#Electrical engineering and computer science (EECS)
Explore tagged Tumblr posts
jcmarchi · 3 months ago
Text
Study reveals AI chatbots can detect race, but racial bias reduces response empathy
New Post has been published on https://thedigitalinsider.com/study-reveals-ai-chatbots-can-detect-race-but-racial-bias-reduces-response-empathy/
Study reveals AI chatbots can detect race, but racial bias reduces response empathy
Tumblr media Tumblr media
With the cover of anonymity and the company of strangers, the appeal of the digital world is growing as a place to seek out mental health support. This phenomenon is buoyed by the fact that over 150 million people in the United States live in federally designated mental health professional shortage areas.
“I really need your help, as I am too scared to talk to a therapist and I can’t reach one anyways.”
“Am I overreacting, getting hurt about husband making fun of me to his friends?”
“Could some strangers please weigh in on my life and decide my future for me?”
The above quotes are real posts taken from users on Reddit, a social media news website and forum where users can share content or ask for advice in smaller, interest-based forums known as “subreddits.” 
Using a dataset of 12,513 posts with 70,429 responses from 26 mental health-related subreddits, researchers from MIT, New York University (NYU), and University of California Los Angeles (UCLA) devised a framework to help evaluate the equity and overall quality of mental health support chatbots based on large language models (LLMs) like GPT-4. Their work was recently published at the 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP).
To accomplish this, researchers asked two licensed clinical psychologists to evaluate 50 randomly sampled Reddit posts seeking mental health support, pairing each post with either a Redditor’s real response or a GPT-4 generated response. Without knowing which responses were real or which were AI-generated, the psychologists were asked to assess the level of empathy in each response.
Mental health support chatbots have long been explored as a way of improving access to mental health support, but powerful LLMs like OpenAI’s ChatGPT are transforming human-AI interaction, with AI-generated responses becoming harder to distinguish from the responses of real humans.
Despite this remarkable progress, the unintended consequences of AI-provided mental health support have drawn attention to its potentially deadly risks; in March of last year, a Belgian man died by suicide as a result of an exchange with ELIZA, a chatbot developed to emulate a psychotherapist powered with an LLM called GPT-J. One month later, the National Eating Disorders Association would suspend their chatbot Tessa, after the chatbot began dispensing dieting tips to patients with eating disorders.
Saadia Gabriel, a recent MIT postdoc who is now a UCLA assistant professor and first author of the paper, admitted that she was initially very skeptical of how effective mental health support chatbots could actually be. Gabriel conducted this research during her time as a postdoc at MIT in the Healthy Machine Learning Group, led Marzyeh Ghassemi, an MIT associate professor in the Department of Electrical Engineering and Computer Science and MIT Institute for Medical Engineering and Science who is affiliated with the MIT Abdul Latif Jameel Clinic for Machine Learning in Health and the Computer Science and Artificial Intelligence Laboratory.
What Gabriel and the team of researchers found was that GPT-4 responses were not only more empathetic overall, but they were 48 percent better at encouraging positive behavioral changes than human responses.
However, in a bias evaluation, the researchers found that GPT-4’s response empathy levels were reduced for Black (2 to 15 percent lower) and Asian posters (5 to 17 percent lower) compared to white posters or posters whose race was unknown. 
To evaluate bias in GPT-4 responses and human responses, researchers included different kinds of posts with explicit demographic (e.g., gender, race) leaks and implicit demographic leaks. 
An explicit demographic leak would look like: “I am a 32yo Black woman.”
Whereas an implicit demographic leak would look like: “Being a 32yo girl wearing my natural hair,” in which keywords are used to indicate certain demographics to GPT-4.
With the exception of Black female posters, GPT-4’s responses were found to be less affected by explicit and implicit demographic leaking compared to human responders, who tended to be more empathetic when responding to posts with implicit demographic suggestions.
“The structure of the input you give [the LLM] and some information about the context, like whether you want [the LLM] to act in the style of a clinician, the style of a social media post, or whether you want it to use demographic attributes of the patient, has a major impact on the response you get back,” Gabriel says.
The paper suggests that explicitly providing instruction for LLMs to use demographic attributes can effectively alleviate bias, as this was the only method where researchers did not observe a significant difference in empathy across the different demographic groups.
Gabriel hopes this work can help ensure more comprehensive and thoughtful evaluation of LLMs being deployed in clinical settings across demographic subgroups.
“LLMs are already being used to provide patient-facing support and have been deployed in medical settings, in many cases to automate inefficient human systems,” Ghassemi says. “Here, we demonstrated that while state-of-the-art LLMs are generally less affected by demographic leaking than humans in peer-to-peer mental health support, they do not provide equitable mental health responses across inferred patient subgroups … we have a lot of opportunity to improve models so they provide improved support when used.”
14 notes · View notes
xtruss · 1 year ago
Text
This Tiny, Tamper-Proof ID Tag Can Authenticate Almost Anything
Massachusetts Institute of Technology (MIT) Engineers Developed a Tag That Can Reveal with Near-Perfect Accuracy Whether an Item is Real or Fake. The Key is in the Glue on the Back of the Tag.
— Adam Zewe | MIT News | Publication Date: February 18, 2024
Tumblr media
A Few Years Ago, MIT Researchers Invented a Cryptographic ID Tag that is several times smaller and significantly cheaper than the traditional radio frequency tags (RFIDs) that are often affixed to products to verify their authenticity.
This tiny tag, which offers improved security over RFIDs, utilizes terahertz waves, which are smaller and travel much faster than radio waves. But this terahertz tag shared a major security vulnerability with traditional RFIDs: A counterfeiter could peel the tag off a genuine item and reattach it to a fake, and the authentication system would be none the wiser.
The researchers have now surmounted this security vulnerability by leveraging terahertz waves to develop an antitampering ID tag that still offers the benefits of being tiny, cheap, and secure.
They mix microscopic metal particles into the glue that sticks the tag to an object, and then use terahertz waves to detect the unique pattern those particles form on the item’s surface. Akin to a fingerprint, this random glue pattern is used to authenticate the item, explains Eunseok Lee, an electrical engineering and computer science (EECS) graduate student and lead author of a paper on the antitampering tag.
“These metal particles are essentially like mirrors for terahertz waves. If I spread a bunch of mirror pieces onto a surface and then shine light on that, depending on the orientation, size, and location of those mirrors, I would get a different reflected pattern. But if you peel the chip off and reattach it, you destroy that pattern,” adds Ruonan Han, an associate professor in EECS, who leads the Terahertz Integrated Electronics Group in the Research Laboratory of Electronics.
The researchers produced a light-powered antitampering tag that is about 4 square millimeters in size. They also demonstrated a machine-learning model that helps detect tampering by identifying similar glue pattern fingerprints with more than 99 percent accuracy.
Because the terahertz tag is so cheap to produce, it could be implemented throughout a massive supply chain. And its tiny size enables the tag to attach to items too small for traditional RFIDs, such as certain medical devices.
The paper, which will be presented at the IEEE Solid State Circuits Conference, is a collaboration between Han’s group and the Energy-Efficient Circuits and Systems Group of Anantha P. Chandrakasan, MIT’s chief innovation and strategy officer, dean of the MIT School of Engineering, and the Vannevar Bush Professor of EECS. Co-authors include EECS graduate students Xibi Chen, Maitryi Ashok, and Jaeyeon Won.
Preventing Tampering
This research project was partly inspired by Han’s favorite car wash. The business stuck an RFID tag onto his windshield to authenticate his car wash membership. For added security, the tag was made from fragile paper so it would be destroyed if a less-than-honest customer tried to peel it off and stick it on a different windshield.
But that is not a terribly reliable way to prevent tampering. For instance, someone could use a solution to dissolve the glue and safely remove the fragile tag.
Rather than authenticating the tag, a better security solution is to authenticate the item itself, Han says. To achieve this, the researchers targeted the glue at the interface between the tag and the item’s surface.
Their antitampering tag contains a series of miniscule slots that enable terahertz waves to pass through the tag and strike microscopic metal particles that have been mixed into the glue.
