#Memristors
Explore tagged Tumblr posts
Text
Tumblr media
AI chips could get a sense of time with memristor that can be tuned
Artificial neural networks may soon be able to process time-dependent information, such as audio and video data, more efficiently. The first memristor with a "relaxation time" that can be tuned is reported today in Nature Electronics, in a study led by the University of Michigan. Memristors, electrical components that store information in their electrical resistance, could reduce AI's energy needs by about a factor of 90 compared to today's graphical processing units. Already, AI is projected to account for about half a percent of the world's total electricity consumption in 2027, and that has the potential to balloon as more companies sell and use AI tools. "Right now, there's a lot of interest in AI, but to process bigger and more interesting data, the approach is to increase the network size. That's not very efficient," said Wei Lu, the James R. Mellor Professor of Engineering at U-M and co-corresponding author of the study with John Heron, U-M associate professor of materials science and engineering.
Read more.
8 notes · View notes
planetearthtradefederation · 4 months ago
Text
CRAY SUPERCOMPUTER
MEMRISTORS
POSITRONIC NET POSITRONIC BRAIN
0 notes
nuadox · 7 months ago
Text
Study shows robotic third thumb enhances dexterity across diverse users, highlights need for inclusive design
Tumblr media
- By Nuadox Crew -
Researchers at the University of Cambridge (UK) demonstrated that the Third Thumb, a robotic prosthetic, can be quickly mastered by a diverse range of people, enhancing manual dexterity.
Their study emphasizes the importance of inclusive design to ensure that new technologies benefit everyone, including marginalized communities.
The Third Thumb, controlled by foot pressure sensors, was tested on 596 participants aged 3 to 96, showing that nearly all could use it effectively within a minute.
Performance varied but showed no gender or handedness bias. The study underscores the need for early-stage inclusivity in developing wearable technologies to ensure accessibility and functionality for a wide range of users.
youtube
Video: "Testing the Third Thumb" by University of Cambridge, YouTube.
Read more at University of Cambridge
Header image credit: Dani Clode Design & The Plasticity Lab.
Scientific paper: Clode, D & Dowdall, L et al. Assessing First Time Usability of a Hand Augmentation Device in a Large Sample of Diverse Users. Science Robotics; 29 May 2024; DOI: 10.1126/scirobotics.adk5183
--
Other recent news:
Spintronics Advancements: Researchers have made a new milestone in spintronics, which could revolutionize electronics by better predicting and controlling spin currents, studying magnetic properties, and temperature effects on materials.
Tandem Solar Cells: Tandem solar cells have achieved over 20% efficiency, marking a significant step forward in solar technology.
NASA’s X-59 Quiet Supersonic Aircraft: NASA’s X-59 quiet supersonic aircraft project has passed a critical milestone, setting the stage for future flight tests.
Lithium Batteries: Korean researchers have developed a revolutionary new lightweight structure for lithium batteries, enhancing ion transport and battery performance.
“Metaholograms”: Scientists have developed a new type of hologram that could transform AR/VR technologies by enabling crosstalk-free, high-fidelity image projection with increased information capacity.
Memristors Mimic Neural Timekeeping: An AI chip breakthrough has occurred with memristors that can mimic the timekeeping of neurons.
