbated by EPO (37).
Why didn’t we treat the onset of CME by March 18th, i.e. eleven days after EPO IVI 1, by anti-VEGF therapy, the “standard-of-care” in CME for RVO ?
In addition to the context of functional, neuronal and vascular improvements obviated by rhEPO IVI by that timing in the present case, actually anti VEGF therapy does not address the underlying causative pathology. Coherently, anti-VEGF IVI :  1) may not be efficient in improving vision in RVO, despite its efficiency in resolving/improving CME (usually requiring repeated injections), as shown in the Retain study (56% of eyes with resolved ME continued to loose vision)(quoted in (1) 2) eventually may be followed by serum ET-1 levels increase and VA reduction (in 25% of cases in a series of twenty eyes with BRVO) (38) and by increased areas of non perfusion in OCT-A (39). Rather did we perform a second hrEPO IVI, and actually we consider open the question whether the perfusion improvement, that was progressive, might have been accelerated/improved via repeated rhEPO IVI, on a three to four weeks basis.
The development of CME itself, involving a breakdown of the BRB, i.e. of part of the complex  retinal armentorium resilience to hypoxia, was somewhat paradoxical in the context of improvement after the first EPO injection, as EPO restores the BRB (24), and as much as it was suggested that EPO inhibits glial osmotic swelling, one cause of ME, via VEGF induction (40). Possible explanations were: 1) the vascular hyperpermeability induced by the up-regulation of VEGF gene expression via EPO (41) 2) the ongoing causative disease, of chronic nature, that was obviated by the ICG-CVA and the Basel investigation, responsible for overwhelming the gliosis-dependant capacity of resilience to hypoxia 3) a combination of both. I/R seemed excluded: EPO precisely mimics hypoxic reconditioning as shown in over ten years publications, including in the retina (20), and as EPO therapy is part of the current strategy for stabilization of the endothelial glycocalix against I/R injury (42-43). An additional and not exclusive possible explanation was the potential antagonist action of EPO on GFAP astrocytes proliferation, as mentioned in the introduction (18), that might have counteracted the reactive protective hypertrophic gliosis, still fully operative prior to EPO injection, and that was eventually restored during the follow-up, where epiretinal hyperreflectivity without ME and ongoing chronic ischemia do coincide (Fig. 6 and video 6), as much as it is unlikely that EPO’s effect would exceed one month (cf infra). Inhibition of gliosis by EPO IVI might have been also part of the mechanism of rescue of RGG, compromised by gliosis in hypoxic conditions (44). Whatever the complex balance initially reached, then overwhelmed after EPO IVI 1, the challenge was rapidly overcome by the second EPO IVI without anti-VEGF injection, likely because the former was powerful enough to restore the threshold limit for resilience to hypoxia, that seemed no longer reached again during the relapse-free follow-up. Of note, this “epiretinal membrane “, which association to good vision is a proof of concept of its protective effect, must not be removed surgically, as it would suppress one of the mecanisms of resilience to hypoxia.
To our best knowledge, ICG-CVA was never reported in FS; it allows real time evaluation of the ocular perfusion and illustration of the universal rheological laws that control choroidal blood flow as well. Pachyveins recall a “reverse” veno-arteriolar reflex in the choroidal circulation, that is NO and autonomous nervous system-dependant, and that we suggested to be an adaptative choroidal microcirculation process to hypoxia (45).  Their persistence during follow-up accounts for a persisting state of chronic ischemia.
The optimal timing for reperfusion via rhEPO in a non resolved issue:
in the case reported by Luscan and Roche, rhEPO IVI was performed on the very same day of disease onset, where it induced complete recovery from VA reduced at counting fingers at 1 meter, within 48 hours. This clinical human finding is on line with a recent rodent stroke study that established the timings for non lethal versus lethal ischemia of the neural and vascular lineages, and the optimized ones for beneficial reperfusion: the acute phase - from Day 1 where endothelial and neural cells are still preserved,  to Day 7 where proliferation of pericytes and Progenitor Stem Cells are obtainable - and the chronic stage, up to Day 56, where vasculogenesis, neurogenesis and functional recovery are still possible, but with uncertain efficiency (46). In our particular case, PR rescue after rhEPO IVI 1 indicated that Week 3 was still timely. RhEPO IVI  efficacy was shown to last between one (restoration of the BRB)  and four weeks (antiapoptotic effect) in diabetic rats (24). The relapse after Week 3 post IVI 1 might indicate that it might be  approximately the interval to be followed, should repeated injections be necessary.
The bilateral chronic perfusion defects on OCT-A at last follow-up indicate that both eyes remain in a condition of chronic ischemia and I/R, where endogenous EPO provides efficient ischemic pre-conditioning, but is potentially susceptible to be challenged during episodes of acute hypoxia that overwhelm the resilience threshold.
Conclusion
The present case advocates for individualized medicine with careful recording of the medical history, investigation of the systemic context, and exploiting of the available retinal multimodal imaging for accurate analytical interpretation of retinal diseases and their complex pathophysiology. The Flammer Syndrome is unfortunately overlooked in case of RVO; it should be suspected clinically in case of absence of the usual vascular and metabolic context, and in case  of elevated RVP. RhEPO therapy is able to restore the beneficial endogenous EPO ischemic pre-conditioning in eyes submitted to challenging acute hypoxia episodes in addition to chronic ischemic stress, as in the Flammer Syndrome and fluctuating ocular blood flow, when it becomes compromised by the overwhelming of the hypoxic stress resilience threshold. The latter physiopathological explanation illuminates the cases of RVO where anti-VEGF therapy proved functionally inefficient, and/or worsened retinal ischemia. RhEPO therapy might be applied to other chronic ischemia and I/R conditions, as non neo-vascular Age Macular Degeneration (AMD), and actually EPO was listed in 2020 among the nineteen promising molecules in AMD in a pooling of four thousands (47).
2 notes · View notes
dhr-ao3 · 10 months ago
Text
Love In A Time Of The Zombie Apocalypse by rizzlewrites (Español)
Love In A Time Of The Zombie Apocalypse by rizzlewrites (Español) https://ift.tt/U31P5d4 by blaisemalfoyy Después de Voldemort, estuvo esto. El reloj está sonando para crear una cura para el inimaginable terror que actualmente está en el mundo. Hermione se encuentra sin querer aliada con el hombre más odiado en toda Gran Bretaña Mágica. (Final alterno: 'La Vie En Rose', Audiobook en inglés por ETL.Echo.Audiobooks), Words: 4004, Chapters: 1/84, Language: Español Fandoms: Harry Potter - J. K. Rowling Rating: Explicit Warnings: Graphic Depictions Of Violence Categories: F/M Characters: Hermione Granger, Draco Malfoy, Harry Potter, Ginny Weasley, Neville Longbottom, Blaise Zabini, Lucius Malfoy, Narcissa Black Malfoy, Padma Patil, Original Characters, Rufus Scrimgeour Relationships: Hermione Granger/Draco Malfoy, Harry Potter/Ginny Weasley Additional Tags: Angst, scientist Draco, Post-Apocalypse, Children in Dangerous Situations, Draco is a BAMF, Horror, Original Character(s), Hermione is a BAMF, Harry is a BAMF, Guns, BAMFs galore, Gun Violence, Medical Procedures, Blood and Violence, Post-Traumatic Stress Disorder - PTSD, Explicit Sexual Content, no one is safe, Researcher Hermione, Post-Voldemort, non-consensual fruit molestation, Despots, Mental Health Issues, Zombies, Double-stranded RNA Activated Caspase Oligomerizer, misnomered sex dungeon, purebloods in therapy, Pregnancy, Attempted Sexual Assault, Bond villaining, Questionable Neuroscience, mortal combat, Slow Burn, audiofic, trauma-bonding, more like 3 fics in 1, HEA, Light Bondage, wizarding folk without their wands, hyper-competent MC's, Courtroom Drama, Exposition, Redeemed Draco, Deflowering, Emotional Sex, significant epilogue, rebuilding themes, Domestic Dramione, slutty cream puffs, Ensemble Cast, Draco speaking Russian, Werewolf, pet frogs, Beelzebub the Hellhound, Malfoy Manor, wizarding folk with guns, Hurt/Comfort, pesky garden gnome via AO3 works tagged 'Hermione Granger/Draco Malfoy' https://ift.tt/yhJQw0H February 05, 2024 at 08:40AM
3 notes · View notes
moleculardepot · 27 days ago
Text
Caspase-1, Human, Recombinant, E. coli
Caspase-1, Human, Recombinant, E. coli Catalog number: B2018846 Lot number: Batch Dependent Expiration Date: Batch dependent Amount: 3000 U Molecular Weight or Concentration: N/A Supplied as: Solution Applications: a molecular tool for various biochemical applications Storage: -80°C Keywords: IL-1β Converting Enzyme, ICE Grade: Biotechnology grade. All products are highly pure. All solutions are…
0 notes
consultatiiladomiciliu-ro · 1 month ago
Text
Efectele albastrului de metilen asupra neuronilor in atacul cerebral ischemic
Citeste articolul pe https://consultatiiladomiciliu.ro/efectele-albastrului-de-metilen-asupra-neuronilor-in-atacul-cerebral-ischemic/
Efectele albastrului de metilen asupra neuronilor in atacul cerebral ischemic
Tumblr media
Titlul original al articolului este Efectele albastrului de metilen asupra autofagiei și apoptoza în țesutul normal definit prin RMN, Penumbra ischemică și miezul ischemic.
Ceea ce inseamna: cum albastrul de metilen recupereaza neuronii afectati de accidentul vascular ischemic.
AUTORI: Zhao Jiang 1,2 , Lora Talley Watts 2 , Shiliang Huang 2 , Qiang Shen 2 , Pavel Rodriguez 2 , Chunhua Chen 1,3 , Changman Zhou 1 , Timothy Q. Duong 2 * 1 Department of Anatomy and Embryology, Peking University Health Science Center, Beijing, China, 2 Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America, 3 Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
Abstract
Albastrul de metilen (MB) USP, care are proprietăți de îmbunătățire a energiei și antioxidante, este utilizat în mod curent pentru a trata methemoglobinemia și otrăvirea cu cianuri la oameni. Noi recent a arătat că administrarea de Albastru de metilen reduce volumul infarctului și deficitele comportamentale la modelele de șobolani de accident vascular cerebral ischemic și leziuni cerebrale traumatice. Acest studiu raportează moleculara de bază Mecanisme de neuroprotecție Albastru de metilen în urma accidentului vascular cerebral ischemic tranzitoriu la șobolani. Sobolanii erau supus unui accident vascular cerebral ischemic tranzitoriu (60 de minute). RMN multimodal în faza acută iar la 24 de ore au fost folosite pentru a defini trei regiuni de interes (ROI): i) perfuzia-difuzia nepotrivire salvată prin reperfuzie, ii) nepotrivirea perfuzie-difuzie nesalvată de reperfuzie și iii) miezul ischemic. Țesuturile din aceste ROI au fost extrase pentru western analize ern blot ale markerilor autofagici și apoptotici.
Principalele constatări au fost:
1) Albastru de metilen tratamentul a redus volumul infarctului și deficitele comportamentale,
2) Albastru de metilen a îmbunătățit sângele cerebral curge la țesutul nepotrivire perfuzie-difuzie după reperfuzie și minimizat dăunător hiperperfuzie la 24 de ore după accident vascular cerebral,
3) Albastru de metilen a inhibat apoptoza și a crescut autofagia în nepotrivirea perfuziei-difuzie,
4) Albastru de metilen a inhibat cascadele de semnalizare apoptotică (p53-Bax- Bcl2-Caspase3) și
5) cascade de semnalizare autofagică îmbunătățite Albastru de metilen (p53-AMPK-TSC2- mTOR).