Terahertz waves are small enough to detect the particles, whereas larger radio waves would not have enough sensitivity to see them. Also, using terahertz waves with a 1-millimeter wavelength allowed the researchers to make a chip that does not need a larger, off-chip antenna.
After passing through the tag and striking the object’s surface, terahertz waves are reflected, or backscattered, to a receiver for authentication. How those waves are backscattered depends on the distribution of metal particles that reflect them.
The researchers put multiple slots onto the chip so waves can strike different points on the object’s surface, capturing more information on the random distribution of particles.
“These responses are impossible to duplicate, as long as the glue interface is destroyed by a counterfeiter,” Han says.
A vendor would take an initial reading of the antitampering tag once it was stuck onto an item, and then store those data in the cloud, using them later for verification.
AI For Authentication
But when it came time to test the antitampering tag, Lee ran into a problem: It was very difficult and time-consuming to take precise enough measurements to determine whether two glue patterns are a match.
He reached out to a friend in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and together they tackled the problem using AI. They trained a machine-learning model that could compare glue patterns and calculate their similarity with more than 99 percent accuracy.
“One drawback is that we had a limited data sample for this demonstration, but we could improve the neural network in the future if a large number of these tags were deployed in a supply chain, giving us a lot more data samples,” Lee says.
The authentication system is also limited by the fact that terahertz waves suffer from high levels of loss during transmission, so the sensor can only be about 4 centimeters from the tag to get an accurate reading. This distance wouldn’t be an issue for an application like barcode scanning, but it would be too short for some potential uses, such as in an automated highway toll booth. Also, the angle between the sensor and tag needs to be less than 10 degrees or the terahertz signal will degrade too much.
They plan to address these limitations in future work, and hope to inspire other researchers to be more optimistic about what can be accomplished with terahertz waves, despite the many technical challenges, says Han.
“One thing we really want to show here is that the application of the terahertz spectrum can go well beyond broadband wireless. In this case, you can use terahertz for ID, security, and authentication. There are a lot of possibilities out there,” he adds.
This work is supported, in part, by the U.S. National Science Foundation and the Korea Foundation for Advanced Studies.
0 notes
berkeley-engineering · 1 year ago
Text
Meet the Berkeley chapter of Eta Kappa Nu (HKN)! This electrical and computer engineering honor society provides tutoring and peer advising to fellow undergraduates. 
···
Your Gifts, #ShapingVisionaries: The Berkeley Engineering Fund (BEF) is proud to provide funding for Blue and Gold Certified student orgs like HKN.
BEF helps the college thrive. Thank you, BEF donors, for funding innovative student programs, packages to attract new faculty and continually modernizing facilities. Together, we shape visionaries. You can double your impact with our Shaping Visionaries Challenge Match.
Pictured: A blue graphic with white text that reads, “One thing you want students to know about your club?” Then an HKN member speaks to the camera at Golden Bear Orientation.
0 notes
lboogie1906 · 10 months ago
Text
Tumblr media
Gary Stephen May (born May 17, 1964) is the second African American chancellor of a campus of the University of California.
He was born in St. Louis, one of the two children of Warren May Jr., a postal clerk, and Gloria May, an elementary school teacher. Though raised a Methodist he attended a Catholic elementary school and a Lutheran high school. Selected as a US Presidential Scholar and having participated in a summer program directed by the McDonnell-Douglas Corporation, he was persuaded to enter The Georgia Institute of Technology where he majored in Electrical Engineering, he graduated magnum cum laude in 1988.
He enrolled in the doctoral program in Electrical Engineering and Computer Science at UC Berkeley, completing his Ph.D. with a dissertation titled “Automated Malfunction Diagnosis of Integrated Circuit Manufacturing Equipment.” He was involved with the National Society of Black Engineers, serving as its national chairperson (1987-89).
He returned to Georgia Tech as an EECS assistant professor. Promoted to full professor, he was named the Motorola Foundation Professor of Microelectronics. He was made chairman of EECS when the department was ranked sixth in the nation in that field. He was appointed Dean of the College of Engineering at Georgia Tech, the first African American in that post. He devised a very effective summer program that brought hundreds of such undergraduate students from across the nation to Georgia Tech to perform research and to encourage them to commit to graduate study. He co-created and directed a National Science Foundation-funded program on his campus that significantly increased the school’s students of color doctoral graduates in STEM fields. His known academic works are the books Fundamentals of Semiconductor Fabrication and Fundamental of Semiconductor Manufacturing and Process Control.
He was chosen to become the seventh chancellor of the UC Davis. He and his wife, LeShelle, a former system/ software developer, have two daughters. #africanhistory365 #africanexcellence
2 notes · View notes
mit · 1 year ago
Text
A new record for Math Prize for Girls wins
Twelfth grader Jessica Wan three-peats, as MIT hosts the 15th competition for female middle and high school math enthusiasts.
Sandi Miller | Department of Mathematics
Tumblr media
Florida Virtual School senior Jessica Wan was the winner of the 15th Math Prize for Girls (MP4G) annual contest for female-identifying contestants, held Oct. 6-8 at MIT. 
She scored 17 out of 20 questions, which added up to make Wan the MP4G’s most successful contestant in its history; she also won the contest last year and in 2019, as an eighth grader. (MP4G paused for two years at the height of the Covid-19 pandemic.) Because Wan had won $82,000 in previous years, she was limited to only earning $18,000 this year by contest rules placing a $100,000 lifetime limit on winnings.
The 262 U.S. and Canadian middle and high school contestants took a two-and-a-half-hour exam that featured 20 multistage problems in geometry, algebra, and trigonometry. Here's an example of one of the questions:
The frame of a painting has the form of a 105” by 105” square with a 95” by 95” square removed from its center. The frame is built out of congruent isosceles trapezoids with angles measuring 45 degrees and 135 degrees. Each trapezoid has one base on the frame’s outer edge and one base on the frame’s inner edge. Each outer edge of the frame contains an odd number of trapezoid bases that alternate long, short, long, short, etc. What is the maximum possible number of trapezoids in the frame?
Hosted by the MIT Department of Mathematics and sponsored by the Advantage Testing Foundation and global trading firm Jane Street, the MP4G weekend culminated in an awards ceremony held at the Marriott in Kendall Square, Cambridge, Massachusetts. MIT electrical engineering and computer science (EECS) Professor Regina Barzilay gave the Maryam Mirzakhani keynote lecture, “Uncovering Mysteries of Life Sciences with Machine Learning.” The event was emceed by MP4G alumna In Young Cho, a quantitative trader from Jane Street who placed third in 2010, and featured a performance by the MIT Logarhythms.
In second place was eighth grader Selena Ge of Jonas Clarke Middle School in Lexington, Massachusetts, with a score of 14 to earn $20,000. She also was awarded a Youth Prize of $2,000 as the highest-scoring contestant in ninth grade or below.
The next four winners were junior Hannah Fox of Proof School in California, who received $10,000 with a score of 12; with scores of 11 each, $4,000 was awarded to sophomores Shruti Arun of Cherry Creek High School in Colorado, Catherine Xu of Iowa City West High School in Iowa, and senior Miranda Wang of Kent Place School in New Jersey. The next 12 winners received $1,000 each.
Tumblr media
The top 41 students are invited to take the 2023 Math Prize for Girls Olympiad at their schools. Canada/USA Mathcamp also provides $250 merit scholarships to the top 35 students who enroll in its summer program.
Keep reading.
Make sure to follow us on Tumblr!
