Tumgik
#rubp
whats-in-a-sentence · 2 years
Text
The metabolic processes referred to above take place in the palisade cells and spongy mesophyll of the leaf (Figure 9.1). (...) Below the epidermis, the top layers of photosynthetic cells are called palisade cells; they are shaped like pillars that stand in parallel columns one to three layers deep (see Figure 9.1). (...) In the interior, below the palisade layers, is the spongy mesophyll, where the cells are very irregular in shape and are surrounded by large air spaces (see Figure 9.1). (...) Sun and shade leaves have contrasting biochemical and morphological characteristics:
Shade leaves increase light capture by having more total chlorophyll per reaction center, a higher ratio of chlorophyll b to chlorophyll a, and usually thinner laminae than sun leaves.
Sun leaves increase CO2 assimilation by having more rubisco and can dissipate excess light energy by having a large pool of xanthophyll-cycle components (see Chapter 7). Morphologically they have thicker leaves and a larger palisade layer than shade leaves (see Figure 9.1).
Tumblr media
"Plant Physiology and Development" int'l 6e - Taiz, L., Zeiger, E., Møller, I.M., Murphy, A.
2 notes · View notes
thedickcavettshow · 5 months
Text
the one thing about me is that you can explain photosynthesis to me a million times every single day of my life for the next 70 years until I'm dead and it still will never "click" in my brain
4 notes · View notes
emeraldgreennnn · 2 months
Text
Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media
(I forgot the reformation of RuBP in my notes- and I can't find where I saved it but it's pretty clear from the diagram)
So yea those were my full notes on photosynthesis
More to come soon!
10 notes · View notes
htbrpblog · 2 months
Note
Photosynthesis is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism. Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen. Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds (compounds containing carbon) like sugars, glycogen, cellulose and starches. To use this stored chemical energy, an organism's cells metabolize the organic compounds through cellular respiration. Photosynthesis plays a critical role in producing and maintaining the oxygen content of the Earth's atmosphere, and it supplies most of the biological energy necessary for complex life on Earth.
Some bacteria also perform anoxygenic photosynthesis, which uses bacteriochlorophyll to split hydrogen sulfide as a reductant instead of water, producing sulfur instead of oxygen. Archaea such as Halobacterium also perform a type of non-carbon-fixing anoxygenic photosynthesis, where the simpler photopigment retinal and its microbial rhodopsin derivatives are used to absorb green light and power proton pumps to directly synthesize adenosine triphosphate (ATP), the "energy currency" of cells. Such archaeal photosynthesis might have been the earliest form of photosynthesis that evolved on Earth, as far back as the Paleoarchean, preceding that of cyanobacteria (see Purple Earth hypothesis).
While the details may differ between species, the process always begins when light energy is absorbed by the reaction centers, proteins that contain photosynthetic pigments or chromophores. In plants, these proteins are chlorophylls (a porphyrin derivative that absorbs the red and blue spectrums of light, thus reflecting green) held inside chloroplasts, abundant in leaf cells. In bacteria they are embedded in the plasma membrane. In these light-dependent reactions, some energy is used to strip electrons from suitable substances, such as water, producing oxygen gas. The hydrogen freed by the splitting of water is used in the creation of two important molecules that participate in energetic processes: reduced nicotinamide adenine dinucleotide phosphate (NADPH) and ATP.
In plants, algae, and cyanobacteria, sugars are synthesized by a subsequent sequence of light-independent reactions called the Calvin cycle. In this process, atmospheric carbon dioxide is incorporated into already existing organic compounds, such as ribulose bisphosphate (RuBP). Using the ATP and NADPH produced by the light-dependent reactions, the resulting compounds are then reduced and removed to form further carbohydrates, such as glucose. In other bacteria, different mechanisms like the reverse Krebs cycle are used to achieve the same end.
The first photosynthetic organisms probably evolved early in the evolutionary history of life using reducing agents such as hydrogen or hydrogen sulfide, rather than water, as sources of electrons. Cyanobacteria appeared later; the excess oxygen they produced contributed directly to the oxygenation of the Earth, which rendered the evolution of complex life possible. The average rate of energy captured by global photosynthesis is approximately 130 terawatts, which is about eight times the total power consumption of human civilization. Photosynthetic organisms also convert around 100–115 billion tons (91–104 Pg petagrams, or a billion metric tons), of carbon into biomass per year. Photosynthesis was discovered in 1779 by Jan Ingenhousz. He showed that plants need light, not just air, soil, and water.