MB a indus neuroprotecția, cel puțin parțial, prin îmbunătățirea autofagiei și reducerea apoptoza în țesutul nepotrivire perfuzie-difuzie după accident vascular cerebral ischemic. Introducere Accidentul vascular cerebral este o cauză principală de deces și invaliditate pe termen lung [1]. În urma unei leziuni cerebrale ischemice, cascada apoptotică este activată în câteva ore și culminează cu moartea progresivă a celulelor în infarctul ischemic în expansiune prin proteine ​​din familiile Bcl-2 și caspaze [2]. Classi în mod specific, ischemia cerebrală crește expresia p53 și genele din aval, inclusiv Bax [3], a membru pro-apoptotic al familiei de proteine ​​Bcl-2 [4]. Bax se translocă în mitocondrii și induce eliberarea citocromului c din mitocondrii în citosol unde interacționează cu factorul de activare a proteazei apoptotice 1 (Apaf-1) pentru a activa caspaza-9. Activarea caspase-9 activează, la rândul său, caspazele din aval, cum ar fi caspaza-3, care în cele din urmă duce la apo- moartea celulelor ptotice [4]. De asemenea, este activată autofagia, responsabilă de degradarea și reciclarea componentelor celulare vatat în urma unei injurii ischemice [5]. Deși importanța autofagiei în diverse bio- proceselor logice și patologice este larg acceptat [6], rolul autofagiei în neuron Supraviețuirea după ischemia cerebrală acută este mai puțin înțeleasă. Există dovezi că autofagia contribuie la efectul protector în ischemia cerebrală [7] și este reglementată de multe diferite molecule precum p53, protein kinaza activată de AMP (AMPK), complexul de scleroză tuberoasă 2 (TSC2) și ținta mamiferelor a rapamicinei (mTOR), prin căi multiple de semnalizare- căi [7–9]. Multe medicamente au încercat să țintească aceste molecule (apoptotice și autofagice). căi de reducere a leziunilor cerebrale ischemice. Albastrul de metilen (MB) USP este un medicament aprobat de FDA care este utilizat în siguranță pentru a trata meta- moglobinemie și otrăvire cu cianuri la om [10]. Albastru de metilen traversează cu ușurință bara sânge-creier- mai ridicat și are atât proprietăți de îmbunătățire a energiei, cât și proprietăți antioxidante. Albastru de metilen acționează ca un ciclor de electroni [10] care permite Albastru de metilen să redirecționeze electronii către lanțul de transport de electroni mitocondrial (în absența oxigenului), susținând sau sporind astfel producția de ATP și promovând supraviețuirea celulară. Ocolind activitatea complexului I-III pentru a genera ATP, Albastru de metilen reduce, de asemenea, producerea de specii de gene din lanțul de transport de electroni mitocondrial [11], care are potențialul de a minimiza leziunile ischemice și de reperfuzie. Recent s-a demonstrat că Albastru de metilen se reduce tulburări de comportament în modelele animale ale bolii Parkinson [10], bolii Alzheimer [12,13] și pentru a reduce tulburările comportamentale și volumul leziunilor în leziuni cerebrale traumatice [14]. Am arătat recent că administrarea de Albastru de metilen a redus volumul infarctului definit de RMN și Deficiențe comportamentale într-un model de șobolan de accident vascular cerebral ischemic prin ocluzia arterei cerebrale medii (MCAO) [15]. În acest studiu, am testat mecanismele moleculare de bază ale neuroprotecției Albastru de metilen în urma accidentului vascular cerebral ischemic tranzitoriu utilizând analiza Western blot a apoptotic și autofafic cascade în diferite regiuni de interes (ROI) definite prin RMN multimodal. Utilizarea combinată RMN-ul de difuzie și perfuzie [16,17] a permis delimitarea „mis-ului de perfuzie-difuzie potrivire” (care aproximează „penumbra ischemică”) și nucleul ischemic pentru histologic analiză. Cele trei ROI au fost selectate pentru Western blot folosind RMN multimodal: i) per- nepotrivire fuziune-difuzie (țesut cu risc) salvat prin reperfuzie, ii) perfuzie-difuzie nepotrivirea nerecuperată prin reperfuzie și iii) miezul ischemic. Comparații ale western blot analiza a fost facute cu scoruri comportamentale (scoruri neurologice și analiza defectelor piciorului). Țesuturi din aceste ROI au fost extrase pentru analize western blot ale markerilor autofagici și apoptotici. Aceste descoperiri aruncă lumină asupra mecanismelor moleculare de bază implicate în neuropro- tection in urma unui accident vascular cerebral ischemic tranzitoriu.
Materiale și metode Design experiment
Toate procedurile experimentale au fost aprobate de Institutional Animal Care and Use Com- mijloc la Universitatea din Texas Health Science Center din San Antonio. Puncte finale umane au fost folosite pentru aceste animale. Criteriile au fost: la sfârșitul momentelor selectate, orice animal a suferit o pierdere în greutate de 20% sau orice animal care a suferit dureri care nu sunt controlabile prin anal faţă Au fost utilizate criterii suplimentare în consultare cu un medic veterinar, după caz. Animalele anesteziate vor fi eutanasiate printr-o supradoză de pentobarbital urmată de luxație cervicală.
Șobolani masculi Sprague-Dawley (280-320g, n = 25, Charles River Laboratories, Wilmington, MA) au fost randomizați în trei grupuri: i) chirurgie simulată (n = 5), ii) tranzitorie (60 minute) MCAO tratat cu 1 mg/kg USP Albastru de metilen (American Regent, Shirley, NY) (n = 10, 5 șobolani au fost utilizați pentru RMN și analiză Western blot, un alt grup de 5 șobolani a fost utilizat pentru testarea comportamentală) și iii) MCAO tranzitoriu (60 minute) tratat cu vehicul salin (n = 10, 5 șobolani au fost utilizați pentru RMN și Analiza Western blot, un alt grup de șobolani 5 a fost utilizat pentru testarea comportamentală). Rețineți că patru animalele, neincluse în grupurile de mai sus, au fost excluse din cauza complicațiilor chirurgicale sau moartea matură și un animal a fost exclus din cauza absenței accidentului vascular cerebral. Animalele au fost intubate și ventilate mecanic sub izofluran (2% în aerul camerei). Vena cozii a fost cateterizată. MCAO a fost obținut prin introducerea unui frec intraluminal de silicon filament acoperit cu ber (Doccol Corporation, Sharon, MA) prin artera carotidă externă în a moda retrogradă [15]. Animalele au fost apoi asigurate în decubit dorsal folosind un obicei căști stereotaxice compatibile cu RMN. După măsurarea inițială RMN la 30 de minute după debutul accidentului vascular cerebral, vehiculul (soluție salină) sau Albastru de metilen a fost perfuzat prin vena cozii timp de 30 de minute folosind un RMN pompă compatibilă (aparatul Harvard). Albastru de metilen sau vehiculul a fost administrat la 30 de minute după inducere. de MCAO dar înainte de reperfuzie care a fost la 60 de minute. Acum este revizuită. Doze suplimentare de vehicul sau Albastru de metilen au fost administrate la 6 ore (1 mg/kg, i.p.) și 15 ore (1 mg/kg, i.p.) după MCAO. Un Studiul anterior a arătat că timpul de înjumătățire al Albastru de metilen este de aproximativ 5,0-6,5 ore [18]. CO de sfârșit de maree 2 (2,8– 3,6%), temperatura rectală (36,5–37,5°C), ritm cardiac (340-450 bpm) și oxigenarea arterială urația (92–97% pentru grupul de vehicule și 93–98% pentru grupul MB) au fost înregistrate și menținute în intervalul fiziologic normal în timpul RMN.
Experimente RMN
RMN a fost efectuat pe un scaner Bruker Biospec 7T/40cm cu un gradient BGA12S de 76G/cm insert (Billerica, MA) folosind o bobină de suprafață personalizată pentru imagistica creierului și o bobină de gât pentru etichetarea perfuziei [15]. Fluxul sanguin cerebral (CBF) a fost măsurat folosind arterială continuă Tehnica de etichetare prin spin cu imagini eco-planare în gradient. Durata de etichetare a fost de 2,7 s și întârzierea după etichetare a fost de 250 ms. Coeficientul de difuzie aparent (ADC) a fost măsurat folosind Imagini eco-planare ponderate prin difuzie spin-echo cu gradienți aplicați separat de-a lungul direcțiile x, y sau z. Două valori b de 4 și 1.200s/mm 2 au fost folosite. Alți parametri RMN au fost: o singură fotografie, matrice = 96×96 (reconstituită la 128×128), câmp vizual = 25,6×25,6 mm, șapte Felii groase de 1,5 mm, unghi de răsucire de 90°, timp de repetiție = 3s, timp de ecou = 10,2 ms pentru CBF și 30 ms pentru ADC. Hărțile ADC și CBF au fost obținute la 30 și 90 de minute după ocluzie și la 24 de ore. T 2 hărțile au fost, de asemenea, achiziționate pe 24 de ore folosind ecou de rotire rapidă cu patru timpi efectivi de ecou (25, 40, 75 și 120 ms), lungimea trenului de ecou 8 și 8 medii ale semnalului. Imaginile de la fiecare șobolan în momente diferite au fost co-înregistrate. ADC, CBF și T 2 hărți au fost calculate. Volumul inițial al leziunii a fost definit de leziunea ADC la 30 de minute după accident vascular cerebral folosind pragul stabilit (0,53 × 10 -3 mm 2 /s) [19]. Un prag de 0,30 ml/g/min a fost utilizat pentru măsurarea volumului anormal al țesutului CBF. Nepotrivirea perfuzie-difuzie este țesutul cu ADC normal sau aproape de normal, dar mai mic de 0,30 ml/g/min CBF. Volumul final al infarctului ume a fost definit de T 2 la 24 de ore folosind pragul mediei T 2 valoare plus de două ori valoarea standardului abaterea dard [15]. Volumul infarctului corectat de edem a fost calculat [15]. Trei ROI au fost alese pentru analiza Western blot și aceste ROI au fost determinate pe baza ADC și CBF RMN la 30 de minute și T 2 RMN la 24 de ore după AVC. Aceste ROI au fost: ROI-A a fost perfuzia zona de nepotrivire de difuzie salvată prin reperfuzie, ROI-B a fost nepotrivirea perfuzie-difuzie zona nesalvată prin reperfuzie, iar ROI-C a fost nucleul ischemic atât cu perfuzie cât și anomalii de difuzie. Aceste definiții au fost aplicate la 30 de minute după MCAO pentru a defini fiecare regiune.
Deficiențe neurologice
Scorurile neurologice Garcia [20] au fost analizate în mod orb la 24 de ore. Vina piciorului testul a fost efectuat cu 1-3 zile înainte de MCAO și din nou 2 zile după MCAO. Sfatul a fost dat pe o podea cu grilă ridicată (dimensiune 18×11 inci cu deschideri pentru grilă de ~1,56 inci 2 și 1 in 2 ) și video înregistrat timp de cinci minute sau până când s-au făcut 50 de pași cu un membru (neafectat) [14]. Procentul de defecte ale piciorului pentru fiecare membru a fost calculat ca număr de membru anterior drept sau stâng defecte sub deschiderea grilei împărțit la numărul total de pași parcurși.
Western blot
Efectul Albastru de metilen asupra cascadelor apoptotice și autofagice a fost analizat utilizând western blot. ani timpii au fost sacrificați la 24 de ore după ocluzie. Secțiuni coronale ale creierului (7 felii, 1,5 mm grosime) au fost tăiate și fiecare felie a fost potrivită cu imaginile RMN. Țesutul creierului a fost separat pe bază pe cele trei ROI definite de hărțile ADC și CBF la 30 de minute și T 2 hărți la 24 de ore după accident vascular cerebral. Țesutul colectat de la fiecare ROI a fost omogenizat în tampon rece cu gheață (0,32 M zaharoză, 1 mM EDTA, 1 M Tris-HCL pH = 7,8 şi dH 2 O plus 1 tabletă Roche Protează Inhibitor). Alicote de fiecare fracție a fost utilizată pentru a determina concentrația de proteine ​​din fiecare probă folosind testul proteinei acidului bicinchoninic (BCA) (Thermo Scientific). Probele de proteine ​​(50μg) au fost încărcate pe un gel de poliacrilamidă 12%, electroforezate și transferat pe o membrană de nitroceluloză. Membranele de nitroceluloză au fost apoi blocate, urmată de incubare cu anticorpii primari peste noapte la 4°C și apoi incubată cu anticorpi secundari reciproci la temperatura camerei timp de 2 ore. Anticorpii primari (din Tehnologia de semnalizare celulară, dacă nu se specifică altfel) au fost: i) iepure anti-caspază-3, ii) iepure anti-Bax și Bcl-2, iii) iepure anti-AMPK și β1/2, iv) iepure anti-Phospho-AMPKα (Thr172), v) iepure anti-fosfo-AMPKβ1 (Ser108), vi) iepure anti-total/fosfo-mTOR (Ser2448), viii) iepure anti-total/Phospho-TSC2 (Ser1387), ix) iepure anti-LC3B (din MBL International) și x) iepure anti-p53 (de la MBL International). Diluțiile au fost 1:1000 pt anticorpii primari și 1:2000 pentru anticorpii secundari. Fiecare western blot a fost analizat folosind scanerul C-DiGit Blot (LI-COR Biosciences) și software-ul Image Studio (versiunea 3.1.4).