4 notes · View notes
moremedtech · 2 years ago
Text
Atlas of human brain blood vessels highlights changes in Alzheimer’s disease
Tumblr media
Atlas of human brain blood vessels highlights changes in Alzheimer’s disease MIT researchers characterize gene expression patterns for 22,500 brain vascular cells across 428 donors, revealing insights for Alzheimer’s onset and potential treatments. Your brain is powered by 400 miles of blood vessels that provide nutrients, clear out waste products, and form a tight protective barrier — the blood-brain barrier — that controls which molecules can enter or exit. However, it has remained unclear how these brain vascular cells change between brain regions, or in Alzheimer’s disease, at single-cell resolution. To address this challenge, a team of scientists from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), The Picower Institute for Learning and Memory, and The Broad Institute of MIT and Harvard recently unveiled a systematic molecular atlas of human brain vasculature and its changes in Alzheimer’s disease (AD) across six brain regions, in a paper published June 1 in Nature Neuroscience. Alzheimer's disease is a leading cause of death, affects one in nine Americans over 65, and leads to debilitating and devastating cognitive decline. Impaired blood-brain barrier (BBB) function has long been associated with Alzheimer’s and other neurodegenerative diseases, such as Parkinson's and multiple sclerosis. However, the molecular and cellular underpinnings of BBB dysregulation remain ill-defined, particularly at single-cell resolution across multiple brain regions and many donors.
Navigating vascular complexity
Embarking deep into the complexities of our gray matter, the researchers created a molecular atlas of human brain vasculature across 428 donors, including 220 diagnosed with Alzheimer's and 208 controls. They characterized over 22,514 vascular cells from six different brain regions, measuring the expression of thousands of genes for each cell. The resulting datasets unveiled intriguing changes in gene expression across different brain regions and stark contrasts between individuals afflicted with AD and those without. “Alzheimer's therapy development faces a significant hurdle — brain alterations commence decades before cognitive signs make their debut, at which point it might already be too late to intervene effectively,” comments MIT CSAIL principal investigator and electrical engineering and computer science (EECS) Professor Manolis Kellis. “Our work charts the terrain of vascular changes, one of the earliest markers of Alzheimer's, across multiple brain regions, providing a map to guide biological and therapeutic investigations earlier in disease progression.” Kellis is the study's co-senior author, along with MIT Professor Li-Huei Tsai, director of the Picower Institute and the Picower Professor in the Department of Brain and Cognitive Sciences.
The little cells that could
The threads of our human brain vasculature, and every part of our brain and body, are composed of millions of cells, all sharing the same DNA code, but each expressing a different subset of genes, which define its functional roles and distinct cell type. Using the distinct gene expression signatures of different cerebrovascular cells, the researchers distinguished 11 types of vascular cells. These included endothelial cells that line the interior surface of blood vessels and control which substances pass through the BBB, pericytes that wrap around small vessels and provide structural support and blood flow control, smooth muscle cells that form the middle layer of large vessels and whose contraction and relaxation regulates blood flow and pressure, fibroblasts that surround blood vessels and hold them in place, and they distinguished arteriole, venule, and capillary veins responsible for the different stages of blood oxygen exchange. The abundance of these vascular cell types differed between brain regions, with neocortical regions showing more capillary endothelial cells and fewer fibroblasts than subcortical regions, highlighting the regional heterogeneity of the BBB.
Clues and suspects
Armed with these annotations, the next phase was studying how each of these cell types change in AD, revealing 2,676 genes whose expression levels change significantly. They found that capillary endothelial cells, responsible for transport, waste removal, and immune surveillance, showed the most changes in AD, including genes involved in clearance of amyloid beta, one of the pathological hallmarks of AD, providing insights on the potential mechanistic implications of vascular dysregulation on AD pathology. Other dysregulated processes included immune function, glucose homeostasis, and extracellular matrix organization, which were all shared among multiple vascular cell types, and also cell-type-specific changes, including growth factor receptors in pericytes, and transporter and energy in endothelial cells, and cellular response to amyloid beta in smooth muscle cells. Regulation of insulin sensing and glucose homeostasis in particular suggested important connections between lipid transport and Alzheimer’s regulated by the vasculature and blood-brain-barrier cells, which could hold promise for new therapeutic clues. “Single-cell RNA sequencing provides an extraordinary microscope to peer into the intricate machinery of life, and ‘see’ millions of RNA molecules bustling with activity within each cell,” says Kellis, who is also a member of the Broad Institute. “This level of detail was inconceivable just a few years ago, and the resulting insights can be transformative to comprehend and combat complex psychiatric and neurodegenerative disease."
Maestros of dysregulation
Genes do not act on a whim, and they do not act alone. Cellular processes are governed by a complex cast of regulators, or transcription factors, that dictate which groups of genes should be turned on or off in different conditions, and in different cell types. These regulators are responsible for interpreting our genome, the ‘book of life,’ and turning it into the myriad of distinct cell types in our bodies and in our brains. These regulators might be responsible when something goes wrong, and they could also be critical in fixing things and restoring healthy cellular states. With thousands of genes showing altered expression levels in Alzheimer’s disease, the researchers then sought to find the potential masterminds behind these changes. They asked if common regulatory control proteins target numerous altered genes, which may provide candidate therapeutic targets to restore the expression levels of large numbers of target genes. Indeed, they found several such ‘master controllers,’ involved in regulating endothelial differentiation, inflammatory response, and epigenetic state, providing potential intervention points for drug targets against AD.
Cellular murmurings
Cells do not function in isolation; rather, they rely on communication with each other to coordinate biological processes. This intercellular communication is particularly complex within the cellular diversity of the brain, given the many factors involved in sensing, memory formation, knowledge integration, and consciousness. In particular, vascular cells have intricate interactions with neurons, microglia, and other brain cells, which take on heightened significance during pathological events, such as in Alzheimer's disease, where dysregulation of this cellular communication can contribute to the progression of the disease. The researchers found that interactions from capillary endothelial cells to neurons, microglia, and astrocytes were highly increased in AD, while interactions in the reverse direction, from neurons and astrocytes to capillary endothelial cells, were decreased in AD. This asymmetry could provide important cues for potential interventions targeting the vasculature and specifically capillary endothelial cells, with ultimate broad positive impacts on the brain. “The dynamics of vascular cell interactions in AD provide an entry point for brain interventions and potential new therapies,” says Na Sun, an EECS graduate student and MIT CSAIL affiliate and first author on the study. “As the blood-brain barrier prevents many drugs from influencing the brain, perhaps we could instead manipulate the blood-brain barrier itself, and let it spread beneficiary signals to the rest of the brain. Our work provides a blueprint for cerebrovasculature interventions in Alzheimer's disease, by unraveling how cellular communication can mediate the impact of genetic variants in AD."
Going off script: genetic plot twists
Disease onset in our bodies (and in our brains) is shaped by a combination of genetic predispositions and environmental exposures. On the genetic level, most complex traits are shaped by hundreds of minuscule sequence alterations, known as single-nucleotide polymorphisms (or SNPs, pronounced snips), most of which act through subtle changes in gene expression levels. No matter how subtle their effects might be, these genetic changes can reveal causal contributors to disease, which can greatly increase the chance of therapeutic success for genetically-supported target genes, compared to targets lacking genetic support. To understand how genetic differences associated with Alzheimer’s might act in the vasculature, the researchers then sought to connect genes that showed altered expression in Alzheimer’s with genetic regions associated with increased Alzheimer’s risk through genetic studies of thousands of individuals. They linked the genetic variants (SNPs) to candidate target genes using three lines of evidence: physical proximity in the three-dimensional folded genome, genetic variants that affect gene expression, and correlated activity between distant regulatory regions and target genes that go on and off together between different conditions. This resulted in not just one hit, but 125 genetic regions, where Alzheimer’s-associated genetic variants were linked to genes with disrupted expression patterns in Alzheimer’s disease, suggesting they might mediate these causal genetic effects, and thus may be good candidates for therapeutic targeting. Some of these predicted hits were direct, where the genetic variant acted directly on a nearby gene. Others were indirect when the genetic variant instead affected the expression of a regulator, which then affected the expression of its target genes. And yet others were predicted to be indirect through cell-cell communication networks.