0 notes
generalmarketresearch-blog · 10 months ago
Text
https://www.htfmarketintelligence.com/report/global-memristors-market
0 notes
trendingnews1791 · 1 year ago
Text
0 notes
jukemix · 5 months ago
Text
Tumblr media
R. Skeleton - Baronkexana
Tumblr media
Ant - bunnynana's persona
Tumblr media
Memristor - @gabbadizzy
Tumblr media
Manta - ibmatter
Tumblr media
Aiden - @frrrankbox
Tumblr media
Mortis - Cottenisanidiot
Tumblr media
Malik - @rudesun
Tumblr media
Iroha (JSR AU) - @panda-doodles
Tumblr media
Qi and Zinc - @kremechihihi and chaos.in.dreams J U K E C A S T - A R T F I G H T - 2 0 2 4
Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media
----SELECT THE MANY OCS IN THE -----JUKECAST CONSOLE AND ATTACK IN---------THE ART FIGHT ARENA!!!!!-------- - - - - CHOOSE YOUR PICK NOW!!! - - - -
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18 notes · View notes
ujjinatd · 6 days ago
Photo
Tumblr media
Del laboratorio a la vida: los memristores a escala atómica allanan el camino para una IA similar al cerebro y una potencia informática de próxima generación Memristores para llevar la computa... https://ujjina.com/del-laboratorio-a-la-vida-los-memristores-a-escala-atomica-allanan-el-camino-para-una-ia-similar-al-cerebro-y-una-potencia-informatica-de-proxima-generacion/?feed_id=875705&_unique_id=6768b03bf1cab
0 notes
telkomuniversityputi · 11 days ago
Text
Merevolusi AI: Teknologi Kecil yang Mendukung Komputer Serupa Otak
Sebuah proyek universitas bersama yang didanai oleh NSF bertujuan untuk menciptakan memristor yang disetel secara atom untuk komputasi neuromorfik. Fokusnya adalah pada simulasi fungsi otak untuk AI dengan kecepatan dan efisiensi tinggi. Kredit: SciTechDaily.com Para peneliti sedang mengembangkan memristor yang presisi secara atom untuk sistem komputasi neuromorfik tingkat lanjut. University of…
Tumblr media
View On WordPress
0 notes
567q26889t · 19 days ago
Text
0 notes
ericvanderburg · 2 months ago
Text
Graphene-Based Memristors Inch Towards Practical Production
http://i.securitythinkingcap.com/TFl0QF
0 notes
Text
Tumblr media
Researchers develop thin film as resistance-switching material for next-generation memristive devices
Memristive devices are capable of retaining their internal resistance, thus offering superior performance compared to conventional devices that use integrated circuits. Several materials have been explored for the manufacture of these devices. In recent years, transition metal oxides have gradually become widely popular for this purpose. Due to their increasing application in diverse domains like artificial intelligence systems, memristive devices must now overcome several issues related to data retention, endurance, and a large number of conductance states. Moreover, the individual fabrication of these devices is time-consuming. As a result, several challenges need to be addressed to improve their performance and reliability. In a recent study led by Professor Min Kyu Yang from Sahmyook University, Korea, researchers have developed a silver (Ag)-dispersive chalcogenide thin film for use as a resistance-switching material in memristive devices. Their paper is published in the journal Applied Surface Science.
Read more.
6 notes · View notes
12w-----wwddff · 3 months ago
Text
0 notes
hackernewsrobot · 4 months ago
Text
Linear, symmetric, self-selecting 14-bit molecular memristors
https://www.researchgate.net/publication/377744243_Linear_symmetric_self-selecting_14-bit_molecular_memristors
1 note · View note
Link
0 notes
sisiad · 4 months ago
Text
Memristors on ‘edge of chaos’
http://dlvr.it/TCSQ1J
0 notes
jcmarchi · 4 months ago
Text
MIT Engineers Develop Groundbreaking Microscale Battery for Autonomous Robotics
New Post has been published on https://thedigitalinsider.com/mit-engineers-develop-groundbreaking-microscale-battery-for-autonomous-robotics/
MIT Engineers Develop Groundbreaking Microscale Battery for Autonomous Robotics
The field of microscale robotics has long grappled with a fundamental challenge: how to provide sufficient power to autonomous devices small enough to navigate within the human body or industrial pipelines. Traditional power sources have been too large or inefficient for such applications, limiting the potential of these miniature marvels. However, a groundbreaking development from the Massachusetts Institute of Technology (MIT) promises to overcome this hurdle, potentially ushering in a new era of microscale robotics.
Engineers at MIT have designed a battery so small it rivals the thickness of a human hair, yet powerful enough to energize autonomous micro-robots. This innovation could transform fields ranging from healthcare to industrial maintenance, offering unprecedented possibilities for targeted interventions and inspections in previously inaccessible environments.
The Power of Miniaturization
The new MIT-developed battery pushes the boundaries of miniaturization to remarkable extremes. Measuring just 0.1 millimeters in length and 0.002 millimeters in thickness, this power source is barely visible to the naked eye. Despite its minuscule size, the battery packs a considerable punch, capable of generating up to 1 volt of electricity—sufficient to power small circuits, sensors, or actuators.
The key to this battery’s functionality lies in its innovative design. It harnesses oxygen from the surrounding air to oxidize zinc, creating an electrical current. This approach allows the battery to function in various environments without the need for external fuel sources, a crucial factor for autonomous operation in diverse settings.