Analiza statistica
Datele au fost raportate ca medie ± SEM. Testul t pereche a fost utilizat pentru a compara volumul inițial al leziunilor. Umezeala și volumul final al infarctului, iar testul t nepereche a fost utilizat pentru comparații între Albastru de metilen și grupurile de control pentru rezultatele Western blot. p<0,05 a fost considerat ca fiind statistic semnificativ.
Rezultate Rezultatele RMN
Reprezentanți ADC, CBF și T 2 hărți în mai multe momente (30 de minute, 90 de minute și 24 de ore) post-ocluzia de la vehicul și șobolani Albastru de metilen sunt prezentate în Fig 1A. Volumul leziunii ADC la La 30 de minute după ce MCAO a fost similar între grupul vehicul și Albastru de metilen, demonstrând o repro- model MCAO ducibil. T 2 volumul de infarct al grupului de vehicule a fost mai mare decât cel al MB grup la 24 de ore după MCAO. Volumul leziunilor mediate pe grup au fost analizate la 30 de minute, 90 de minute și 24 de ore după accident vascular cerebral (Figura 1B). Volumele inițiale (30 de minute) ale leziunilor definite de ADC înainte de administrarea Albastru de metilen sau vehiculului nu au fost diferite statistic una de alta (161±24mm³ versus 159±13mm³, p>0,05). Volumul leziunilor la 90 de minute a scăzut atât în ​​grupul Albastru de metilen, cât și în grupul vehicul datorită reperfuziei.
Volumul de infarct final dupa 24h al grupului tratat cu Albastru de metilen a fost mai mic decât cel al grupului vehicul (70 ±12 față de 106±14mm³, p<0,05). Pentru a investiga efectele Albastru de metilen asupra CBF asociată cu ischemia cerebrală, CBF al vehiculului cle și grupul Albastru de metilen au fost analizate pentru trei ROI diferite: i) nepotrivirea perfuzie-difuzie salvat prin reperfuzie (ROI-A), ii) nepotrivire nesalvat prin reperfuzie (ROI-B) și iii) miezul ischemic (ROI-C) (Fig 1C). Aceleași ROI au fost folosite pentru toate punctele de timp. Inainte de reper- fuziune (30 minute), valorile CBF ale celor trei ROI nu au fost diferite statistic între ele doua grupuri. După reperfuzie la 90 de minute, valorile CBF atât în ​​ROI-B cât și în C (CBF normalizat: 1,11±0,19 și, respectiv, 1,00±0,12) din grupul Albastru de metilen au fost mai mari decât cele ale vehiculului grup (0,59±0,08 și, respectiv, 0,70±0,11, p<0,05), indicând faptul că Albastru de metilen a crescut CBF după reperfuzie. La 24 de ore, aceleași ROI din grupul Albastru de metilen au arătat mai puțină hiperperfuzie decât cea a grupul de vehicule.
Rezultate comportamentale
Scorurile neurocomportamentale au fost evaluate folosind sistemul de scor Garcia la 24 de ore (Fig 2A). Comparativ cu grupul de control, esantionul a demonstrat scoruri neurocomportamentale mai slabe decât se aștepta. În schimb, grupul tratat cu Albastru de metilen a arătat o îmbunătățire semnificativă statistic a scorurilor neurocomportamentale în comparație cu grupul de control (14,0±0,7 vs. 12,4±0,8, p<0,05). În mod similar, afectarea piciorului – scorurile membrului anterior afectat în grupul Albastru de metilen au fost semnificativ diferite de grupul de control la 2 zile după MCAO (0,13±0,03 vs. 0,46±0,06, p<0,05), dar nu au fost semnificativ diferite ferent înainte de inducerea accidentului vascular cerebral (Fig. 2B). Efectele Albastru de metilen asupra expresiei markerului cheie apoptotic și autofagic Analiza Western blot a fost efectuată pentru a determina raportul de expresie a marcajului autofagiei. (LC3 I și II) și expresia unui marker apoptotic (caspaza-3) la 24 de ore după accident vascular cerebral.
Efectele Albastru de metilen asupra căii apoptotice din aval
Pentru a investiga în continuare efectele Albastru de metilen asupra proceselor apoptotice din aval, p53, Bcl-2 și Bax nivelurile de expresie a proteinei au fost analizate în cele trei ROI (Fig. 4). Media de grup p53 nivelul de expresie în toate ROI-ul grupului de vehicul a crescut semnificativ în comparație cu simularea grup. Grupul Albastru de metilen a arătat niveluri semnificativ reduse de proteină p53 în toate cele trei ROI comparativ la grupul de vehicule (p<0,05). Grupul Albastru de metilen a arătat, de asemenea, o expresie Bax redusă în ROI-A și B, dar nu în ROI-C în comparație cu grupul de vehicule. Albastru de metilen a îmbunătățit, de asemenea, expresia Bcl-2 în ROI-A și B, dar nu în ROI-C comparativ cu vehiculul (p<0,05). În mod colectiv, Albastru de metilen a inhibat cascade moleculare asociate cu calea clasică de semnalizare apoptotică în țesutul cu risc dar nu în miezul ischemic în urma accidentului vascular cerebral ischemic.
Efectele Albastru de metilen asupra căii autofagice din aval
Pentru a investiga în continuare efectele Albastru de metilen asupra inducerii autofagiei, analiza Western blot a fost folosit pentru a determina dacă a existat o legătură între expresia p53 și fosforilare nivelurile de AMPKα/β la locuri specifice pentru cele trei ROI (Fig. 5A). Grupul Albastru de metilen a arătat considerație- hiperfosforilarea capabilă a AMPKα la locul Thr172 în ROI-A și B, dar nu și în ROI-C comparativ cu grupurile simulate și vehicule (p<0,05). În mod similar, grupul Albastru de metilen, de asemenea, demonstrează- a avut o hiperfosforilare considerabilă a AMPKβ1 la locul Ser108, ​​în comparație cu grupuri simulate și vehicule în ROI-A și B (p<0,05), dar nu și în ROI-C. Nivelul de fosforilare al TSC2 (proteina din aval a AMPK) la locul Ser1387 a fost de asemenea măsurat (Fig. 5B). Nivelurile de fosforilare medie de grup ale TSC2 au fost semnificative îmbunătățit de Albastru de metilen atât în ​​ROI-A, cât și în B (p<0,05), dar nu și în ROI-C. Pentru că TSC2 a acționat în jos flux de AMPK pentru a inhiba mTOR [21], nivelul de fosforilare al mTOR la ​​locul Ser2448 ce s-a masurat? În comparație cu simularea, șobolanii tratați cu vehicul au demonstrat o scădere fosforilarea mTOR în ROI-A și B (dar nu ROI-C) și distrugerea șobolanilor tratați cu Albastru de metilen a jucat o reducere suplimentară a fosforilării mTOR în ROI-A și B, dar nu și în ROI-C. Fig. 6 rezumă constatările noastre cu privire la efectele Albastru de metilen asupra autofagiei și apoptozei. MB a crescut procesele autofagice și a inhibat procesele de moarte celulară apoptotică în țesutul cu risc în urma unui accident vascular cerebral ischemic. Acest proces implică calea p53.
Discuţie
Acest studiu a testat mecanismele moleculare care stau la baza neuroprotecției MB Accident vascular cerebral ischemic tranzitoriu la șobolani.
Constatările majore sunt: ​​
1) Albastru de metilen reduce volumul infarctului și deficite comportamentale în urma unui accident vascular cerebral ischemic tranzitoriu la șobolani,
2) Albastru de metilen îmbunătățește CBF la risc țesut după reperfuzie și minimizează hiperperfuzia dăunătoare la 24 de ore după MCAO,
3) MB inhibă apoptoza și îmbunătățește autofagia în țesutul cu risc, dar nu în nucleul ischemic,
4) Albastru de metilen modulează cascada p53-Bax-Bcl2-caspase3, inhibând calea de semnalizare apoptotică- moduri,
5) Albastru de metilen modulează cascadele p53-AMPK-TSC2-mTOR, îmbunătățind semnalizarea autofagică căi.
Avantajul aplicării RMN în cercetarea accidentului vascular cerebral
RMN oferă informații relevante din punct de vedere clinic și este utilizat pe scară largă pentru studiul preclinic și clinic accident vascular cerebral. Imagistica ponderată prin difuzie (DWI) în care contrastul se bazează pe difuzia aparentă a apei coeficientul de sion (ADC) este recunoscut ca o modalitate utilă de imagistică datorită capacității sale de a detecta leziune cerebrală ischemică în câteva minute de la debut [22]. În urma unui accident vascular cerebral ischemic hiperacut, există de obicei un nucleu ischemic și o penumbră ischemică înconjurătoare care s-a redus CBF dar metabolismul energetic conservat [23]. Penumbra ischemică este o țintă importantă pentru tratament. Utilizarea combinată a RMN ADC și CBF permite delimitarea normală, la risc (pen- umbra) și țesuturile centrale ischemice în faza hiperacută [24,25]. S-a folosit RMN multimodal în acest studiu pentru a ghida extracția diferitelor tipuri de țesut pentru analiza ulterioară Western blot sis la animalele individuale. Aceste tipuri de țesut au fost salvate prin nepotrivirea perfuzie-difuzie reperfuzie (ROI-A), nepotrivirea perfuzie-difuzie nesalvată prin reperfuzie (ROI-B), și miezul ischemic (ROI-C), care nu ar fi fost posibil cu histologic terminal analiză [26,27].
În acest studiu, penumbra ischemică a fost aproximată prin greșeala de perfuzie-difuzie. potrivirea și pragurile utilizate pentru definiția nepotrivirii s-au bazat pe stabilite anterior pragurile [19]. Suntem conștienți de faptul că este posibil ca aceste praguri să nu fie aplicate universal tuturor condiţii.condiţii. În plus, studiile clinice care utilizează „nepotrivirea” ca criteriu de selecție pentru tromboliza a avut succes variabil [28–30] și meritul său este încă în dezbatere [31,32]. Altă tehnologie tehnici bazate pe T2’ (T2 cantitativ corectate cu efecte spin-spin, [33]), pH [34] și T2 – imagistica ponderată a provocării cu oxigen [35–37] sunt dezvoltate pentru a îmbunătăți delimitarea penumbra ischemică. Cu toate acestea, utilizarea conceptului de nepotrivire perfuzie-difuzie este Cu toate acestea, utilizarea conceptului de nepotrivire perfuzie-difuzie este utile în studiile noastre. Concluzia noastră generală rămâne valabilă. În ciuda limitărilor sale, parfumul Conceptul de nepotrivire sion-difuzie rămâne util până în prezent din punct de vedere clinic.”