ApoE4 and cognitive decline
While most genetic effects are subtle, both in Alzheimer’s and nearly all complex disorders, exceptions do exist. One such exception is FTO in obesity, which increases obesity risk by one standard deviation. Another one is apolipoprotein E (ApoE) in Alzheimer’s disease, where the E4 versus E3 allele increases risk more than 10-fold for carriers of two risk alleles — those who inherited one ‘unlucky’ copy from each parent. With such a strong effect size, the researchers then asked if ApoE4 carriers showed specific changes in vascular cells that were not found in ApoE3 carriers. Indeed, they found abundance changes associated with the ApoE4 genotype, with capillary endothelial cells and pericytes showing extensive down-regulation of transport genes. This has important implications for potential preventive treatments targeting transport in ApoE4 carriers, especially given the cholesterol transporter roles of ApoE, and the increasingly recognized role of lipid metabolism in Alzheimer’s disease. "Unearthing these AD-differential genes gives us a glimpse into how they may be implicated in the deterioration or dysfunction of the brain's protective barrier in Alzheimer's patients, shedding light on the molecular and cellular roots of the disease's development," says Kellis. "They also open several avenues for therapeutic development, hinting at a future where these entry points might be harnessed for new Alzheimer's treatments targeting the blood-brain barrier directly. The possibility of slowing or even halting the disease's progression is truly exciting.” Translating these findings into viable therapeutics will be a journey of exploration, demanding rigorous preclinical and clinical trials. To bring these potential therapies to patients, scientists need to understand how to target the discovered dysregulated genes safely and effectively and determine whether modifying their activity can ameliorate or reverse AD symptoms, which requires extensive collaborations between medical doctors and engineers across both academia and industry. “This is a tour de force impressive case series,” says Elizabeth Head, vice chair for pathology research and pathology professor at the University of California at Irvine, who was not involved in the research. “A novel aspect of this study was also the methodological approach, which left the vasculature intact, as compared to previous work where blood vessel enrichment protocol was applied. Manolis Kellis and his colleagues show clear evidence of neurovascular unit dysregulation in AD and it is exciting to see known and novel pathways being identified that will accelerate discoveries at the protein level. Many DEGs associated with AD are linked to lipid/cholesterol metabolism, to AD genetic risk factors (including ApoE) and inflammation. The potential for the ApoE genotype in mediating cerebrovascular function will also lead to possible new mouse models that will capture the human phenotype more closely with respect to the vascular contributions to dementia in humans. The regional differences in DEGs are fascinating and will guide future neuropathology studies in the human brain and drive novel hypotheses.” "The predominant focus in AD research over the past 10 years has been on studying microglia, the resident macrophage-like cells of the brain,” adds Ryan Corces, an assistant professor of neurology at the University of California at San Francisco who was also not involved in the work. “While microglia certainly play a key role in disease pathogenesis, it has become increasingly clear through studies such as this one that vascular cells may also be critically involved in the disease. From blood-brain barrier leakage to an enhanced need for debris clearance, the vascular cells of the brain play an important part in this complex disease. This study, and others like it, have begun picking apart the underlying molecular changes that occur in vascular cells, showing which genes appear dysregulated and how those changes may interact to alter vascular cell functions. Together with the mounting evidence of vascular involvement in AD, this work provides an important foundation for guiding therapeutic interventions against blood-brain barrier dysfunction in AD, especially during the preclinical or prodromal stages of the disease, where the blood-brain barrier may be playing a central role.” Sun, Kellis, and Tsai wrote the paper alongside Leyla Anne Akay, Mitchell H. Murdock, Yongjin Park, Fabiola Galiana-Melendez, Adele Bubnys, Kyriaki Galani, Hansruedi Mathys, Xueqiao Jiang, and Ayesha P. Ng of MIT and David A. Bennett of the Rush Alzheimer’s Disease Center in Chicago. This work was supported, in part, by National Institutes of Health grants, the Cure Alzheimer’s Foundation CIRCUITS consortium, the JPB Foundation, Robert A. and Renee Belfer, and a Takeda Fellowship from the Takeda Pharmaceutical Company. Source: MIT Read the full article
3 notes · View notes
cleverhottubmiracle · 8 days ago
Link
[ad_1] Sara Beery came to MIT as an assistant professor in MIT’s Department of Electrical Engineering and Computer Science (EECS) eager to focus on ecological challenges. She has fashioned her research career around the opportunity to apply her expertise in computer vision, machine learning, and data science to tackle real-world issues in conservation and sustainability. Beery was drawn to the Institute’s commitment to “computing for the planet,” and set out to bring her methods to global-scale environmental and biodiversity monitoring.In the Pacific Northwest, salmon have a disproportionate impact on the health of their ecosystems, and their complex reproductive needs have attracted Beery’s attention. Each year, millions of salmon embark on a migration to spawn. Their journey begins in freshwater stream beds where the eggs hatch. Young salmon fry (newly hatched salmon) make their way to the ocean, where they spend several years maturing to adulthood. As adults, the salmon return to the streams where they were born in order to spawn, ensuring the continuation of their species by depositing their eggs in the gravel of the stream beds. Both male and female salmon die shortly after supplying the river habitat with the next generation of salmon. Throughout their migration, salmon support a wide range of organisms in the ecosystems they pass through. For example, salmon bring nutrients like carbon and nitrogen from the ocean upriver, enhancing their availability to those ecosystems. In addition, salmon are key to many predator-prey relationships: They serve as a food source for various predators, such as bears, wolves, and birds, while helping to control other populations, like insects, through predation. After they die from spawning, the decomposing salmon carcasses also replenish valuable nutrients to the surrounding ecosystem. The migration of salmon not only sustains their own species but plays a critical role in the overall health of the rivers and oceans they inhabit. At the same time, salmon populations play an important role both economically and culturally in the region. Commercial and recreational salmon fisheries contribute significantly to the local economy. And for many Indigenous peoples in the Pacific northwest, salmon hold notable cultural value, as they have been central to their diets, traditions, and ceremonies. Monitoring salmon migrationIncreased human activity, including overfishing and hydropower development, together with habitat loss and climate change, have had a significant impact on salmon populations in the region. As a result, effective monitoring and management of salmon fisheries is important to ensure balance among competing ecological, cultural, and human interests. Accurately counting salmon during their seasonal migration to their natal river to spawn is essential in order to track threatened populations, assess the success of recovery strategies, guide fishing season regulations, and support the management of both commercial and recreational fisheries. Precise population data help decision-makers employ the best strategies to safeguard the health of the ecosystem while accommodating human needs. Monitoring salmon migration is a labor-intensive and inefficient undertaking.Beery is currently leading a research project that aims to streamline salmon monitoring using cutting-edge computer vision methods. This project fits within Beery’s broader research interest, which focuses on the interdisciplinary space between artificial intelligence, the natural world, and sustainability. Its relevance to fisheries management made it a good fit for funding from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS). Beery’s 2023 J-WAFS seed grant was the first research funding she was awarded since joining the MIT faculty.  Historically, monitoring efforts relied on humans to manually count salmon from riverbanks using eyesight. In the past few decades, underwater sonar systems have been implemented to aid in counting the salmon. These sonar systems are essentially underwater video cameras, but they differ in that they use acoustics instead of light sensors to capture the presence of a fish. Use of this method requires people to set up a tent alongside the river to count salmon based on the output of a sonar camera that is hooked up to a laptop. While this system is an improvement to the original method of monitoring salmon by eyesight, it still relies significantly on human effort and is an arduous and time-consuming process. Automating salmon monitoring is necessary for better management of salmon fisheries. “We need these technological tools,” says Beery. “We can’t keep up with the demand of monitoring and understanding and studying these really complex ecosystems that we work in without some form of automation.”In order to automate counting of migrating salmon populations in the Pacific Northwest, the project team, including Justin Kay, a PhD student in EECS, has been collecting data in the form of videos from sonar cameras at different rivers. The team annotates a subset of the data to train the computer vision system to autonomously detect and count the fish as they migrate. Kay describes the process of how the model counts each migrating fish: “The computer vision algorithm is designed to locate a fish in the frame, draw a box around it, and then track it over time. If a fish is detected on one side of the screen and leaves on the other side of the screen, then we count it as moving upstream.” On rivers where the team has created training data for the system, it has produced strong results, with only 3 to 5 percent counting error. This is well below the target that the team and partnering stakeholders set of no more than a 10 percent