Compared to existing power solutions for tiny robots, the MIT battery represents a significant leap forward. Previous attempts to power microscale devices often relied on external energy sources, such as lasers or electromagnetic fields. While effective in controlled environments, these methods severely limited the robots’ range and autonomy. The new battery, in contrast, provides an internal power source, greatly expanding the potential applications and operational scope of micro-robots.
Unleashing Autonomous Micro-Robots
The development of this microscale battery marks a pivotal shift in the field of robotics, particularly in the realm of autonomous micro-devices. By integrating a power source directly into these tiny machines, researchers can now envision truly independent robotic systems capable of operating in complex, real-world environments.
This enhanced autonomy stands in stark contrast to what researchers refer to as “marionette” systems—micro-robots that depend on external power sources and control mechanisms. While such systems have demonstrated impressive capabilities, their reliance on external inputs limits their potential applications, particularly in hard-to-reach or sensitive environments.
Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT and senior author of the study, emphasizes the transformative potential of this technology: “We think this is going to be very enabling for robotics. We’re building robotic functions onto the battery and starting to put these components together into devices.”
The ability to power various components, including actuators, memristors, clock circuits, and sensors, opens up a wide array of possibilities for these micro-robots. They could potentially navigate through complex environments, process information, keep track of time, and respond to chemical stimuli—all within a form factor small enough to be introduced into the human body or industrial systems.
Potential Applications
From healthcare to industrial maintenance, the potential applications of this technology are as diverse as they are groundbreaking.
Medical Frontiers
The microscale battery technology opens up exciting possibilities in the medical field, particularly in targeted drug delivery. Researchers envision deploying tiny, battery-powered robots within the human body to transport and release medications at specific sites. This approach could revolutionize treatments for various conditions, potentially improving efficacy while reducing side effects associated with systemic drug administration.
Beyond drug delivery, these micro-robots could enable new forms of minimally invasive diagnostics and interventions. For instance, they might be used to collect tissue samples, clear blockages in blood vessels, or provide real-time monitoring of internal organs. The ability to power sensors and transmitters at this scale could also lead to advanced implantable medical devices for continuous health monitoring.
Industrial Innovations
In the industrial sector, the applications of this technology are equally promising. One of the most immediate potential uses is in gas pipeline leak detection. Miniature robots powered by these batteries could navigate through complex pipeline systems, identifying and locating leaks with unprecedented precision and efficiency.
The technology could also find applications in other industrial settings where access is limited or dangerous for humans. Examples include inspecting the integrity of structures in nuclear power plants, monitoring chemical processes in sealed reactors, or exploring narrow spaces in manufacturing equipment for maintenance purposes.
Inside the Micro-Battery
The heart of this innovation is a zinc-air battery design. It consists of a zinc electrode connected to a platinum electrode, both embedded in a polymer strip made of SU-8, a material commonly used in microelectronics. When exposed to oxygen molecules in the air, the zinc oxidizes, releasing electrons that flow to the platinum electrode, thus generating an electric current.
This ingenious design allows the battery to power various components essential for micro-robotic functionality. In their research, the MIT team demonstrated that the battery could energize:
An actuator (a robotic arm capable of raising and lowering)
A memristor (an electrical component that can store memories by changing its electrical resistance)
A clock circuit (enabling robots to track time)
Two types of chemical sensors (one made from atomically thin molybdenum disulfide and another from carbon nanotubes)
Future Directions and Challenges
While the current capabilities of the micro-battery are impressive, ongoing research aims to increase its voltage output, which could enable additional applications and more complex functionalities. The team is also working on integrating the battery directly into robotic devices, moving beyond the current setup where the battery is connected to external components via a wire.
A critical consideration for medical applications is biocompatibility and safety. The researchers envision developing versions of these devices using materials that would safely degrade within the body once their task is complete. This approach would eliminate the need for retrieval and reduce the risk of long-term complications.
Another exciting direction is the potential integration of these micro-batteries into more complex robotic systems. This could lead to swarms of coordinated micro-robots capable of tackling larger-scale tasks or providing more comprehensive monitoring and intervention capabilities.
The Bottom Line
MIT’s microscale battery represents a significant leap forward in the field of autonomous robotics. By providing a viable power source for cell-sized robots, this technology paves the way for groundbreaking applications in medicine, industry, and beyond. As research continues to refine and expand upon this innovation, we stand on the brink of a new era in nanotechnology, one that promises to transform our ability to interact with and manipulate the world at the microscale.
0 notes