Rolul Albastru de metilen în moartea celulelor apoptotice induse de accident vascular cerebral
În miezul ischemic domină necroza tisulară, în timp ce în penumbră, celula programată căile de moarte, cum ar fi apoptoza [2,3,38] și autofagia [5–7] domină progresia moartea celulelor. Apoptoza poate fi indusă fie de receptorii de moarte de suprafață celulară, fie prin mitocondrii eliberarea citocromului c și multe molecule sunt strâns implicate în reglarea fiecărei coordonate calea identificată. Activarea caspazei-3, un numitor comun atât pentru inducerea apoptozei s-a demonstrat anterior că crește în urma leziunii cerebrale ischemice [39]. Rezultatele au arătat că Albastru de metilen a inhibat expresia caspazei-3 în ROI penumbrei, dar nu și în rentabilitatea investiției de bază. Pentru a investiga în continuare efectul Albastru de metilen asupra căilor apoptotice, doi membri ai celulei B Au fost măsurate proteinele din clasa limfomului: Bcl-2 (anti-apoptotic) și Bax (pro-apoptotic). Noi am constatat că Albastru de metilen a suprimat în mod semnificativ expresia Bax și a reglat în sus nivelurile de proteină Bcl-2 în rentabilitatea investiției penumbra, dar nu în rentabilitatea investiției de bază. În plus, am evaluat expresia p53, cunoscut că declanșează calea apoptotică intrinsecă și a constatat că Albastru de metilen a suprimat și p53 expresie în penumbra ROI. Aceste date sugerează că neuroprotecția Albastru de metilen a acționat prin inhibarea p53 și Bax și îmbunătățirea Bcl-2 pro-supraviețuire. Albastru de metilen inhibă celulele apoptotice moartea prin stabilizarea mitocondriilor, limitând permeabilitatea mitocondriilor exterioare membrana și blocând astfel eliberarea de molecule inductoare pro-apoptotice. Descoperirile noastre sunt în acord cu studiile anterioare în care s-a descoperit că Albastru de metilen stimulează mai multe gene anti-apoptotice și a activat mecanismele de reparare/regenerare a creierului [40,41]. Pe scurt, datele noastre sunt primul pentru a demonstra că Albastru de metilen inhibă calea apoptotică p53-Bax-Bcl2-caspaze3, suprimă- provocând moartea celulelor apoptotice în ROI penumbral, prevenind astfel tranziția în infarct și scăderea volumului total al infarctului. MB are efecte similare atât în ​​ROI-A cât și în ROI-B (ambele ROI au fost clasificate ca perfuzie- nepotrivire de difuzie), în timp ce țesutul din ROI A a supraviețuit, dar țesutul din ROI B a murit. Arată expresia Caspazei-3 în ROI-B a grupului Albastru de metilen decedat semnificativ. Cu toate acestea, expresia Caspazei-3 în regiunea ROI-B a Albastru de metilen grupul era încă la același nivel cu regiunea ROI-A a grupului de vehicule. Aceasta indică faptul că Chiar dacă tratamentul cu Albastru de metilen reduce parțial procesul apoptotic, recuperarea a fost insuficientă cient pentru a salva țesutul din ROI-B. În plus, am găsit și o diferență semnificativă între grupurile Sham și Albastru de metilen din regiunea ROI-B, dar nu și în regiunea ROI-A, care indică faptul că nivelul apoptotic a revenit la normal în regiunea ROI-A. Rolul Albastru de metilen în moartea celulelor autofagice induse de accident vascular cerebral Autofagia este un proces extrem de reglementat care descompune organele și macromoleculele prin degradare lizozomală și este esențială pentru menținerea homeostaziei intracelulare. Autofagia joacă un rol important în salvarea țesutului cu risc din penumbra în perioada acută faza, precum și în îmbunătățirea recuperării funcționale în faza cronică. Hiperactivarea autofagia, totuși, poate duce la creșterea morții celulare. Autofagia este astfel considerată o sabie cu doua taisuri. Autofagozomii se formează în timpul autofagiei ca mecanism de eliberare a sechestrate resturile celulare la lizozomi pentru degradare. Până în prezent, LC3, un omolog de mamifer al drojdiei Atg8, este singurul marker de încredere pentru autofagozomi, deoarece este o componentă specifică a autofagozomilor membrana hagozomală [42]. LC3 începe ca LC3-I citoplasmatic și este recrutat la autofa- gosome în timpul autofagiei, în timp ce LC3-II este generat ulterior prin proteoliză și lipidare [43]. Urmărirea conversiei LC3-I la LC3-II prin imunoblot oferă a măsurarea activității autofagice [5]. Rezultatele noastre au arătat că raportul LC3-II la LC3-I a crescut în toate cele trei ROI din grupul vehicul și Albastru de metilen comparativ cu grupul simulator. Cu toate acestea, numai țesutul cu risc a prezentat un raport LC3-II la LC3-1 crescut cu Albastru de metilen comparativ cu vehiculul grup. Studiile anterioare au demonstrat că clorochina (cunoscută că blochează autofagia) inhibă neuroprotecția mediată de Albastru de metilen [44]. Pe scurt, am ajuns la concluzia că neuroprotectorul efectul Albastru de metilen este mediat de autofagia de reglare în sus numai în regiunea penumbrei, dar nu și în miezul ischemiei. Reglarea autofagiei este strâns legată de căile de semnalizare care promovează celulele proliferarea și semnalizarea nutrienților (adică mTOR, p53/AMPK și PI3-K). Datele noastre acceptă ipoteza că Albastru de metilen activează autofagia prin calea de semnalizare p53-AMPK-mTOR. The AMPKα (la situl Thr172) și AMPKβ1 (la situl Ser108) s-au dovedit a fi hiperfosforilat, în concordanță cu un studiu anterior care a demonstrat că activarea AMPK indusă de Albastru de metilen a fost însoțită afectat de promovarea acetil-CoA carboxilază, care este o proteină în aval de AMPK (Xie et al., 2013). Mai mult, am descoperit că mTOR (la locul Ser2448) a fost hipofosforilat în țesuturile nepotrivite ale grupului Albastru de metilen. Această constatare este în concordanță cu un studiu anterior care a raportat că Albastru de metilen induce autofagie prin inhibarea activării mTOR în neurodegenerative linii celulare transgenice [45]. Există mai mulți factori de reglementare care controlează activitatea mTOR care în cele din urmă influen��ează nivelul de activare al autofagiei. Dacă Albastru de metilen acționează prin căile mTOR rămâne însă controversat [44,45]. Astfel, am testat mecanismele moleculare ale căii AMPK din aval. mod. Calea AMPK joacă un rol cheie în controlul metabolismului celular și al energiei homeostazie [7,21]. AMPK este cunoscut că fosforilează și crește TSC2, care inhibă Calea mTOR, promovând autofagia [7,21]. Am descoperit că TSC2 a fost într-adevăr hiperfosforilat la locul Ser1387 în grupul tratat cu Albastru de metilen, susținând ideea că Albastru de metilen acționează prin calea AMPK și mTOR în reglarea autofagiei. În plus, această fosforilare a fost mai mare în ROI-A decât în ​​ROI-B, ceea ce indică amploarea diferită a autopării în aval inducție hagy între țesutul cu risc salvat față de cel nesalvat. Luați împreună, noi am ajuns la concluzia că autofagia indusă de Albastru de metilen este mediată de inhibarea p53, care ulterior activează AMPK determinând inhibarea mTOR în zona penumbrală. Datele noastre au indicat că Albastru de metilen acționează asupra apoptozei și autofagiei prin modularea activului p53. Se știe că moartea celulelor apoptotice indusă de p53 are loc prin reglarea expresiei genelor și promovarea integrității membranei mitocondriale [46]. În timpul hipoxiei, p53 nuclear se reduce autofagie prin suprimarea expresiei BNIP3 [47]. În schimb, inhibarea citoplasmatică p53 poate declanșa autofagia [48]. Datele noastre au arătat că Albastru de metilen acționează probabil pentru a suprima ambele nucleare și p53 citoplasmatică, inhibând calea apoptotică p53-Bax-Bcl2-caspase3 în timp ce intensifică în calea de semnalizare autofagică p53-AMPK-TSC2-mTOR. La nivel sistemic, s-a demonstrat că Albastru de metilen crește CBF, glucoza din creier și concentrația de oxigen. consumul în condiții normoxice și hipoxice [49], precum și îmbunătățirea răspunsurilor evocate datorită stimulării labei anterioare [50]. Am descoperit că Albastru de metilen a îmbunătățit CBF la țesutul cu risc post- reperfuzie. În plus, am găsit, de asemenea, hiperperfuzie dăunătoare minimizată de Albastru de metilen la 24 de ore după MCAO, despre care s-a demonstrat anterior că se corelează cu un rezultat slab în accidentul vascular cerebral ischemic [51]. S-a demonstrat, de asemenea, că Albastru de metilen scade producția de specii reactive de oxigen în ischemie/reper- leziuni de fuziune [52] și moartea celulelor neuronale induse de stresul oxidativ [53]. Îmbunătățirea producția de energie și reducerea radicalilor liberi de oxigen contribuie probabil la stabilizare a mitocondriilor și neuroprotecția ulterioară în timpul accidentului vascular cerebral ischemic tranzitoriu. MB are un profil de siguranță excelent și este utilizat clinic pentru a trata o serie de indicații, permițând traducerea rapidă în studiile clinice, dacă se dovedește a fi eficace la animalele cu accident vascular cerebral. Îmbunătățirea înțelegerii mecanismelor care stau la baza neuroprotecției Albastru de metilen după accident vascular cerebral in vivo va ajuta la o mai bună proiectare a studiilor clinice Albastru de metilen și a schemelor de tratament cu Albastru de metilen pentru accident vascular cerebral pacientii in viitor. Un avantaj unic al Albastru de metilen este că, în principiu, ar putea fi administrat la fața locului de către personalul care răspunde de urgență, ceea ce ar putea beneficia de un pacient mai mare cu accident vascular cerebral acut in populatie.
Concluzie
Acest studiu a demonstrat că neuroprotecția indusă de Albastru de metilen în accidentul vascular cerebral ischemic este mediată de intensificarea autofagiei și suprimarea apoptozei. RMN-ul multimodal a permis extragerea diferite tipuri de țesut pentru analiza Western blot, iar aceste tipuri de țesut au inclus perfuzia nepotrivire de difuzie (țesut la risc) salvat prin reperfuzie, nepotrivirea perfuzie-difuzie nesalvat prin reperfuzie, iar miezul ischemic. Datele noastre au arătat că Albastru de metilen a modulat p53 expresie, care, la rândul său, a modulat atât calea de semnalizare autofagică AMPK-TSC2-mTOR- calea și calea de semnalizare apoptotică Bax-Bcl2-caspase3. Gradul de autofagie și apoptoza diferă între diferitele țesuturi ischemice definite de RMN și între vehicul și grupuri Albastru de metilen. Acest studiu zdrobește mecanismele moleculare care stau la baza neuroprotectiei in AVC ischemic.
Contribuții ale autorului
A conceput și proiectat experimentele: ZJ TD. Au efectuat experimentele: ZJ SH QS PR. S-au analizat datele: ZJ SH QS. Reactivi/materiale/instrumente de analiză contribuite: TD. Scrieți hârtie: ZJ TD LW CC CZ.
0 notes
crimsonpublishersnutrition · 4 months ago
Text
Potential Health Benefits of Dates: A Mini-Review
Phenolic compounds, mainly dates, are known for their potent antioxidant properties, which protect cells from harm and help prevent various age-related ailments. Dates are rich in phenolic compounds and flavonoid components, which may have antioxidant and free radical scavenging properties. They contain significant amounts of lutein, β-carotene, zeaxanthin, and neoxanthin carotenoids. Date palm (Phoenix dactylifera L. Arecaceae) fruits are a staple food in many regions of the world and have been used in traditional medicines to treat cancer and infectious diseases by modulating the immune system. Dates are known to have neuroprotective properties, with studies showing that date extracts reduce oxidative stress and upregulate nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), Sirt-1 (silent mating-type information regulation 2 homolog-1), and LC3 (Light Chain 3) expression while downregulating caspase-3 and improve autistic-like behaviors in rats induced by Valproic acid.
Read more about this article: https://crimsonpublishers.com/ntnf/fulltext/NTNF.000664.php
Read more articles: https://crimsonpublishers.com/ntnf/
0 notes
jcrmhscasereports · 1 year ago
Text
Retinal and choroidal vascular drop out in a case of severe phenotype of Flammer Syndrome. Rescue of the ischemic-preconditioning mimicking action of endogenous Erythropoietin (EPO) by off-label intra vitreal injection of recombinant human EPO (rhEPO) by Claude Boscher in Journal of Clinical Case Reports Medical Images and Health Sciences
Tumblr media
Journal of Clinical Case Reports Medical Images and Health Sciences
ABSTRACT
Background: Erythropoietin (EPO) is a pleiotropic anti-apoptotic, neurotrophic, anti-inflammatory, and pro-angiogenic endogenous agent, in addition to its effect on erythropoiesis. Exogenous EPO is currently used notably in human spinal cord trauma, and pilot studies in ocular diseases have been reported. Its action has been shown in all (neurons, glia, retinal pigment epithelium, and endothelial) retinal cells. Patients affected by the Flammer Syndrome (FS) (secondary to Endothelin (ET)-related endothelial dysfunction) are exposed to ischemic accidents in the microcirculation, notably the retina and optic nerve.