counting error. Testing and deployment: Balancing human effort and use of automationThe researchers’ technology is being deployed to monitor the migration of salmon on the newly restored Klamath River. Four dams on the river were recently demolished, making it the largest dam removal project in U.S. history. The dams came down after a more than 20-year-long campaign to remove them, which was led by Klamath tribes, in collaboration with scientists, environmental organizations, and commercial fishermen. After the removal of the dams, 240 miles of the river now flow freely and nearly 800 square miles of habitat are accessible to salmon. Beery notes the almost immediate regeneration of salmon populations in the Klamath River: “I think it was within eight days of the dam coming down, they started seeing salmon actually migrate upriver beyond the dam.” In a collaboration with California Trout, the team is currently processing new data to adapt and create a customized model that can then be deployed to help count the newly migrating salmon.One challenge with the system revolves around training the model to accurately count the fish in unfamiliar environments with variations such as riverbed features, water clarity, and lighting conditions. These factors can significantly alter how the fish appear on the output of a sonar camera and confuse the computer model. When deployed in new rivers where no data have been collected before, like the Klamath, the performance of the system degrades and the margin of error increases substantially to 15-20 percent. The researchers constructed an automatic adaptation algorithm within the system to overcome this challenge and create a scalable system that can be deployed to any site without human intervention. This self-initializing technology works to automatically calibrate to the new conditions and environment to accurately count the migrating fish. In testing, the automatic adaptation algorithm was able to reduce the counting error down to the 10 to 15 percent range. The improvement in counting error with the self-initializing function means that the technology is closer to being deployable to new locations without much additional human effort. Enabling real-time management with the “Fishbox”Another challenge faced by the research team was the development of an efficient data infrastructure. In order to run the computer vision system, the video produced by sonar cameras must be delivered via the cloud or by manually mailing hard drives from a river site to the lab. These methods have notable drawbacks: a cloud-based approach is limited due to lack of internet connectivity in remote river site locations, and shipping the data introduces problems of delay. Instead of relying on these methods, the team has implemented a power-efficient computer, coined the “Fishbox,” that can be used in the field to perform the processing. The Fishbox consists of a small, lightweight computer with optimized software that fishery managers can plug into their existing laptops and sonar cameras. The system is then capable of running salmon counting models directly at the sonar sites without the need for internet connectivity. This allows managers to make hour-by-hour decisions, supporting more responsive, real-time management of salmon populations.Community developmentThe team is also working to bring a community together around monitoring for salmon fisheries management in the Pacific Northwest. “It’s just pretty exciting to have stakeholders who are enthusiastic about getting access to [our technology] as we get it to work and having a tighter integration and collaboration with them,” says Beery. “I think particularly when you’re working on food and water systems, you need direct collaboration to help facilitate impact, because you're ensuring that what you develop is actually serving the needs of the people and organizations that you are helping to support.”This past June, Beery’s lab organized a workshop in Seattle that convened nongovernmental organizations, tribes, and state and federal departments of fish and wildlife to discuss the use of automated sonar systems to monitor and manage salmon populations. Kay notes that the workshop was an “awesome opportunity to have everybody sharing different ways that they're using sonar and thinking about how the automated methods that we’re building could fit into that workflow.” The discussion continues now via a shared Slack channel created by the team, with over 50 participants. Convening this group is a significant achievement, as many of these organizations would not otherwise have had an opportunity to come together and collaborate. Looking forwardAs the team continues to tune the computer vision system, refine their technology, and engage with diverse stakeholders — from Indigenous communities to fishery managers — the project is poised to make significant improvements to the efficiency and accuracy of salmon monitoring and management in the region. And as Beery advances the work of her MIT group, the J-WAFS seed grant is helping to keep challenges such as fisheries management in her sights.  “The fact that the J-WAFS seed grant existed here at MIT enabled us to continue to work on this project when we moved here,” comments Beery, adding “it also expanded the scope of the project and allowed us to maintain active collaboration on what I think is a really important and impactful project.” As J-WAFS marks its 10th anniversary this year, the program aims to continue supporting and encouraging MIT faculty to pursue innovative projects that aim to advance knowledge and create practical solutions with real-world impacts on global water and food system challenges.  [ad_2] Source link
0 notes
sunaleisocial · 13 days ago
Text
Robotic helper making mistakes? Just nudge it in the right direction
New Post has been published on https://sunalei.org/news/robotic-helper-making-mistakes-just-nudge-it-in-the-right-direction/
Robotic helper making mistakes? Just nudge it in the right direction
Tumblr media
Imagine that a robot is helping you clean the dishes. You ask it to grab a soapy bowl out of the sink, but its gripper slightly misses the mark.
Using a new framework developed by MIT and NVIDIA researchers, you could correct that robot’s behavior with simple interactions. The method would allow you to point to the bowl or trace a trajectory to it on a screen, or simply give the robot’s arm a nudge in the right direction.
Unlike other methods for correcting robot behavior, this technique does not require users to collect new data and retrain the machine-learning model that powers the robot’s brain. It enables a robot to use intuitive, real-time human feedback to choose a feasible action sequence that gets as close as possible to satisfying the user’s intent.
When the researchers tested their framework, its success rate was 21 percent higher than an alternative method that did not leverage human interventions.
In the long run, this framework could enable a user to more easily guide a factory-trained robot to perform a wide variety of household tasks even though the robot has never seen their home or the objects in it.
“We can’t expect laypeople to perform data collection and fine-tune a neural network model. The consumer will expect the robot to work right out of the box, and if it doesn’t, they would want an intuitive mechanism to customize it. That is the challenge we tackled in this work,” says Felix Yanwei Wang, an electrical engineering and computer science (EECS) graduate student and lead author of a paper on this method.
His co-authors include Lirui Wang PhD ’24 and Yilun Du PhD ’24; senior author Julie Shah, an MIT professor of aeronautics and astronautics and the director of the Interactive Robotics Group in the Computer Science and Artificial Intelligence Laboratory (CSAIL); as well as Balakumar Sundaralingam, Xuning Yang, Yu-Wei Chao, Claudia Perez-D’Arpino PhD ’19, and Dieter Fox of NVIDIA. The research will be presented at the International Conference on Robots and Automation.
Mitigating misalignment
Recently, researchers have begun using pre-trained generative AI models to learn a “policy,” or a set of rules, that a robot follows to complete an action. Generative models can solve multiple complex tasks.
During training, the model only sees feasible robot motions, so it learns to generate valid trajectories for the robot to follow.
While these trajectories are valid, that doesn’t mean they always align with a user’s intent in the real world. The robot might have been trained to grab boxes off a shelf without knocking them over, but it could fail to reach the box on top of someone’s bookshelf if the shelf is oriented differently than those it saw in training.
To overcome these failures, engineers typically collect data demonstrating the new task and re-train the generative model, a costly and time-consuming process that requires machine-learning expertise.
Instead, the MIT researchers wanted to allow users to steer the robot’s behavior during deployment when it makes a mistake.
But if a human interacts with the robot to correct its behavior, that could inadvertently cause the generative model to choose an invalid action. It might reach the box the user wants, but knock books off the shelf in the process.
“We want to allow the user to interact with the robot without introducing those kinds of mistakes, so we get a behavior that is much more aligned with user intent during deployment, but that is also valid and feasible,” Wang says.
Their framework accomplishes this by providing the user with three intuitive ways to correct the robot’s behavior, each of which offers certain advantages.
First, the user can point to the object they want the robot to manipulate in an interface that shows its camera view. Second, they can trace a trajectory in that interface, allowing them to specify how they want the robot to reach the object. Third, they can physically move the robot’s arm in the direction they want it to follow.
“When you are mapping a 2D image of the environment to actions in a 3D space, some information is lost. Physically nudging the robot is the most direct way to specifying user intent without losing any of the information,” says Wang.
Sampling for success
To ensure these interactions don’t cause the robot to choose an invalid action, such as colliding with other objects, the researchers use a specific sampling procedure. This technique lets the model choose an action from the set of valid actions that most closely aligns with the user’s goal.
“Rather than just imposing the user’s will, we give the robot an idea of what the user intends but let the sampling procedure oscillate around its own set of learned behaviors,” Wang explains.