Photosynthesis is vital for climate processes, as it captures carbon dioxide from the air and binds it into plants, harvested produce and soil. Cereals alone are estimated to bind 3,825 Tg or 3.825 Pg of carbon dioxide every year, i.e. 3.825 billion metric tons.
Tumblr media
That reminds me of the Krebs cycle, which creates ATP instead of using it. I am learning just how much lifeforms rely on each other to survive. Destroying one could cause many others to crumble. Interesting.
(OOC: Sorry, but I do not understand plants very well at all. I like anatomy of animals, humans, and bugs more).
3 notes · View notes
uvpartybomb · 2 months
Note
Photosynthesis is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism. Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen. Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds (compounds containing carbon) like sugars, glycogen, cellulose and starches. To use this stored chemical energy, an organism's cells metabolize the organic compounds through cellular respiration. Photosynthesis plays a critical role in producing and maintaining the oxygen content of the Earth's atmosphere, and it supplies most of the biological energy necessary for complex life on Earth.
Some bacteria also perform anoxygenic photosynthesis, which uses bacteriochlorophyll to split hydrogen sulfide as a reductant instead of water, producing sulfur instead of oxygen. Archaea such as Halobacterium also perform a type of non-carbon-fixing anoxygenic photosynthesis, where the simpler photopigment retinal and its microbial rhodopsin derivatives are used to absorb green light and power proton pumps to directly synthesize adenosine triphosphate (ATP), the "energy currency" of cells. Such archaeal photosynthesis might have been the earliest form of photosynthesis that evolved on Earth, as far back as the Paleoarchean, preceding that of cyanobacteria (see Purple Earth hypothesis).
While the details may differ between species, the process always begins when light energy is absorbed by the reaction centers, proteins that contain photosynthetic pigments or chromophores. In plants, these proteins are chlorophylls (a porphyrin derivative that absorbs the red and blue spectrums of light, thus reflecting green) held inside chloroplasts, abundant in leaf cells. In bacteria they are embedded in the plasma membrane. In these light-dependent reactions, some energy is used to strip electrons from suitable substances, such as water, producing oxygen gas. The hydrogen freed by the splitting of water is used in the creation of two important molecules that participate in energetic processes: reduced nicotinamide adenine dinucleotide phosphate (NADPH) and ATP.
In plants, algae, and cyanobacteria, sugars are synthesized by a subsequent sequence of light-independent reactions called the Calvin cycle. In this process, atmospheric carbon dioxide is incorporated into already existing organic compounds, such as ribulose bisphosphate (RuBP). Using the ATP and NADPH produced by the light-dependent reactions, the resulting compounds are then reduced and removed to form further carbohydrates, such as glucose. In other bacteria, different mechanisms like the reverse Krebs cycle are used to achieve the same end.
The first photosynthetic organisms probably evolved early in the evolutionary history of life using reducing agents such as hydrogen or hydrogen sulfide, rather than water, as sources of electrons. Cyanobacteria appeared later; the excess oxygen they produced contributed directly to the oxygenation of the Earth, which rendered the evolution of complex life possible. The average rate of energy captured by global photosynthesis is approximately 130 terawatts, which is about eight times the total power consumption of human civilization. Photosynthetic organisms also convert around 100–115 billion tons (91–104 Pg petagrams, or a billion metric tons), of carbon into biomass per year. Photosynthesis was discovered in 1779 by Jan Ingenhousz. He showed that plants need light, not just air, soil, and water.
Photosynthesis is vital for climate processes, as it captures carbon dioxide from the air and binds it into plants, harvested produce and soil. Cereals alone are estimated to bind 3,825 Tg or 3.825 Pg of carbon dioxide every year, i.e. 3.825 billion metric tons.
Why are we suddenly in a science lesson? Its interesting nontheless though!