Case Presentation: A 54 years old female patient with a diagnosis of venous occlusion OR since three weeks presented on March 3, 2019. A severe Flammer phenotype and underlying non arteritic ischemic optic neuropathy; retinal and choroidal drop-out were obviated. Investigation and follow-up were performed for 36 months with Retinal Multimodal Imaging (Visual field, SD-OCT, OCT- Angiography, Indo Cyanin Green Cine-Video Angiography). Recombinant human EPO (rhEPO)(EPREX®)(2000 units, 0.05 cc) off-label intravitreal injection was performed twice at one month interval. Visual acuity rapidly improved from 20/200 to 20/63 with disparition of the initial altitudinal scotoma after the first rhEPO injection, to 20/40 after the second injection, and gradually up to 20/32, by month 5 to month 36. Secondary cystoid macular edema developed ten days after the first injection, that was not treated via anti-VEGF therapy, and resolved after the second rhEPO injection. PR1 layer integrity, as well as protective macular gliosis were fully restored. Some level of ischemia persisted in the deep capillary plexus and at the optic disc.
Conclusion: Patients with FS are submitted to chronic ischemia and paroxystic ischemia/reperfusion injury that drive survival physiological adaptations via  the hypoxic-preconditioning mimicking effect of endogenous EPO, that becomes overwhelmed in case of acute hypoxic stress threshold above resilience limits. Intra vitreal exogenous rhEPO injection restores retinal hypoxic-preconditioning adaptation capacity, provided it is timely administrated. Intra vitreal rhEPO might be beneficial in other retinal diseases of ischemic and inflammatory nature.
Key words : Erythropoietin, retinal vein occlusion, anterior ischemic optic neuropathy, Flammer syndrome, Primary Vascular Dysfunction, anti-VEGF therapy, Endothelin, microcirculation, off-label therapy.
INTRODUCTION
Retinal Venous Occlusion (RVO) treatment still carries insufficiencies and contradictions (1) due to the incomplete deciphering of the pathophysiology and of its complex multifactorial nature, with overlooking of factors other than VEGF up-regulation, notably the roles of  retinal venous tone and Endothelin-1 (ET) (2-5), and of endothelial caspase-9 activation (6). Flammer Syndrome (FS)( (Primary Vascular Dysfunction) is related to a non atherosclerotic ET-related endothelial dysfunction in a context of frequent hypotension and increased oxidative stress (OS), that alienates organs perfusion, with notably changeable functional altered regulation of blood flow (7-9), but the pathophysiology remains uncompletely  elucidated (8). FS is more frequent in females, and does not seem to be expressed among outdoors workers, implying an influence of sex hormons and light (7)(9). ET is the most potent pro-proliferative, pro-fibrotic, pro-oxidative and pro-inflammatory vasoconstrictor, currently considered involved in many diseases other than cardio-vascular ones, and is notably an inducer of neuronal apoptosis (10). It is produced by endothelial (EC), smooth vascular muscles (SVMC) and kidney medullar cells,  and binds the surface Receptors  ET-A on SVMC and ET-B on EC,  in an autocrine and paracrine fashion. Schematically, binding on SVMC Receptors (i.e. through local diffusion in fenestrated capillaries or dysfunctioning EC) and on EC ones (i.e. by circulating ET) induce respectively arterial and venous vasoconstriction, and vasodilation, the latter via Nitrite oxide (NO) synthesis. ET production is stimulated notably by Angiotensin 2, insulin, cortisol, hypoxia, and antagonized by endothelial gaseous NO, itself induced by flow shear stress. Schematically but not exclusively, vascular tone is maintained by a complex regulation of ET-NO balance (8) (10-11).  Both decrease of NO and increase of ET production are both a cause and consequence of inflammation, OS  and endothelial dysfunction, that accordingly favour vasoconstriction; in addition ET competes for L-arginine substrate with NO synthase, thereby reducing NO bioavailability, a mechanism obviated notably in carotid plaques and amaurosis fugax (reviewed in 11).
Severe FS phenotypes are rare. Within the eye, circulating ET reaches retinal VSMC in case of Blood-Retinal-Barrier (BRB) rupture and diffuses freely via the fenestrated choroidal circulation, notably around the optic nerve (ON) head behind the lamina cribrosa, and may induce all pathologies related to acute ocular blood flow decrease (2-3)(5)(7-9). We previously reported two severe cases with rapid onset of monocular cecity and low vision, of respectively RVO in altitude and non arteritic  ischemic optic neuropathy (NAION) (Boscher et al, Société Francaise d'Ophtalmologie and Retina Society, 2015 annual meetings).
Exogenous Recombinant human EPO (rhEPO) has been shown  effective in humans for spinal cord injury (12), neurodegenerative and chronic kidney diseases (CKD) (reviewed in 13). Endogenous EPO is released physiologically in the circulation by the kidney and liver; it may be secreted in addition by all cells in response to hypoxic stress, and it is the prevailing pathway induced via genes up-regulation by the transcription factor Hypoxia Inducible Factor 1 alpha, among angiogenesis (VEGF pathway), vasomotor regulation (inducible NO synthase), antioxidation, and energy metabolism (14). EPO Receptor signaling induces cell proliferation, survival and differentiation (reviewed in 13), and targets multiple non hematopoietic pathways as well as the long-known effect on erythropoiesis (reviewed in 15). Of particular interest here, are its synergistic anti-inflammatory, neural antiapoptotic (16) pro-survival and  pro-regenerative (17) actions upon hypoxic injury, that were long-suggested to be also indirect, via blockade of ET release by astrocytes, and assimilated to ET-A blockers action (18). Quite interestingly, endogenous EPO’s pleiotropic effects were long-summarized (back to 2002), as “mimicking hypoxic-preconditioning” by Dawson (19), a concept applied to the retina (20). EPO Receptors are present in all retinal cells and their rescue activation targets all retinal cells, i.e. retinal EC, neurons (photoreceptors (PR), ganglion (RGG) and  bipolar cells), retinal pigment epithelium (RPE) osmotic function through restoration of the BRB, and  glial cells (reviewed in 21), and the optic nerve (reviewed in 22).  RhEPO has been tested experimentally in animal models of glaucoma, retinal ischemia-reperfusion (I/R) and light phototoxicity, via multiple routes (systemic, subconjunctival, retrobulbar and intravitreal injection (IVI) (reviewed in 23), and used successfully via IVI in human pilot studies, notably first in diabetic macular edema (24) (reviewed in 25 and 26). It failed to improve neuroprotection in association to corticosteroids in optic neuritis, likely for bias reasons (reviewed in 22). Of specific relation to the current case, it has been reported in NAION (27) (reviewed in 28) and traumatic ON injury (29 Rashad), and in one case of acute severe central RVO (CRVO) (Luscan and Roche, Société Francaise d’Ophtalmologie 2017 annual meeting). In addition EPO RPE gene therapy was recently suggested to prevent retinal degeneration induced by OS in a rodent model of dry Age Macular Degeneration (AMD) (30).
CASE REPORT PRESENTATION
This 54 years female patient was first visited on March 2019 4th, seeking for second opinion for ongoing vision deterioration OR on a daily basis, since around 3 weeks. Sub-central RVO (CRVO) OR had been diagnosed on February 27th; available SD-OCT macular volume was increased with  epiretinal marked hyperreflectivity, one available Fluorescein angiography picture showed a non-filled superior CRVO, and a vast central ischemia involving the macular and paraoptic territories. Of note there was ON edema with a para-papillary hemorrage nasal to the disc on the available colour fundus picture.
At presentation on March 4, Best Corrected Visual Acuity (BCVA) was reduced at 20/100 OR (20/25 OS). The patient described periods of acutely excruciating retro-orbital pain in the OR. Intraocular pressure was normal, at 12 OR and 18 OS (pachymetry was at 490 microns in both eyes). The dilated fundus examination was similar to the previous color picture and  did not disclose peripheral hemorrages recalling extended peripheral retinal ischemia. Humphrey Visual Field disclosed an altitudinal inferior scotoma and a peripheral inferior scotoma OR and was in the normal range OS, i.e. did not recall normal tension glaucoma OS (Fig. 1). There were no papillary drusen on the autofluorescence picture, ON volume was increased  (11.77 mm3 OR versus 5.75 OS) on SD-OCT (Heidelberg Engineering®) OR,  Retinal Nerve Fiber (RNFL) and RGC layers thicknesses were normal (Fig. 2). Marked epimacular hypereflectivity OR with foveolar depression inversion, moderately increased total volume and central foveolar thickness (CFT) (428 microns versus 328 OS), and a whitish aspect of the supero-temporal internal retinal layers recalling ischemic edema, were present (video 1). EDI CFT was incresead at 315 microns (versus 273 microns OS), with focal pachyvessels on the video mapping (video 1). OCT-Angiography disclosed focal perfusion defects in both the retinal and chorio-capillaris circulations (Fig. 3), and central alterations of the PR1 layer on en-face OCT(Fig. 4).
Altogether the clinical picture evoked a NAION with venous sub-occlusion, recalling Fraenkel’s et al early hypothesis of an ET interstitial diffusion-related venous vasoconstriction behind the lamina cribrosa (2), as much as a rupture of the BRB was present in the optic nerve area (hemorrage along the optic disc). Choroidal vascular drop-out was suggested by the severity and rapidity of the VF impairment (31). The extremely rapid development of a significant “epiretinal membrane”, that we interpreted as a reactive - and protective, in absence of cystoid macular edema (CME) - ET 2-induced astrocytic proliferation (reviewed in 32), was as an additional  sign of severe ischemia.
The mention of the retro-orbital pain evoking a “ciliary angor”, the absence of any inflammatory syndrome and of the usual metabolic syndrome in the emergency blood test, oriented the etiology towards a FS. And indeed anamnesis collected many features of the FS, i.e. hypotension (“non dipper” profile with one symptomatic nocturnal episode of hypotension on the MAPA), migrains, hypersensitivity to cold, stress, noise, smells, and medicines, history of a spontaneously resolutive hydrops six months earlier, and of paroxystic episods of vertigo (which had driven a prior negative brain RMI investigation for Multiple Sclerosis, a frequent record among FS patients (33) and of paroxystic visual field alterations (7)(9), that were actually recorded several times along the follow-up.
The diagnosis of FS was eventually confirmed in the Ophthalmology Department in Basel University on April 10th, with elevated retinal venous pressure (20 to 25mmHg versus 10-15 OS) (4)(7)(9), reduced perfusion in the central retinal artery and veins on ocular Doppler (respectively 8.3 cm/second OR velocity versus 14.1 mmHg OS, and 3.1/second OR versus 5.9 cm OS), and impaired vasodilation upon flicker light-dependant shear stress on the Dynamic Vessel Analyser testing (7-9). In addition atherosclerotic plaques were absent on carotid Doppler.
On March 4th, the patient was at length informed about the FS, a possible off label rhEPO IVI, and a related written informed consent on the ratio risk-benefits was delivered.
By March 7th, she returned on an emergency basis because of vision worsening OR. VA was unchanged, intraocular pressure was at 13, but Visual Field showed a worsening of the central and inferior scotomas with a decreased foveolar threshold, from 33 to 29 decibels. SD-OCT showed a 10% increase in the CFT volume.
On the very same day, an off label rhEPO IVI OR (EPREX® 2000 units, 0,05 cc in a pre-filled syringe) was performed in the operating theater, i.e. the dose reported  by Modarres et al (27), and twenty times inferior to the usual weekly intravenous dose for treatment of chronic anemia secondary to CKD. Intra venous acetazolamide (500 milligrams) was performed prior to the injection, to prevent any increase in intra-ocular pressure. The patient was discharged with a prescription of chlorydrate betaxolol (Betoptic® 0.5 %) two drops a day, and high dose daily magnesium supplementation (600 mgr).
