#FastAPI
Explore tagged Tumblr posts
nando161mando · 4 months ago
Text
Tumblr media
Literally this
21 notes · View notes
ib-arts-blog · 1 month ago
Text
Flask vs FastAPI: Choosing the Right Framework for Your Project Discover the key differences between Flask and FastAPI with this in-depth guide by IB Arts Pvt Ltd. Whether you're building a lightweight web application or a high-performance API, understanding the strengths of each framework can help you make the right choice for your development needs. Explore factors like speed, ease of use, community support, and scalability to decide which one suits your project better.
Key Insights Include:
Performance comparison between Flask and FastAPI
Usability and flexibility for developers
Ideal use cases for each framework
Ready to make an informed decision? Read the full guide here and take your development skills to the next level!
0 notes
jcmarchi · 4 months ago
Text
Asynchronous LLM API Calls in Python: A Comprehensive Guide
New Post has been published on https://thedigitalinsider.com/asynchronous-llm-api-calls-in-python-a-comprehensive-guide/
Asynchronous LLM API Calls in Python: A Comprehensive Guide
As developers and dta scientists, we often find ourselves needing to interact with these powerful models through APIs. However, as our applications grow in complexity and scale, the need for efficient and performant API interactions becomes crucial. This is where asynchronous programming shines, allowing us to maximize throughput and minimize latency when working with LLM APIs.
In this comprehensive guide, we’ll explore the world of asynchronous LLM API calls in Python. We’ll cover everything from the basics of asynchronous programming to advanced techniques for handling complex workflows. By the end of this article, you’ll have a solid understanding of how to leverage asynchronous programming to supercharge your LLM-powered applications.
Before we dive into the specifics of async LLM API calls, let’s establish a solid foundation in asynchronous programming concepts.
Asynchronous programming allows multiple operations to be executed concurrently without blocking the main thread of execution. In Python, this is primarily achieved through the asyncio module, which provides a framework for writing concurrent code using coroutines, event loops, and futures.
Key concepts:
Coroutines: Functions defined with async def that can be paused and resumed.
Event Loop: The central execution mechanism that manages and runs asynchronous tasks.
Awaitables: Objects that can be used with the await keyword (coroutines, tasks, futures).
Here’s a simple example to illustrate these concepts:
import asyncio async def greet(name): await asyncio.sleep(1) # Simulate an I/O operation print(f"Hello, name!") async def main(): await asyncio.gather( greet("Alice"), greet("Bob"), greet("Charlie") ) asyncio.run(main())
In this example, we define an asynchronous function greet that simulates an I/O operation with asyncio.sleep(). The main function uses asyncio.gather() to run multiple greetings concurrently. Despite the sleep delay, all three greetings will be printed after approximately 1 second, demonstrating the power of asynchronous execution.
The Need for Async in LLM API Calls
When working with LLM APIs, we often encounter scenarios where we need to make multiple API calls, either in sequence or parallel. Traditional synchronous code can lead to significant performance bottlenecks, especially when dealing with high-latency operations like network requests to LLM services.
Consider a scenario where we need to generate summaries for 100 different articles using an LLM API. With a synchronous approach, each API call would block until it receives a response, potentially taking several minutes to complete all requests. An asynchronous approach, on the other hand, allows us to initiate multiple API calls concurrently, dramatically reducing the overall execution time.
Setting Up Your Environment
To get started with async LLM API calls, you’ll need to set up your Python environment with the necessary libraries. Here’s what you’ll need:
Python 3.7 or higher (for native asyncio support)
aiohttp: An asynchronous HTTP client library
openai: The official OpenAI Python client (if you’re using OpenAI’s GPT models)
langchain: A framework for building applications with LLMs (optional, but recommended for complex workflows)
You can install these dependencies using pip:
pip install aiohttp openai langchain <div class="relative flex flex-col rounded-lg">
Basic Async LLM API Calls with asyncio and aiohttp
Let’s start by making a simple asynchronous call to an LLM API using aiohttp. We’ll use OpenAI’s GPT-3.5 API as an example, but the concepts apply to other LLM APIs as well.
import asyncio import aiohttp from openai import AsyncOpenAI async def generate_text(prompt, client): response = await client.chat.completions.create( model="gpt-3.5-turbo", messages=["role": "user", "content": prompt] ) return response.choices[0].message.content async def main(): prompts = [ "Explain quantum computing in simple terms.", "Write a haiku about artificial intelligence.", "Describe the process of photosynthesis." ] async with AsyncOpenAI() as client: tasks = [generate_text(prompt, client) for prompt in prompts] results = await asyncio.gather(*tasks) for prompt, result in zip(prompts, results): print(f"Prompt: promptnResponse: resultn") asyncio.run(main())
In this example, we define an asynchronous function generate_text that makes a call to the OpenAI API using the AsyncOpenAI client. The main function creates multiple tasks for different prompts and uses asyncio.gather() to run them concurrently.
This approach allows us to send multiple requests to the LLM API simultaneously, significantly reducing the total time required to process all prompts.
Advanced Techniques: Batching and Concurrency Control
While the previous example demonstrates the basics of async LLM API calls, real-world applications often require more sophisticated approaches. Let’s explore two important techniques: batching requests and controlling concurrency.