4 notes · View notes
pardomuansitanggang · 2 months
Text
REAKSI FOTOSINTESIS TUMBUHAN, PARDOMUANSITANGGANG.COM – Reaksi fotosintesis pada tumbuhan adalah proses biokimia di mana tumbuhan hijau, alga, dan beberapa bakteri mengubah energi cahaya menjadi energi kimia dalam bentuk gula. Proses ini terjadi terutama di daun yang mengandung klorofil, pigmen hijau yang menangkap energi cahaya. Fotosintesis dapat dibagi menjadi dua tahap utama: reaksi terang dan siklus Calvin (reaksi gelap). Berikut adalah penjelasan dari kedua tahap ini: Reaksi Terang Reaksi terang berlangsung di membran tilakoid kloroplas dan memerlukan cahaya untuk menghasilkan energi kimia dalam bentuk ATP dan NADPH. Berikut adalah tahapan-tahapannya: Penangkapan Cahaya: Energi cahaya diserap oleh klorofil dan pigmen aksesori lainnya di dalam fotosistem II (PSII) dan fotosistem I (PSI). Pemecahan Molekul Air: Energi dari cahaya yang diserap di PSII digunakan untuk memecah molekul air (H₂O) menjadi oksigen (O₂), proton (H⁺), dan elektron (e⁻). Proses ini dikenal sebagai fotolisis. Reaksi: 2 H₂O → 4 H⁺ + 4 e⁻ + O₂ Transport Elektron: Elektron yang dihasilkan dari pemecahan air melewati rantai transpor elektron dari PSII ke PSI. Selama perjalanan ini, energi dari elektron digunakan untuk memompa proton ke dalam lumen tilakoid, menciptakan gradien proton yang akan digunakan untuk menghasilkan ATP. Reaksi: ADP + Pᵢ → ATP (fosforilasi kemiosmotik) Produksi NADPH: Elektron yang mencapai PSI digunakan untuk mengurangi NADP⁺ menjadi NADPH. Reaksi: NADP⁺ + 2 e⁻ + 2 H⁺ → NADPH + H⁺ Reaksi Gelap (Siklus Calvin) Reaksi gelap terjadi di stroma kloroplas dan tidak memerlukan cahaya langsung, tetapi menggunakan ATP dan NADPH yang dihasilkan dari reaksi terang untuk mengubah karbon dioksida (CO₂) menjadi gula (glukosa). Tahapan-tahapannya adalah sebagai berikut: Fiksasi Karbon: Enzim ribulose-1,5-bisfosfat karboksilase/oksigenase (RuBisCO) mengikat CO₂ dari atmosfer dan menggabungkannya dengan ribulose-1,5-bisfosfat (RuBP) untuk membentuk molekul 3-fosfogliserat (3-PGA). Reaksi: 3 RuBP + 3 CO₂ → 6 3-PGA Reduksi: 3-PGA diubah menjadi gliseraldehida-3-fosfat (G3P) melalui dua reaksi yang memerlukan ATP dan NADPH. Reaksi: 6 3-PGA + 6 ATP + 6 NADPH → 6 G3P + 6 ADP + 6 Pᵢ + 6 NADP⁺ Regenerasi RuBP: Sebagian besar G3P digunakan untuk meregenerasi RuBP sehingga siklus dapat terus berlangsung. Ini memerlukan tambahan ATP. Reaksi: 5 G3P + 3 ATP → 3 RuBP + 3 ADP Pembentukan Glukosa: Setiap tiga siklus, satu molekul G3P keluar dari siklus dan dapat digunakan untuk membentuk glukosa dan karbohidrat lainnya. Reaksi: 2 G3P → C₆H₁₂O₆ (glukosa) Keseluruhan Reaksi Fotosintesis Jika digabungkan, reaksi keseluruhan fotosintesis dapat diringkas sebagai berikut: 6CO2+6H2O+cahaya→C6H12O6+6O26 \text{CO}_2 + 6 \text{H}_2\text{O} + \text{cahaya} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{O}_26CO2+6H2O+cahaya→C6H12O6+6O2 Ini berarti enam molekul karbon dioksida dan enam molekul air, menggunakan energi cahaya, menghasilkan satu molekul glukosa dan enam molekul oksigen. Reaksi ini penting untuk kehidupan di Bumi karena menyediakan makanan bagi tumbuhan dan oksigen yang diperlukan oleh hewan dan manusia untuk bernapas.
0 notes
Photo
Tumblr media
Throw back and hello again to some resurfacing ideas-- thinking about rhythm and repetition, tautology and alliteration – bodily movement sensed but not seen.  Repetition is evident-- Rhythm in walking, talking, heartbeats.  memories circulating-- around and around and around>> repetition, again and again to process (at Chicago Downtown) https://www.instagram.com/p/ClbvD0-rubP/?igshid=NGJjMDIxMWI=
0 notes
to-fu · 2 years
Text
found one of my ch*rubp*ay chats from 2014 in which someone was addressing their... parent? pet? as their lusus in OOC. i wanna go back to simpler times
6 notes · View notes
crabpdf · 3 years
Text
guys its not RuBP that serves as the CO2 acceptor in the Calvin cycle. its actually Calvin himself. Yes... calvin is fixing carbon to become a six carbon molecule... yes...