Incidentally the patient developed bradycardia the day after, after altogether instillation of 4 drops of betaxolol only, that was replaced by acetazolamide drops, i.e. a typical hypersensitivity reaction to medications in the FS (7)(9).
Subjective vision improvement was recorded as early as D1 after injection. By March 18 th, eleven days post rhEPO IVI, BCVA was improved at 20/63, the altitudinal scotoma had resolved (Fig. 5), Posterior Vitreous Detachment had developed with a disturbing marked Weiss ring, optic disc swelling had decreased; vasculogenesis within the retinal plexi and some regression of PR1 alterations  were visible on OCT-en face. Indeed by 11 days post EPO significant functional, neuronal and vascular rescue were observed, while the natural evolution had been seriously vision threatening.
However cystoid ME (CME) had developed (video 2). Indo Cyanin Green-Cine Video Angiography (ICG-CVA) OR, performed on March 23, i.e. 16 days after the rhEPO IVI, showed a persistent drop in ocular perfusion: ciliary and central retinal artery perfusion timings were dramatically delayed at respectively 21 and 25 seconds, central retinal vein perfusion initiated by 35 seconds, was pulsatile, and completed by 50 seconds only (video 3). Choroidal pachyveins matching the ones on SD-OCT video mapping were present in the temporal superior and inferior fields, and crossed the macula; capillary exclusion territories were present in the macula and around the optic disc.
By April 1, 23 days after the rhEPO injection, VA was unchanged, but CME and perfusion voids in the superficial deep capillary plexi and choriocapillaris were worsened, and optic disc swelling had recurred back to baseline, in a context of repeated episodes of systemic hypotension; and actually Nifepidin-Ratiopharm® oral drops (34), that had been delivered via a Temporary Use Authorization from the central Pharmacology Department in Assistance Publique Hopitaux de Paris, had had to be stopped because of hypersensitivity.
A second off label rhEPO IVI was performed in the same conditions on April 3, i.e. approximately one month after the first one.
Evolution was favourable as early as the day after EPO injection 2: VA was improved at 20/40, CME was reduced, and perfusion improved in the superficial retinal plexus as well as in the choriocapillaris. By week 4 after EPO injection 2, CME was much decreased, i.e. without anti VEGF injection. On august 19th, by week 18 after EPO 2, perfusion on ICG-CVA was greatly improved , with ciliary timing at 18 seconds, central retinal artery at 20 seconds and venous return from 23 to 36 seconds, still pulsatile. Capillary exclusion territories were visible in the macula and temporal to the macula after the capillary flood time that went on by 20.5 until 22.5 seconds (video 4); they  were no longer persistent at intermediate and late timings.
Last complete follow-up was recorded on January 7, 2021, at 22 months from EPO injection 2. BCVA was at 20/40, ON volume had dropped at 7.46 mm3, a sequaelar superior deficit was present in the RNFL (Fig. 2) with some  corresponding residual defects on the inferior para central Visual Field (Fig. 5), CFT was at 384 mm3 with an epimacular hyperreflectivity without ME, EDI CFT was dropped at 230 microns. Perfusion on ICG-CVA was not normalized, but even more improved, with ciliary timing at 15 seconds, central retinal artery at 16 seconds and venous return from 22 to 31 seconds, still pulsatile (video 5), indicating that VP was still above IOP. OCT-A showed persisting perfusion voids, especially at  the optic disc and within the deep retinal capillary plexus. The latter were present at some degree in the OS as well (Fig. 6). Choriocapillaris and PR1 layer were dramatically improved.
Last recorded BCVA was at 20/32 by February 14, 2022, at 34 months from EPO 2. SD-OCT showed stable gliosis hypertrophy and mild alterations of the external layers (video 6).
Figure 1: Humphrey visual field at baseline on March 7th 2019, showing an altitudinal central scotoma, an inferior peripheral scotoma with a normal and symmetrical foveolar sensitivity threshold, and a normal visual field OS
Figure 2: Retinal Nerve Fiber (RNFL ) evolution from normal at baseline on March 2019 7th, to development of a superior sequellar deficit that remained stable on last follow-up.
Figure 3: OCT-Angiography at baseline on March 7th 2019, showing perfusion voids OR in the superior superficial retinal plexus and in the choriocapillaris.
Figure 4: OCT en face at baseline on March 7th 2019, showing PR1 layer deficits OR (artefacts in the superior half) compared to OS.
Figure 5: Humphrey visual field follow-ups : at follow-up 1 eleven days after rhEPO intra vitreal injection showing resolution of the altitudinal central scotoma and decrease of the inferior scotoma, and at last visual field follow-up on January 20th 2021, showing residual defects corresponding to the RNFL ones on Figure 2.
Figure 6: OCT Angiography performed on January 7th 2021, at 22 months from EPO injection 2, showing persisting perfusion voids, especially at the optic disc, and within the deep retinal capillary plexus, that were present at some degree in the OS as well.
Video 1 : SD-OCT video mapping  OR at baseline on March 7th 2019, showing epiretinal hyperreflectivity and epiretinal membrane with foveolar depression inversion, ischemic edema in the internal and temporal to the disc superior retinal layers, and focal choroidal Haller pachyvessels with reduction in chorio-capillaris/Sattler layers.
Vedio: https://jmedcasereportsimages.org/articles/JCRMHS_1231_Vedio_1.mov
Video 2: SD-OCT video mapping OR at follow-up  1 eleven days after rhEPO intra vitreal injection on March 18th, showing epiretinal hyperreflectivity and epiretinal membrane with foveolar depression inversion, ischemic edema in the internal and temporal to the disc superior retinal layers, and development of central cystoid macular edema.
Vedio: https://jmedcasereportsimages.org/articles/JCRMHS_1231_Vedio_2.mov
Video 3 : Indo Cyanin Green-Cine Video Angiography OR, performed on March 23, i.e. 16 days after the rhEPO IVI, showing a persistent drop in ocular perfusion: ciliary and central retinal artery perfusion timings  were dramatically delayed at respectively 21 and 25 seconds, central retinal vein perfusion initiated by 35 seconds, was pulsatile, and completed by 50 seconds only.
Vedio: https://jmedcasereportsimages.org/articles/JCRMHS_1231_Vedio_3.mov
Video 4 : Indo Cyanin Green-Cine Video Angiography OR, performed on August 19, i.e. by week 18 after EPO 2, showing greatly improved perfusion, with ciliary timing at 18 seconds, central retinal artery at 20 seconds and venous return from 23 to 36 seconds, still pulsatile. Capillary exclusion territories were visible in the macula and temporal to the macula after the capillary flood time that went on by 20.5 until 22.5 seconds.
Vedio: https://jmedcasereportsimages.org/articles/JCRMHS_1231_Vedio_4.mov
Video 5: Indo Cyanin Green-Cine Video Angiography OR, performed on January 7th, 2021, at 22 months from EPO injection 2: perfusion was not normalized, but even more improved, with ciliary timing at 15 seconds, central retinal artery at 16 seconds and venous return from 22 to 31 seconds, still pulsatile.
Vedio: https://jmedcasereportsimages.org/articles/JCRMHS_1231_Vedio_5.avi
Video 6 : SD-OCT video mapping  at 34 months from EPO 2,  showing stable gliosis hypertrophy and mild alterations of the external layers.
Vedio: https://jmedcasereportsimages.org/articles/JCRMHS_1231_Vedio_6.avi
DISCUSSION
What was striking in the initial clinical phenotype of CRVO  was  the contrast between the moderate venous dilation,  and the intensity of ischemia, that were illustrating the pioneer hypothesis of Professor Flammer‘s team regarding the pivotal role of ET in VO (2), recently confirmed (3)(35), i.e. the local venous constriction backwards the lamina cribrosa, induced by diffusion of ET-1 within the vascular interstitium, in reaction to hypoxia. NAION was actually the primary and prevailing alteration, and ocular hypoperfusion was confirmed via ICG-CVA, as well as by the ocular Doppler performed in Basel. ICG-CVA confirmed the choroidal drop-out suggested by the severity of the VF impairment (31) and by OCT-A in the choriocapillaris. Venous pressure measurement, which instrumentation is now available (8), should become part of routine eye examination in case of RVO, as it is key to guide cases analysis and personalized therapeutical options.
Indeed, the endogenous EPO pathway is the dominant one activated by hypoxia and is synergetic with the VEGF pathway, and coherently it is expressed along to VEGF in the vitreous in human RVO (36). Diseases develop when the individual limiting  stress threshold for efficient adaptative reactive capacity gets overwhelmed. In this case by Week 3 after symtoms onset,  neuronal and vascular resilience mechanisms were no longer operative, but the BRB, compromised at the ON, was still maintained in the retina.
As mentioned in the introduction, the scientific rationale for the use of EPO was well demonstrated by that time, as well as the capacities of exogenous EPO to mimic endogenous EPO vasculogenesis, neurogenesis and  synaptogenesis, restoration of  the balance between ET-1 and NO. Improvement of chorioretinal blood flow was actually illustrated by the evolution of the choriocapillaris perfusion on repeated OCT-A and ICG-CVA. The anti-apoptotic effect of EPO (16) seems as much appropriate in case of RVO as the caspase-9 activation is possibly another overlooked co-factor (6).
All the conditions for translation into off label clinical use were present: severe vision loss with daily worsening and  unlikely spontaneous favourable  evolution, absence of toxicity in the human pilot studies, of contradictory comorbidities and co-medications, and of context of intraocular neovascularization that might be exacerbated by EPO (37).
Why didn’t we treat the onset of CME by March 18th, i.e. eleven days after EPO IVI 1, by anti-VEGF therapy, the “standard-of-care” in CME for RVO ?
In addition to the context of functional, neuronal and vascular improvements obviated by rhEPO IVI by that timing in the present case, actually anti VEGF therapy does not address the underlying causative pathology. Coherently, anti-VEGF IVI :  1) may not be efficient in improving vision in RVO, despite its efficiency in resolving/improving CME (usually requiring repeated injections), as shown in the Retain study (56% of eyes with resolved ME continued to loose vision)(quoted in (1) 2) eventually may be followed by serum ET-1 levels increase and VA reduction (in 25% of cases in a series of twenty eyes with BRVO) (38) and by increased areas of non perfusion in OCT-A (39). Rather did we perform a second hrEPO IVI, and actually we consider open the question whether the perfusion improvement, that was progressive, might have been accelerated/improved via repeated rhEPO IVI, on a three to four weeks basis.
The development of CME itself, involving a breakdown of the BRB, i.e. of part of the complex  retinal armentorium resilience to hypoxia, was somewhat paradoxical in the context of improvement after the first EPO injection, as EPO restores the BRB (24), and as much as it was suggested that EPO inhibits glial osmotic swelling, one cause of ME, via VEGF induction (40). Possible explanations were: 1) the vascular hyperpermeability induced by the up-regulation of VEGF gene expression via EPO (41) 2) the ongoing causative disease, of chronic nature, that was obviated by the ICG-CVA and the Basel investigation, responsible for overwhelming the gliosis-dependant capacity of resilience to hypoxia 3) a combination of both. I/R seemed excluded: EPO precisely mimics hypoxic reconditioning as shown in over ten years publications, including in the retina (20), and as EPO therapy is part of the current strategy for stabilization of the endothelial glycocalix against I/R injury (42-43). An additional and not exclusive possible explanation was the potential antagonist action of EPO on GFAP astrocytes proliferation, as mentioned in the introduction (18), that might have counteracted the reactive protective hypertrophic gliosis, still fully operative prior to EPO injection, and that was eventually restored during the follow-up, where epiretinal hyperreflectivity without ME and ongoing chronic ischemia do coincide (Fig. 6 and video 6), as much as it is unlikely that EPO’s effect would exceed one month (cf infra). Inhibition of gliosis by EPO IVI might have been also part of the mechanism of rescue of RGG, compromised by gliosis in hypoxic conditions (44). Whatever the complex balance initially reached, then overwhelmed after EPO IVI 1, the challenge was rapidly overcome by the second EPO IVI without anti-VEGF injection, likely because the former was powerful enough to restore the threshold limit for resilience to hypoxia, that seemed no longer reached again during the relapse-free follow-up. Of note, this “epiretinal membrane “, which association to good vision is a proof of concept of its protective effect, must not be removed surgically, as it would suppress one of the mecanisms of resilience to hypoxia.