This sampling method enabled the researchers’ framework to outperform the other methods they compared it to during simulations and experiments with a real robot arm in a toy kitchen.
While their method might not always complete the task right away, it offers users the advantage of being able to immediately correct the robot if they see it doing something wrong, rather than waiting for it to finish and then giving it new instructions.
Moreover, after a user nudges the robot a few times until it picks up the correct bowl, it could log that corrective action and incorporate it into its behavior through future training. Then, the next day, the robot could pick up the correct bowl without needing a nudge.
“But the key to that continuous improvement is having a way for the user to interact with the robot, which is what we have shown here,” Wang says.
In the future, the researchers want to boost the speed of the sampling procedure while maintaining or improving its performance. They also want to experiment with robot policy generation in novel environments.
0 notes
umichenginabroad · 24 days ago
Text
Victoria en France: Week 6
Hola from my first week of vacation! Being on a 2 week break has been so much fun, and I have been able to explore so much more than I’ve been doing on the weekends so far. I am currently on a train from Barcelona to Madrid, appreciating the pretty views of the Spanish countryside out my window.
Marrakech
After spending the weekend in Porto, we flew to Marrakech, Morocco, where we spent 3 days. We booked an excursion every day, which allowed us to see the beauty of Morocco outside the city. On the first day, we went into the desert, where we rode camels, drove quad bikes, and saw a fire show. The second excursion we went on was a waterfall hike, and there were so many monkeys on this tour! The third excursion was also a waterfall hike, but this one was in the mountains, which were absolutely stunning and too massive to possibly capture on camera. On all of our tours, we were served a traditional Moroccan meal, which for me was usually vegetable tagine and couscous. We also visited a few women’s cooperatives, where we were taught about the production of argan oil. Argan oil can be used for both beauty and cooking, and I definitely need to start using it more in my life. My favorite application of argan oil is amlou, which is like peanut butter. It’s made of peanuts, almonds, cactus honey, and argan oil, and it’s SO GOOD. On our tours, we were given bread (and the bread is so fresh and delicious in Morocco) to dip in the amlou, and my friends and I could not get enough. I’m going to miss it the next time I have regular peanut butter. The cuisine in Marrakech includes a lot of fruits and vegetables, which were all very fresh. Additionally, Morocco had the cheapest food out of all the places I’ve visited so far. Marrakech felt like a very safe city, so I would highly recommend visiting if you get the chance. I am glad I got to visit somewhere outside of Europe this semester, and I really want to visit other places in Morocco and Africa later on. The weather was amazing, so it felt like a summer vacation, and there were so many adorable cats everywhere. Truly a fantastic trip.
Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media
Barcelona
After Marrakech, we spent Friday, Saturday, and Sunday in Barcelona. The weather was also amazing here. The air was really fresh, and the temperatures were very comfortable. Once again, the food was amazing, although a bit pricy. We had paella, empanadas, 1 euro tacos, churros, and tons of tapas. The architecture was gorgeous, and we were able to go to the beach! Besides the beach, we also visited the Picasso museum and Parc de la Ciutadella. We climbed a hill to a place called Parque del Guinardó to watch the sunrise, and while there were amazing views of the city, it was a little too foggy to see much of a sunrise. However, we redeemed ourselves in the evening when we went up to the Temple of the Sacred Heart of Jesus. This spot is very high above the city, so this is the perfect place to get a spectacular panoramic view of Barcelona, and the sunset was one of the best I’ve ever seen. We also visited the Sagrada Família, which is a huge basilica. It’s been under construction for more than 100 years, but it was still stunning to look at, and probably one of my favorite buildings I’ve seen. The amount of detail is insane, and it has pretty colors on it too. Overall, I really loved Barcelona and would be happy to go back someday!
Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media
FAME
I am studying at ENSEA through the FAME program, and I wanted to share more about this program. All the FAME students are in EECS majors (Electrical Engineering, Computer Engineering, or Computer Science), since ENSEA is an EECS school. Additionally, we are all juniors at schools in the American midwest, and there are 22 of us. The participating schools this year include UMich (obviously), Michigan Tech, University of Illinois, Illinois Institute of Technology, University of Pittsburgh, University of Buffalo, and Mississippi State University. All of our lectures are exclusively FAME students, with the exception of elective classes and higher level French classes. We for the most part live in 2 different student residences that were offered to us. 4 students found alternate housing around Cergy. I love everyone I have met through this program, and everyone has been taking advantage of opportunities to travel and explore Paris. It has been really interesting to compare college experiences with students at other schools, and I am so glad I have been able to meet like-minded people I never would have crossed paths with otherwise.
I am so thankful that ENSEA gives us these breaks so we can explore new cultures and make the most of our semester. I am super excited for the second half of this break, as I will be spending more time in Spain and then ending the trip in Prague. See you next week!
Victoria Vizza
Electrical Engineering
IPE: FAME at ENSEA in Cergy-Pontoise, France
0 notes
aitrainingcenter · 1 month ago
Text
Streamlining data collection for improved salmon population management
Sara Beery came to MIT as an assistant professor in MIT’s Department of Electrical Engineering and Computer Science (EECS) eager to focus on ecological challenges. She has fashioned her research career around the opportunity to apply her expertise in computer vision, machine learning, and data science to tackle real-world issues in conservation and sustainability. Beery was drawn to the…
0 notes
yehiamassoud · 4 months ago
Text
Director of Innovative Technologies Labs, Former Dean of Systems — Stevens Institute of Technology
Yehia Massoud is a Fellow of IEEE, OPTICA, IOP, and IET. He holds a Ph.D. from the Massachusetts Institute of Technology (MIT), Cambridge, USA. He was awarded the DAC Fellowship and the Rising Star of Texas Medal. He received the US National Science Foundation CAREER Award, and the Synopsys Engineering Award. He was selected by the MIT as a featured EECS alumni. He was also one of the fastest faculty to be granted tenure in Rice university.
Tumblr media
Massoud has held several leading positions at renowned institutions of higher education and respected industry names including Rice University, Stevens Institute of Technology, WPI, Stanford University’s SLAC National Laboratory, and Synopsys Inc. He has served as Dean of the School of Systems and Enterprises (SSE), Stevens Institute of Technology, USA. As the Dean of SSE, he led the school to unprecedented growth in industrial partnership, patents, student enrollment, publications, translational research, funding, and visibility. Prior to Stevens, he served as the head of the Department of Electrical and Computer Engineering (ECE) at the Worcester Polytechnic Institute (WPI) between 2012 and 2017. During that period, the ECE department saw a considerable growth in research expenditures, research output, industrial partnerships, undergraduate and graduate student enrollments, unrestricted funds, and recognition. The department also rose 26 positions in the U.S. News & World Report department rankings.
Tumblr media
Leadership
Yehia Massoud is the Dean of the School of Systems and Enterprises (SSE) at Stevens Institute of technology. Ranked amongst the top graduate programs in systems, SSE is dedicated to educating thought and technical leaders who will impact global challenges in research and development, policy and strategy, and entrepreneurial innovation in academia, business and government. It is an honor to lead SSE, one of the first schools in the world dedicated to systems science and engineering. By building on our strengths as a world leader in systems science and engineering, and leveraging strong interdisciplinary collaborations, our school will play a transformative role in facilitating efficient solutions to some of the most pressing challenges facing our society. Our objective as a school is to educate thought and technical leaders who will impact global challenges in research and development, policy and strategy, and entrepreneurial innovation in academia, business and government. Through our tireless quest to provide world-class systems education and groundbreaking research, I am confident we will greatly build upon this reputation and rise to prominence. SSE has seen a record 100% increase in research awards to $15.2 Million, and has increased peer-reviewed publications by 58%. The school has also seen a significant increase in student enrollmen.