2 notes · View notes
bbhsthighs · 8 years
Text
@ninetytwoline bio in general? consider me: fuckt
3 notes · View notes
alemanjo · 3 years
Photo
Tumblr media
Y entre desahuciados, pinchados y jalados se completó la ruta. Compañeros #cliclistas #mtb comparto la rodada del día Sábado 13 de Noviembre, 2021. #BajadaCiclísticaParaLaSed seguiremos haciendo rutas de altura #ElDeporteSalvaVidas Ruta de entrenamiento: UIO - Mitad del Mundo - Calacalí - Nanegalito - Gualea - Pacto, Noviembre 13, 2021, +90k ⛰🚵🔥🇪🇨🌬🌪🏁⛰🚵‍♂️🔥🇪🇨🌬🏁🌪 Lila&kev     Fotografía y cobertura 📸 Club Deportivo Cycling UIO  Presente en las mejores rutas de altura 🚵‍♂️🔥 #MuruKuri Chocolate artesanal 🍫 Y solo en #Ecuador #yquenotelocuenten ¡Mira esta ruta! https://es.wikiloc.com/rutas-mountain-bike/uio-mitad-del-mundo-calacali-nanegalito-gualea-pacto-noviembre-13-2021-90k-88772082 (UIO - Mitad del Mundo - Calacalí - Nanegalito - Gualea - Pacto, Noviembre 13, 2021, +90k) en #wikiloc Echa un vistazo a mi actividad en Strava: https://strava.app.link/IkFQljM89kb #ciclismo #mtb #alemanjo #ecuador #Quito #Pichincha #YsoydelBalcónQuiteño #calacalí #Nanegalito #Gualea #Quito #Pacto #ChocoAndino #SíguemeParaMásBajadas #CyclingUIO (en Pacto, Pichincha, Ecuador) https://www.instagram.com/p/CWRdQg-ruBP/?utm_medium=tumblr
0 notes
pius2017 · 3 years
Text
The image below shows the carbon reactions. Some parts have been removed. Fill in the empty boxes using the labels on the left. Not all labels will be used. PGAL Carbon dioxide CARBON FOCATION Input of NADPH op boe0OOP) stable intermediates Glucose REGENERATION RuBP Oxygen Rubisco Input of ATP
Tumblr media
View On WordPress
0 notes
endesuch · 3 years
Text
· When electrons exit photosystem 2 what is the source from which replacement el
· When electrons exit photosystem 2 what is the source from which replacement el
· When electrons exit photosystem 2 what is the source from which replacement electrons are obtained? · In what photosynthetic reaction dose carbon dioxide combine with RuBP? · In what eukaryotic cell structure dose Krebs cycle and electron transport occur? · What is the cell reaction that begins with glucose and ends with pyruvic acid called? · How many NADH are formed in the Krebs cycle from a…
View On WordPress
0 notes
istantoomanypeeps · 4 years
Text
RuBP —> GP x2
plants: ye thats some good shit
0 notes
cherryphobe · 7 years
Text
*rubps my hands together* i feel............ sassy
2 notes · View notes
flavia8 · 7 years
Text
Differences in how Plants handle CO2
Plants can be classified as C3 or C4 based on how they deal with CO2. A key  thing - Bundle Sheath Cells are cells surrounding and cushioning the veins of plants.
C3 Plants
Use Rubisco to attach CO2 to RuBP
Struggle on hot days when closing their stomata (leaf pores)
Since the stomata are closed, the Oxygen concentration rises and Photorespiration ensues.
C4 Plants-Evolved to deal with the problem, no photorespiration occurs when they have closed their stomata.
Have an Enzyme called PEP Carboxylase which attaches CO2 to a 3 Carbon molecule called Phosphoenol Pyruvate. (PEP)
Does not bind to Oxygen at all.
C4 Rubisco is in the cells composing the Bundle Sheath
Far away from Oxygen
PEP turns into Oxaloacetate
Oxaloacetate turns into a 4 carbon Sugar called Malate (Has a new Carbon atom from Air)
Malate is shipped to the Bundle Sheath, where one of the four carbons is turned into CO2 (Broken off)
Rubisco then proceeds as normal, with the Calvin Cycle, ect.
Some ATP is spent, but not as much as would be spent to fix damage from Photorespiration.
2 notes · View notes