To our best knowledge, ICG-CVA was never reported in FS; it allows real time evaluation of the ocular perfusion and illustration of the universal rheological laws that control choroidal blood flow as well. Pachyveins recall a “reverse” veno-arteriolar reflex in the choroidal circulation, that is NO and autonomous nervous system-dependant, and that we suggested to be an adaptative choroidal microcirculation process to hypoxia (45).  Their persistence during follow-up accounts for a persisting state of chronic ischemia.
The optimal timing for reperfusion via rhEPO in a non resolved issue:
in the case reported by Luscan and Roche, rhEPO IVI was performed on the very same day of disease onset, where it induced complete recovery from VA reduced at counting fingers at 1 meter, within 48 hours. This clinical human finding is on line with a recent rodent stroke study that established the timings for non lethal versus lethal ischemia of the neural and vascular lineages, and the optimized ones for beneficial reperfusion: the acute phase - from Day 1 where endothelial and neural cells are still preserved,  to Day 7 where proliferation of pericytes and Progenitor Stem Cells are obtainable - and the chronic stage, up to Day 56, where vasculogenesis, neurogenesis and functional recovery are still possible, but with uncertain efficiency (46). In our particular case, PR rescue after rhEPO IVI 1 indicated that Week 3 was still timely. RhEPO IVI  efficacy was shown to last between one (restoration of the BRB)  and four weeks (antiapoptotic effect) in diabetic rats (24). The relapse after Week 3 post IVI 1 might indicate that it might be  approximately the interval to be followed, should repeated injections be necessary.
The bilateral chronic perfusion defects on OCT-A at last follow-up indicate that both eyes remain in a condition of chronic ischemia and I/R, where endogenous EPO provides efficient ischemic pre-conditioning, but is potentially susceptible to be challenged during episodes of acute hypoxia that overwhelm the resilience threshold.
CONCLUSION
The present case advocates for individualized medicine with careful recording of the medical history, investigation of the systemic context, and exploiting of the available retinal multimodal imaging for accurate analytical interpretation of retinal diseases and their complex pathophysiology. The Flammer Syndrome is unfortunately overlooked in case of RVO; it should be suspected clinically in case of absence of the usual vascular and metabolic context, and in case  of elevated RVP. RhEPO therapy is able to restore the beneficial endogenous EPO ischemic pre-conditioning in eyes submitted to challenging acute hypoxia episodes in addition to chronic ischemic stress, as in the Flammer Syndrome and fluctuating ocular blood flow, when it becomes compromised by the overwhelming of the hypoxic stress resilience threshold. The latter physiopathological explanation illuminates the cases of RVO where anti-VEGF therapy proved functionally inefficient, and/or worsened retinal ischemia. RhEPO therapy might be applied to other chronic ischemia and I/R conditions, as non neo-vascular Age Macular Degeneration (AMD), and actually EPO was listed in 2020 among the nineteen promising molecules in AMD in a pooling of four thousands (47).
For more information regarding our Journal: https://jmedcasereportsimages.org/about-us/
For more artices: https://jmedcasereportsimages.org/archive/
0 notes
dhr-ao3 · 11 months ago
Text
[T] Love In A Time Of The Zombie Apocalypse | Miłość w czasach Apokalipsy Zombie
[T] Love In A Time Of The Zombie Apocalypse | Miłość w czasach Apokalipsy Zombie https://ift.tt/EaADI69 by missAxr Words: 2610, Chapters: 1/84, Language: Polski Fandoms: Harry Potter - J. K. Rowling Rating: Explicit Warnings: Graphic Depictions Of Violence Categories: F/M Characters: Hermione Granger, Draco Malfoy, Harry Potter, Ginny Weasley, Neville Longbottom, Blaise Zabini, Lucius Malfoy, Narcissa Black Malfoy, Padma Patil, Original Characters, Rufus Scrimgeour Relationships: Hermione Granger/Draco Malfoy, Harry Potter/Ginny Weasley Additional Tags: Angst, Post-Apocalypse, Draco is a BAMF, Harry is a BAMF, Hermione is a BAMF, Guns, Gun Violence, Horror, Medical Procedures, Blood and Violence, Post-Traumatic Stress Disorder - PTSD, Post-Voldemort, Despots, Zombies, Pregnancy, Double-stranded RNA Activated Caspase Oligomerizer, Questionable Neuroscience, Redeemed Draco, Domestic Dramione, Werewolf, Malfoy Manor, Hurt/Comfort via AO3 works tagged 'Hermione Granger/Draco Malfoy' https://ift.tt/LQzkGSA December 19, 2023 at 12:24AM
2 notes · View notes
thientuepharmajsc · 1 year ago
Text
Tumblr media
Silymarin – Chiết xuất Cây Kế Sữa | Cao khô Kế Sữa (Milk Thistle extract) là hoạt chất chính được chiết xuất từ cây kế sữa, hay còn được gọi là cây cúc gai đã được chứng minh lâm sàn là hoạt chất có tác dụng cho gan tôm tốt nhất trong số tất cả những hoạt chất có chức năng tương tự.
1. Silymarin – Chiết xuất cây kế sữa | Cao khô kế sữa (cây cúc gai) là gì?
Silymarin được chiết xuất từ Cây Kế sữa (Milk Thistle) (dân gian còn gọi là cây cúc gai) hay còn được biết đến với tên khoa học là Silybum Marianum (L.) Gaertn). Cây kế sữa là một loại cây có nguồn gốc từ châu Âu và được thực dân đầu tiên đưa đến Bắc Mỹ. Cây kế sữa hiện được tìm thấy trên khắp miền đông Hoa Kỳ, California, Nam Mỹ, Châu Phi, Úc và Châu Á.
Cây kế sữa được đặt tên dựa trên nhựa của cây như sữa chảy ra từ lá khi chúng bị bẻ gãy. Tất cả các bộ phận lộ trên mặt đất và hạt giống đều được sử dụng để làm thuốc. Silymarin là thành phần hoạt chất chính trong cây kế sữa, đây là chất vừa chống viêm, chống oxy hóa và có tác dụng hạ đường huyết. Hạt giống cây kế sữa có thể bảo vệ các tế bào gan khỏi các hóa chất và thuốc độc hại.
Hợp chất này đã được chứng minh lâm sàng và được công nhận là có hiệu quả vượt trội dành riêng cho gan, là hoạt chất có tác dụng cho gan tốt nhất trong số tất cả những hoạt chất có chức năng tương tự.
Silymarin nguyên liệu có dạng bột có màu nâu và được sử dụng như là một chất bổ sung vào trong rất nhiều các loại thực phẩm, đồ ăn và thức uống khác nhau. Các nhà nghiên cứu khuyến cáo nên sử dụng hợp chất này với liều lượng khoảng 80mg/ngày.
2. Phân biệt Silymarin thường và Silymarin Phytosome®
Silymarin là một Flavonoid (chất chuyển hóa trung gian của thực vật), là một nhóm các thành phần được chiết xuất từ cây kế sữa (cây cúc gai). Trong số các thành phần đó, Silybin là hoạt chất chính, đã được chứng minh lâm sàn là có tác dụng vượt trội dành cho gan, và là hoạt chất có tác dụng cho gan tốt nhất trong số tất cả những hoạt chất có chức năng tương tự. Hiện nay, Silymarin ngoài thị trường sẽ có hai loại chính:
Silymarin thông thường là Silymarin có chứa Silybin được chiết xuất bằng phương pháp thông thường, đây là các Silybin tự do. Ưu điểm của loại Silymarin thông thường này là chúng có giá thành tương đối rẻ, thường được sử dụng để làm nguyên liệu cho sản xuất Thuốc Thủy Sản, Thuốc Thú Y hoặc dùng để phối trộn với Thức Ăn Chăn Nuôi��(Thức ăn thủy sản, Thức ăn chăn nuôi gia súc, gia cầm).
Silymarin Phytosome® là Silymarin có chứa Silybin được chiết xuất bằng công nghệ Phytosome, đây còn được gọi là Silybin Phytosome. Công nghệ Phytosomes® là công nghệ dùng để chiết xuất các loại thảo dược, làm cao dược liệu tiên tiến nhất hiện nay.
Công nghệ Phytosome giúp các phân tử Silybin liên kết chặt chẽ với màng photpholipid của đậu nành và giúp cải thiện hoạt tính của Silybin lên mức tối ưu nhất. Chính vì thế, Silymarin Phytosome (hay còn được gọi là Silybin Phytosome) có giá thành tương đối cao, được sử dụng chủ yếu để làm nguyên liệu sản xuất dược như là nguyên liệu Thuốc và Thực phẩm chức năng.
3. Tác dụng của Silymarin trong việc bảo vệ và phục hồi chức năng gan
Silymarin đã được chứng minh hiệu quả của nó qua nhiều nghiên cứu lâm sàng khác nhau. Ngoài ra, Indena cũng đã tiến hành nhiều nghiên cứu để kiểm tra dược tính và độc tính của nó để đảm bảo sự hiệu quả và an toàn khi sử dụng.
Liều dùng của Silybin Tế bàoTác dụng của SilybinTừ 5 đến 50 µmol/LTế bào ganỨc chế tín hiệu do trung gian NF-κBTừ 10 đến 100 μmol/LTế bào ganGiảm sự hình thành các chất chứa từ ty thể, tạo phức chelat với kim loạiHepG2Giảm sự hình thành các anion oxy hóaTrung bình: 15 µmol/LTế bào biểu môỨc chế phosphoryl hóa IκBαTiểu cầuỨc chế protein kinaseTế bào ung thưỨc chế c-jun N-terminal kinaseĐại thực bàoỨc chế hình thành leukotrieneTế bào hình saoỨc chế giải phóng cytochrome cHepG2Ức chế phosphoryl hóa ERK, MEK, Raf; ức chế giải phóng caspase 9 và 3, IL-8; ức chế tín hiệu do trung gian PDGF và TGF-beta; giảm MMP2; tăng TIMP2; ức chế sự nhân lên của HCVLiều trung bình có tác dụng được ghi lại: 20 μmol/LTế bào KupfferGiảm sự sản xuất NOTế bào bạch cầu monoDọn các gốc tự do lipodienyl, methyl, trichloromethylTế bào biểu môGiảm nồng độ các hydrogen peroxideTế bào ung thưỨc chế quá trình peroxide hóa lipid màng tế bào
4. Ứng dụng của Silymarin trong việc phục hồi và bảo vệ gan tôm
Hiện nay, chưa có một nghiên cứu hay báo cáo cụ thể nào (kể cả trong nước và ngoài nước) trong việc ứng dụng Silymarin để phục hồi và bảo vệ gan tôm. Tuy nhiên, dựa trên các nghiên cứu về tác dụng phục hồi và bảo vệ gan của Silybin (hoạt chất chính trong Silymarin) lên gan chuột đã bị tổn thương, chúng ta có thể suy ra, Silymarin cũng có tác dụng tương tự đối với gan tôm nói riêng và gan của các loài thủy sản nói chung.
Silymarin đã được nghiên cứu lâm sàng và ứng dụng để phục hồi và bảo vệ gan cho người. Chính vì thế, hoạt chất này rất an toàn khi sử dụng cho thủy sản, đặc biệt là trong việc phục hồi và bảo vệ gan tôm. Một số công dụng chính khi dùng Silymarin cho gan tôm như sau:
Tăng cường hệ miễn dịch cho tôm, tăng cường chức năng gan tôm.
Phòng bệnh và điều trị các bệnh về gan trên tôm như sưng gan, teo gan, vàng gan, hoại tử gan tụy, nhiễm độc tố gan, …
Chữa bệnh sưng gan, phù nề gan thận, nhiễm độc tố gan.
Chống hoại tử gan tụy, giúp lọc máu, chống co thắt đường ruột tôm.
Chống rụng râu, mòn đuôi, đề kháng mạnh khi môi trường có sự biến động đột ngột.
Giảm tình trạng tôm chết đột ngột không rõ nguyên nhân.
Bên cạnh đó, hiện tại chưa có nghiên cứu khoa học nào cho thấy liều lượng cụ thể khi dùng silymarin để trộn cho tôm ăn. Nhưng theo thử nghiệm thực tế của Công Ty Thiên Tuế, liều lượng silymarin khi trộn cho tôm ăn có thể tham khảo như sau:
Tôm dưới 15 ngày: 3 gam cho 1 kg thức ăn.