Tumblr media
The School of Systems and Enterprises (SSE) offers undergraduate and graduate degree programs that balance education and research to extend human intelligence to some of the world’s biggest challenges. SSE academic programs cover critical areas such as software engineering, systems analytics, industrial and systems engineering, human factors, engineering management and entrepreneurship. The SSE learning experience instills in students newfound leadership skills and technical acumen, enabling them to effect transformative change. SSE programs offer a unique advantage, providing a world-class, practice-based and research-supported education that translates immediately into expertise that students can take to the workplace. SSE is home to the Systems Engineering Research Center (SERC), a University-Affiliated Research Center (UARC) of the U.S. Department of Defense. Led by Stevens Institute of Technology, the SERC is a national resource providing a critical mass of systems engineering researchers. The center leverages the research and expertise of senior lead researchers from 22 collaborator universities throughout the United States. The SERC is unprecedented in the depth and breadth of its reach, leadership and citizenship in systems engineering through its conduct of vitally important research and the education of future systems engineering leaders.
Values Critical to Being a Leader
Do Listen: Everyone has something to offer. You will do well by listening and learning from others.
Be Inclusive: Have an inclusive and diverse team, and share the governance. It is the way to lead.
Hire Well: Hire the best and the most talented, who think like a team and work as a team.
Be Bold: The biggest risk in life is not taking risks. Remember, change is the only constant.
Be Adaptive: Make sure you and your team are as dynamic and adaptable as possible.
Be Humble: Nothing ever truly lasts. We are just passing by, so be humble and gracious.
Do Good: You achieve true happiness when you help others achieve it.
Interdisciplinary Research and Education
Tumblr media
Quality of Education
I believe that well-prepared graduates are the best ambassadors for any university, and that their successes in their careers will speak volumes for the university’s high quality of education. Therefore, it is of great importance to develop students that are well prepared to become future leaders in technology and society. A distinguished school must have evolving graduate and undergraduate curricula that are malleable to emerging new innovations and equip their students with the necessary knowledge and experience in state-of-the-art technologies. Integrating core foundational areas with new technologies and innovations in coherent curricula will help prepare students to handle new problems and applications that will arise in the future. It is crucial to offer strong courses that provide students with the necessary tools to solve complicated and interdisciplinary problems and challenges. Continually improving the curricula will allow any school to further distinguish itself as a provider of quality education that produces able graduates who are ready to contribute and lead in the society of tomorrow.
0 notes
jcmarchi · 5 months ago
Text
Interactive mouthpiece opens new opportunities for health data, assistive technology, and hands-free interactions
New Post has been published on https://thedigitalinsider.com/interactive-mouthpiece-opens-new-opportunities-for-health-data-assistive-technology-and-hands-free-interactions/
Interactive mouthpiece opens new opportunities for health data, assistive technology, and hands-free interactions
When you think about hands-free devices, you might picture Alexa and other voice-activated in-home assistants, Bluetooth earpieces, or asking Siri to make a phone call in your car. You might not imagine using your mouth to communicate with other devices like a computer or a phone remotely. 
Thinking outside the box, MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and Aarhus University researchers have now engineered “MouthIO,” a dental brace that can be fabricated with sensors and feedback components to capture in-mouth interactions and data. This interactive wearable could eventually assist dentists and other doctors with collecting health data and help motor-impaired individuals interact with a phone, computer, or fitness tracker using their mouths.
Resembling an electronic retainer, MouthIO is a see-through brace that fits the specifications of your upper or lower set of teeth from a scan. The researchers created a plugin for the modeling software Blender to help users tailor the device to fit a dental scan, where you can then 3D print your design in dental resin. This computer-aided design tool allows users to digitally customize a panel (called PCB housing) on the side to integrate electronic components like batteries, sensors (including detectors for temperature and acceleration, as well as tongue-touch sensors), and actuators (like vibration motors and LEDs for feedback). You can also place small electronics outside of the PCB housing on individual teeth.
Play video
MouthIO: Fabricating Customizable Oral User Interfaces with Integrated Sensing and Actuation Video: MIT CSAIL
The active mouth
“The mouth is a really interesting place for an interactive wearable and can open up many opportunities, but has remained largely unexplored due to its complexity,” says senior author Michael Wessely, a former CSAIL postdoc and senior author on a paper about MouthIO who is now an assistant professor at Aarhus University. “This compact, humid environment has elaborate geometries, making it hard to build a wearable interface to place inside. With MouthIO, though, we’ve developed a new kind of device that’s comfortable, safe, and almost invisible to others. Dentists and other doctors are eager about MouthIO for its potential to provide new health insights, tracking things like teeth grinding and potentially bacteria in your saliva.”
The excitement for MouthIO’s potential in health monitoring stems from initial experiments. The team found that their device could track bruxism (the habit of grinding teeth) by embedding an accelerometer within the brace to track jaw movements. When attached to the lower set of teeth, MouthIO detected when users grind and bite, with the data charted to show how often users did each.
Wessely and his colleagues’ customizable brace could one day help users with motor impairments, too. The team connected small touchpads to MouthIO, helping detect when a user’s tongue taps their teeth. These interactions could be sent via Bluetooth to scroll across a webpage, for example, allowing the tongue to act as a “third hand” to open up a new avenue for hands-free interaction.
“MouthIO is a great example how miniature electronics now allow us to integrate sensing into a broad range of everyday interactions,” says study co-author Stefanie Mueller, the TIBCO Career Development Associate Professor in the MIT departments of Electrical Engineering and Computer Science and Mechanical Engineering and leader of the HCI Engineering Group at CSAIL. “I’m especially excited about the potential to help improve accessibility and track potential health issues among users.”
Molding and making MouthIO
To get a 3D model of your teeth, you can first create a physical impression and fill it with plaster. You can then scan your mold with a mobile app like Polycam and upload that to Blender. Using the researchers’ plugin within this program, you can clean up your dental scan to outline a precise brace design. Finally, you 3D print your digital creation in clear dental resin, where the electronic components can then be soldered on. Users can create a standard brace that covers their teeth, or opt for an “open-bite” design within their Blender plugin. The latter fits more like open-finger gloves, exposing the tips of your teeth, which helps users avoid lisping and talk naturally.
This “do it yourself” method costs roughly $15 to produce and takes two hours to be 3D-printed. MouthIO can also be fabricated with a more expensive, professional-level teeth scanner similar to what dentists and orthodontists use, which is faster and less labor-intensive.
Compared to its closed counterpart, which fully covers your teeth, the researchers view the open-bite design as a more comfortable option. The team preferred to use it for beverage monitoring experiments, where they fabricated a brace capable of alerting users when a drink was too hot. This iteration of MouthIO had a temperature sensor and a monitor embedded within the PCB housing that vibrated when a drink exceeded 65 degrees Celsius (or 149 degrees Fahrenheit). This could help individuals with mouth numbness better understand what they’re consuming.
In a user study, participants also preferred the open-bite version of MouthIO. “We found that our device could be suitable for everyday use in the future,” says study lead author and Aarhus University PhD student Yijing Jiang. “Since the tongue can touch the front teeth in our open-bite design, users don’t have a lisp. This made users feel more comfortable wearing the device during extended periods with breaks, similar to how people use retainers.”
The team’s initial findings indicate that MouthIO is a cost-effective, accessible, and customizable interface, and the team is working on a more long-term study to evaluate its viability further. They’re looking to improve its design, including experimenting with more flexible materials, and placing it in other parts of the mouth, like the cheek and the palate. Among these ideas, the researchers have already prototyped two new designs for MouthIO: a single-sided brace for even higher comfort when wearing MouthIO while also being fully invisible to others, and another fully capable of wireless charging and communication.
Jiang, Mueller, and Wessely’s co-authors include PhD student Julia Kleinau, master’s student Till Max Eckroth, and associate professor Eve Hoggan, all of Aarhus University. Their work was supported by a Novo Nordisk Foundation grant and was presented at ACM’s Symposium on User Interface Software and Technology.
2 notes · View notes
fromdevcom · 5 months ago
Text
As the demand for artificial intelligence (AI) expertise continues to grow, students are increasingly looking to top universities for education and research opportunities in this field. Washington State, known for its thriving tech industry, is home to several universities that offer exceptional AI programs. These institutions not only provide advanced coursework in AI but also offer opportunities for hands-on research, internships, and collaborations with industry leaders. Here’s a look at some of the best universities in Washington for AI studies. 1. University of Washington (UW) The University of Washington in Seattle is one of the premier institutions for AI education in the state and the country. UW's Paul G. Allen School of Computer Science & Engineering is renowned for its research and development in AI, machine learning, and robotics. The university offers a comprehensive curriculum that includes courses in AI, machine learning, natural language processing, and computer vision. UW also provides students with the opportunity to engage in cutting-edge research projects, often in collaboration with major tech companies in the Seattle area such as Microsoft, Amazon, and Google. Key Highlights: Home to the Allen Institute for Artificial Intelligence (AI2), a leading research institute. Offers a Master’s and Ph.D. in Computer Science with a focus on AI. Strong industry connections for internships and job placements. 2. Washington State University (WSU) Washington State University, located in Pullman, is another top contender for students interested in AI. The School of Electrical Engineering and Computer Science (EECS) at WSU offers robust programs that cover various aspects of AI, including machine learning, data mining, and robotics. WSU’s AI research is particularly strong in the areas of agricultural technology, healthcare, and environmental sustainability, making it a great choice for students who want to apply AI to real-world challenges. Key Highlights: Focus on AI applications in agriculture and environmental sciences. Opportunities for interdisciplinary research and collaboration. Offers a Bachelor’s, Master’s, and Ph.D. in Computer Science with AI-related courses. 3. Seattle University Seattle University, a private institution in the heart of Seattle, offers a strong AI curriculum through its College of Science and Engineering. The university’s computer science program includes courses in AI, machine learning, and data science. Seattle University emphasizes ethical AI, preparing students to tackle the societal implications of AI technology. The university's location in a major tech hub provides students with ample opportunities for internships and networking with industry professionals. Key Highlights: Strong focus on ethical AI and social impact. Close proximity to leading tech companies for internship opportunities. Offers a Bachelor’s in Computer Science with AI and data science concentrations. 4. Western Washington University (WWU) Located in Bellingham, Western Washington University is known for its interdisciplinary approach to AI education. The university offers a Computer Science program with a specialization in AI, focusing on areas like machine learning, natural language processing, and robotics. WWU’s AI research initiatives are geared towards solving complex problems in healthcare, renewable energy, and education. Key Highlights: Emphasis on interdisciplinary research in AI. Strong undergraduate program with AI-focused courses. Research opportunities in healthcare and renewable energy. Conclusion Washington State is home to several universities that offer outstanding programs in artificial intelligence. From the University of Washington’s cutting-edge research to Washington State University’s application-driven studies, students have a variety of options to choose from. These institutions not only provide top-tier education
but also connect students with the vibrant tech industry in Washington, setting the stage for successful careers in AI. Whether you're looking to dive deep into AI research or apply AI to solve real-world problems, Washington’s universities offer the resources, expertise, and opportunities you need to succeed in this rapidly evolving field.
0 notes
berkeley-engineering · 1 year ago
Text
Tumblr media
The grading system known as “mastery learning” seeks to facilitate a process that gives students more room to learn from their mistakes. The idea is that students can achieve thorough proficiency in a subject if they are given enough time.
Armando Fox and Dan Garcia, professors of electrical engineering and computer sciences (EECS), are behind UC Berkeley’s pilot run in the non-majors CS 10 class, an endeavor they’ve dubbed “A’s for All (as Time and Interest Allow).”
In a paper, the Berkeley team found that “one of the best predictors of student performance in our rigorous introductory CS courses is prior CS exposure.” The implementation in an introductory course has the potential to improve diversity in the program. 
Read our full story.
0 notes
scarubaru · 2 years ago
Text
There was a post I saw a while ago about the gap between comp-sci/engineering students’ aspirations towards knowledge in their field vs those of their professors. Basically, students in other fields like physics or EECS are trying to master the foundations of their field, while comp-sci and comp-engineering students just want to churn out code without a deeper understanding of why things work the way they do. 
And yes completely agree. It’s like. If mechanical engineers didn’t know Newton’s laws, or an electrical engineer said shit like ‘Maxwell’s equations? Never heard of them.’ Not everyone will be a researcher of course, but cmon. Know your shit. I think the lack of that foundation in computer science students contributes to the shoddy state of modern software.
0 notes
mit · 1 year ago
Text
AI model speeds up high-resolution computer vision
The system could improve image quality in video streaming or help autonomous vehicles identify road hazards in real-time.
Adam Zewe | MIT News
Researchers from MIT, the MIT-IBM Watson AI Lab, and elsewhere have developed a more efficient computer vision model that vastly reduces the computational complexity of this task. Their model can perform semantic segmentation accurately in real-time on a device with limited hardware resources, such as the on-board computers that enable an autonomous vehicle to make split-second decisions.
youtube
Recent state-of-the-art semantic segmentation models directly learn the interaction between each pair of pixels in an image, so their calculations grow quadratically as image resolution increases. Because of this, while these models are accurate, they are too slow to process high-resolution images in real time on an edge device like a sensor or mobile phone.
The MIT researchers designed a new building block for semantic segmentation models that achieves the same abilities as these state-of-the-art models, but with only linear computational complexity and hardware-efficient operations.
The result is a new model series for high-resolution computer vision that performs up to nine times faster than prior models when deployed on a mobile device. Importantly, this new model series exhibited the same or better accuracy than these alternatives.
Not only could this technique be used to help autonomous vehicles make decisions in real-time, it could also improve the efficiency of other high-resolution computer vision tasks, such as medical image segmentation.
“While researchers have been using traditional vision transformers for quite a long time, and they give amazing results, we want people to also pay attention to the efficiency aspect of these models. Our work shows that it is possible to drastically reduce the computation so this real-time image segmentation can happen locally on a device,” says Song Han, an associate professor in the Department of Electrical Engineering and Computer Science (EECS), a member of the MIT-IBM Watson AI Lab, and senior author of the paper describing the new model.
He is joined on the paper by lead author Han Cai, an EECS graduate student; Junyan Li, an undergraduate at Zhejiang University; Muyan Hu, an undergraduate student at Tsinghua University; and Chuang Gan, a principal research staff member at the MIT-IBM Watson AI Lab. The research will be presented at the International Conference on Computer Vision.
A simplified solution
Categorizing every pixel in a high-resolution image that may have millions of pixels is a difficult task for a machine-learning model. A powerful new type of model, known as a vision transformer, has recently been used effectively.
Transformers were originally developed for natural language processing. In that context, they encode each word in a sentence as a token and then generate an attention map, which captures each token’s relationships with all other tokens. This attention map helps the model understand context when it makes predictions.
Using the same concept, a vision transformer chops an image into patches of pixels and encodes each small patch into a token before generating an attention map. In generating this attention map, the model uses a similarity function that directly learns the interaction between each pair of pixels. In this way, the model develops what is known as a global receptive field, which means it can access all the relevant parts of the image.
Since a high-resolution image may contain millions of pixels, chunked into thousands of patches, the attention map quickly becomes enormous. Because of this, the amount of computation grows quadratically as the resolution of the image increases.
In their new model series, called EfficientViT, the MIT researchers used a simpler mechanism to build the attention map — replacing the nonlinear similarity function with a linear similarity function. As such, they can rearrange the order of operations to reduce total calculations without changing functionality and losing the global receptive field. With their model, the amount of computation needed for a prediction grows linearly as the image resolution grows.
“But there is no free lunch. The linear attention only captures global context about the image, losing local information, which makes the accuracy worse,” Han says.
To compensate for that accuracy loss, the researchers included two extra components in their model, each of which adds only a small amount of computation.
One of those elements helps the model capture local feature interactions, mitigating the linear function’s weakness in local information extraction. The second, a module that enables multiscale learning, helps the model recognize both large and small objects.
“The most critical part here is that we need to carefully balance the performance and the efficiency,” Cai says.
They designed EfficientViT with a hardware-friendly architecture, so it could be easier to run on different types of devices, such as virtual reality headsets or the edge computers on autonomous vehicles. Their model could also be applied to other computer vision tasks, like image classification.
Keep reading.
Make sure to follow us on Tumblr!
2 notes · View notes