Tôm từ 15 ngày đến 30 ngày: 6 gam cho 1 kg thức ăn.
Tôm từ 30 ngày đến 45 ngày: 10 gam cho 1 kg thức ăn.
Tôm trên 45 ngày: 15 gam cho 1 kg thức ăn.
Silymarin là một hoạt chất rất mạnh dành cho việc phục hồi và để bảo vệ gan tôm, chính vì thế, silymarin cho gan tôm thường được khuyến cáo là nên dùng định kì, xuyên suốt từ lúc mới thả đến hết vụ. Trong trường hợp tôm bị các bệnh gan, khả năng ăn thức ăn kém, người nuôi có thể hòa tan silymarin với nước rồi tạt thẳng xuống ao để đảm bảo tôm có thể hấp thụ silymarin một cách tốt nhất.
Chính vì những lợi ích cực kì đặc biệt dành cho gan như vậy mà silymarin dần trở thành một trong những hoạt chất cực kì quan trọng dùng trong nuôi tôm nói riêng và trong nuôi trồng thủy sản nói chung. Silymarin hiện tại đang được thương mại ở hai dạng chính:
Một là silymarin nguyên liệu, có nguồn gốc xuất sứ ở Việt Nam, Trung Quốc hoặc các nước Châu Âu như Đức, Ý.
Hai là thuốc thủy sản có chứa Silymarin. Đây là dạng silymarin đã được phối trộn, kết hợp với các thành phần khác để tạo thành dạng thành phẩm, ngoài chức năng phục hồi và bảo vệ gan tôm, các loại thuốc thủy sản có chứa silymarin như thế này thường sẽ đi kèm thêm nhiều công dụng khác dành cho tôm
--------- Follow page Thientue Pharma JSC - Bộ phận THỦY SẢN để đón đọc thêm nhiều thông tin hữu ích về ngành nuôi tôm. Follow page Thientue Pharma JSC - Nguyên liệu dược liệu để đón đọc thêm nhiều thông tin hữu ích về sức khỏe con người. #ThientuePharmaJSC #duocphamthientue #congtythientue#aquaculture #thuysan #livestock #channuoi #tpcn #functionalfoods#silymarin #chietxuatkesua #caykesua #caycucgai #sylibin #phytosome --------- Thientue Pharma JSC - Hợp Tác Chân Thành Công Ty Cổ Phần Dược Phẩm Thiên Tuế (Thientue Pharma JSC) chuyên sản xuất và phân phối các loại Cao dược liệu, Chiết xuất thảo dược, Chế phẩm sinh học (men vi sinh, nguyên liệu sinh học) và các hoạt chất nhập khẩu chuyên dụng dành cho thủy sản. VPĐD: 56/30 Tân Thới Nhất 17, KP4, P. TNT, Q. 12, Tp. HCM 71510S ĐT: 028.6267.707
0 notes
moleculardepot · 1 year ago
Text
Caspase-1 Substrate VI Fluorogenic
Caspase-1 Substrate VI Fluorogenic Catalog number: B2014021 Lot number: Batch Dependent Expiration Date: Batch dependent Amount: 2 mg Molecular Weight or Concentration: 719.66 g/mol Supplied as: Powder Applications: molecular tool for various biochemical applications Storage: −20°C Keywords: Caspase-1 Substrate VI, Fluorogenic Grade: Biotechnology grade. All products are highly pure. All…
Tumblr media
View On WordPress
0 notes
budandtender · 2 years ago
Text
The Role of Endocannabinoids in Regulating Cancer: A New Frontier in Cancer Research
National Cancer Survivors Day 4th June
Tumblr media
Endocannabinoids, the body's naturally occurring cannabinoids, have gained significant attention in recent years due to their potential role in regulating cancer. These bioactive lipids, which interact with the endocannabinoid system (ECS), have been found to exhibit anti-cancer properties in various studies. Although this article will not discuss the medical uses of cannabidiol (CBD), it is essential to understand how endocannabinoids can regulate cancer and potentially pave the way for novel therapeutic approaches.
The Endocannabinoid System: A Brief Overview
The endocannabinoid system is a complex cell-signalling system that plays a crucial role in maintaining homeostasis within the body. It comprises three primary components: endocannabinoids, receptors, and enzymes. The two primary endocannabinoids are anandamide (AEA) and 2-arachidonoylglycerol (2-AG). These molecules bind to specific receptors, known as CB1 and CB2, which are primarily found in the central nervous system and immune system, respectively.
Tumblr media
Endocannabinoids and Cancer Regulation
Research has shown that endocannabinoids can regulate various aspects of cancer, including cell proliferation, differentiation, migration, and apoptosis. Here are some ways endocannabinoids can influence cancer progression:
1. Modulation of Cell Proliferation and Differentiation
Endocannabinoids have been found to modulate cell proliferation and differentiation, which are essential processes in the development and progression of cancer. By binding to CB1 and CB2 receptors, endocannabinoids can inhibit the growth of cancer cells and promote their differentiation into non-cancerous cells. This effect has been observed in various cancer types, including breast, prostate, and colon cancers.
2. Regulation of Cell Migration and Invasion
Cancer metastasis, the spread of cancer cells from the primary tumour to other parts of the body, is a significant factor in cancer-related deaths. Endocannabinoids have been shown to regulate cell migration and invasion, which are critical processes in metastasis. By modulating the expression of matrix metalloproteinases (MMPs) and other molecules involved in cell adhesion, endocannabinoids can potentially inhibit the metastatic potential of cancer cells.
3. Induction of Apoptosis
Apoptosis, or programmed cell death, is a natural process that eliminates damaged or unwanted cells. The dysregulation of apoptosis is a hallmark of cancer, as it allows cancer cells to evade death and continue growing uncontrollably. Endocannabinoids have been found to induce apoptosis in various cancer cells by activating CB1 and CB2 receptors, leading to the activation of caspases, proteins responsible for initiating the apoptotic cascade.
4. Modulation of the Tumour Microenvironment
The tumour microenvironment, which comprises various cell types, extracellular matrix components, and signalling molecules, plays a critical role in cancer progression. Endocannabinoids can modulate the tumour microenvironment by regulating immune responses, angiogenesis, and inflammation. By doing so, endocannabinoids may potentially inhibit tumour growth and metastasis.
Tumblr media
Conclusion
The emerging research on endocannabinoids and their role in regulating cancer has opened up new avenues for understanding the complex mechanisms underlying cancer progression. Although more studies are needed to fully elucidate the therapeutic potential of targeting the endocannabinoid system, these findings offer hope for the development of novel cancer treatments. As we continue to explore the fascinating world of endocannabinoids, we may uncover groundbreaking discoveries that could revolutionise the way we approach cancer therapy. If you wish to help support and raise awareness about Cancer, you can donate here to a charity on JustGiving.
0 notes
consultatiiladomiciliu-ro · 2 months ago
Text
Cine spune ca albastrul de metilen face minuni in leziunile cerebrale - STUDII
Citeste articolul pe https://consultatiiladomiciliu.ro/cine-spune-ca-albastrul-de-metilen-face-minuni-in-leziunile-cerebrale-studii/
Cine spune ca albastrul de metilen face minuni in leziunile cerebrale - STUDII
Tumblr media
Albastrul de metilen utilizat in mod curent ca antiseptic urinar (face urina verde sau albastra), are un rol salvator pentru creier. Citeste mai mult despre mecanismele prin care salveaza neuronii.
Neurological Mechanisms of Action and Benefits of Methylene Blue © Chase Hughes, Applied Behavior Research 2023 16
mitochondria after traumatic brain injury and are protected by cyclosporine A. Journal of neurotrauma, 34(7), 1291-1301. Lee, S. W., & Han, H. C. (2021).
Methylene blue application to lessen pain: its analgesic effect and mechanism. Frontiers in Neuroscience, 15, 663650. Liu, Y., Jin, W., Zhao, Y., Zhang, G., & Zhang, W. (2017).
Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Applied Catalysis B: Environmental, 206, 642-652. Matsuda, M., Huh, Y., & Ji, R. R. (2019).
Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. Journal of anesthesia, 33, 131-139. Miclescu, A. A., Svahn, M., & Gordh, T. E. (2015).
Evaluation of the protein biomarkers and the analgesic response to systemic methylene blue in patients with refractory neuropathic pain: a double-blind, controlled study. Journal of pain research, 387-397. Nakazawa, H., Chang, K., Shinozaki, S., Yasukawa, T., Ishimaru, K., Yasuhara, S., … & Kaneki, M. (2017).
iNOS as a driver of inflammation and apoptosis in mouse skeletal muscle after burn injury: possible involvement of Sirt1 S-nitrosylation-mediated acetylation of p65 NF-κB and p53. PloS one, 12(1), e0170391. Ola, M. S., Nawaz, M., & Ahsan, H. (2011).
Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Molecular and cellular biochemistry, 351, 41-58. Pan, H., Zhao, X., Lei, S., Cai, C., Xie, Y. Z., & Yang, X. (2019).
The immunomodulatory activity of polysaccharides from the medicinal mushroom Amauroderma rude (Agaricomycetes) is mediated via the iNOS and PLA2-AA pathways. International Journal of Medicinal Mushrooms, 21(8).
Neurological Mechanisms of Action and Benefits of Methylene Blue © Chase Hughes, Applied Behavior Research 2023 17 Rojas, J. C., Bruchey, A. K., & Gonzalez-Lima, F. (2012).
Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue. Progress in neurobiology, 96(1), 32-45. Shen, J., Xin, W., Li, Q., Gao, Y., Yuan, L., & Zhang, J. (2019). Methylene blue reduces neuronal apoptosis and improves blood-brain barrier integrity after traumatic brain injury. Frontiers in Neurology, 10, 1133. Talley Watts, L., Long, J. A., Chemello, J., Van Koughnet, S., Fernandez, A., Huang, S., … & Duong, T. Q. (2014).
Methylene blue is neuroprotective against mild traumatic brain injury. Journal of neurotrauma, 31(11), 1063- 1071. Tucker, D., Lu, Y., & Zhang, Q. (2018).
From mitochondrial function to neuroprotection—an emerging role for methylene blue. Molecular neurobiology, 55, 5137-5153. Wang, W. X., Sullivan, P. G., & Springer, J. E. (2017).
Mitochondria and microRNA crosstalk in traumatic brain injury. Progress in Neuro- Psychopharmacology and Biological Psychiatry, 73, 104-108. Yadav, S., & Surolia, A. (2019).
Lysozyme elicits pain during nerve injury by neuronal Toll-like receptor 4 activation and has therapeutic potential in neuropathic pain. Science translational medicine, 11(504), eaav4176. Yonutas, H. M., Vekaria, H. J., & Sullivan, P. G. (2016).
Mitochondrial specific therapeutic targets following brain injury. Brain research, 1640, 77- 93. Zhang, D. X., Ma, D. Y., Yao, Z. Q., Fu, C. Y., Shi, Y. X., Wang, Q. L., & Tang, Q. Q. (2016).
ERK1/2/p53 and NF-κB dependent-PUMA activation involves in doxorubicin-induced cardiomyocyte apoptosis. Eur Rev Med Pharmacol Sci, 20(11), 2435-2442. Zhao, M., Liang, F., Xu, H., Yan, W., & Zhang, J. (2016).
Methylene blue exerts a neuroprotective effect against traumatic brain injury by promoting Neurological Mechanisms of Action and Benefits of Methylene Blue © Chase Hughes, Applied Behavior Research 2023 18 autophagy and inhibiting microglial activation. Molecular medicine reports, 13(1), 13-20. Zhu, Y., Wang, H., Fang, J., Dai, W., Zhou, J., Wang, X., & Zhou, M. (2018). SS-31 provides neuroprotection by reversing mitochondrial dysfunction after traumatic brain injury.
Oxidative Medicine and Cellular Longevity, 2018. Zhou, Y., Shao, A., Xu, W., Wu, H., & Deng, Y. (2019). Advance of stem cell treatment for traumatic brain injury. Frontiers in cellular neuroscience, 13, 301.
0 notes