Batching Requests: When dealing with a large number of prompts, it’s often more efficient to batch them into groups rather than sending individual requests for each prompt. This reduces the overhead of multiple API calls and can lead to better performance.
import asyncio from openai import AsyncOpenAI async def process_batch(batch, client): responses = await asyncio.gather(*[ client.chat.completions.create( model="gpt-3.5-turbo", messages=["role": "user", "content": prompt] ) for prompt in batch ]) return [response.choices[0].message.content for response in responses] async def main(): prompts = [f"Tell me a fact about number i" for i in range(100)] batch_size = 10 async with AsyncOpenAI() as client: results = [] for i in range(0, len(prompts), batch_size): batch = prompts[i:i+batch_size] batch_results = await process_batch(batch, client) results.extend(batch_results) for prompt, result in zip(prompts, results): print(f"Prompt: promptnResponse: resultn") asyncio.run(main())
Concurrency Control: While asynchronous programming allows for concurrent execution, it’s important to control the level of concurrency to avoid overwhelming the API server or exceeding rate limits. We can use asyncio.Semaphore for this purpose.
import asyncio from openai import AsyncOpenAI async def generate_text(prompt, client, semaphore): async with semaphore: response = await client.chat.completions.create( model="gpt-3.5-turbo", messages=["role": "user", "content": prompt] ) return response.choices[0].message.content async def main(): prompts = [f"Tell me a fact about number i" for i in range(100)] max_concurrent_requests = 5 semaphore = asyncio.Semaphore(max_concurrent_requests) async with AsyncOpenAI() as client: tasks = [generate_text(prompt, client, semaphore) for prompt in prompts] results = await asyncio.gather(*tasks) for prompt, result in zip(prompts, results): print(f"Prompt: promptnResponse: resultn") asyncio.run(main())
In this example, we use a semaphore to limit the number of concurrent requests to 5, ensuring we don’t overwhelm the API server.
Error Handling and Retries in Async LLM Calls
When working with external APIs, it’s crucial to implement robust error handling and retry mechanisms. Let’s enhance our code to handle common errors and implement exponential backoff for retries.
import asyncio import random from openai import AsyncOpenAI from tenacity import retry, stop_after_attempt, wait_exponential class APIError(Exception): pass @retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10)) async def generate_text_with_retry(prompt, client): try: response = await client.chat.completions.create( model="gpt-3.5-turbo", messages=["role": "user", "content": prompt] ) return response.choices[0].message.content except Exception as e: print(f"Error occurred: e") raise APIError("Failed to generate text") async def process_prompt(prompt, client, semaphore): async with semaphore: try: result = await generate_text_with_retry(prompt, client) return prompt, result except APIError: return prompt, "Failed to generate response after multiple attempts." async def main(): prompts = [f"Tell me a fact about number i" for i in range(20)] max_concurrent_requests = 5 semaphore = asyncio.Semaphore(max_concurrent_requests) async with AsyncOpenAI() as client: tasks = [process_prompt(prompt, client, semaphore) for prompt in prompts] results = await asyncio.gather(*tasks) for prompt, result in results: print(f"Prompt: promptnResponse: resultn") asyncio.run(main())
This enhanced version includes:
A custom APIError exception for API-related errors.
A generate_text_with_retry function decorated with @retry from the tenacity library, implementing exponential backoff.
Error handling in the process_prompt function to catch and report failures.
Optimizing Performance: Streaming Responses
For long-form content generation, streaming responses can significantly improve the perceived performance of your application. Instead of waiting for the entire response, you can process and display chunks of text as they become available.
import asyncio from openai import AsyncOpenAI async def stream_text(prompt, client): stream = await client.chat.completions.create( model="gpt-3.5-turbo", messages=["role": "user", "content": prompt], stream=True ) full_response = "" async for chunk in stream: if chunk.choices[0].delta.content is not None: content = chunk.choices[0].delta.content full_response += content print(content, end='', flush=True) print("n") return full_response async def main(): prompt = "Write a short story about a time-traveling scientist." async with AsyncOpenAI() as client: result = await stream_text(prompt, client) print(f"Full response:nresult") asyncio.run(main())
This example demonstrates how to stream the response from the API, printing each chunk as it arrives. This approach is particularly useful for chat applications or any scenario where you want to provide real-time feedback to the user.
Building Async Workflows with LangChain
For more complex LLM-powered applications, the LangChain framework provides a high-level abstraction that simplifies the process of chaining multiple LLM calls and integrating other tools. Let’s look at an example of using LangChain with async capabilities:
This example shows how LangChain can be used to create more complex workflows with streaming and asynchronous execution. The AsyncCallbackManager and StreamingStdOutCallbackHandler enable real-time streaming of the generated content.
import asyncio from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain.callbacks.manager import AsyncCallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler async def generate_story(topic): llm = OpenAI(temperature=0.7, streaming=True, callback_manager=AsyncCallbackManager([StreamingStdOutCallbackHandler()])) prompt = PromptTemplate( input_variables=["topic"], template="Write a short story about topic." ) chain = LLMChain(llm=llm, prompt=prompt) return await chain.arun(topic=topic) async def main(): topics = ["a magical forest", "a futuristic city", "an underwater civilization"] tasks = [generate_story(topic) for topic in topics] stories = await asyncio.gather(*tasks) for topic, story in zip(topics, stories): print(f"nTopic: topicnStory: storyn'='*50n") asyncio.run(main())
Serving Async LLM Applications with FastAPI
To make your async LLM application available as a web service, FastAPI is an great choice due to its native support for asynchronous operations. Here’s an example of how to create a simple API endpoint for text generation:
from fastapi import FastAPI, BackgroundTasks from pydantic import BaseModel from openai import AsyncOpenAI app = FastAPI() client = AsyncOpenAI() class GenerationRequest(BaseModel): prompt: str class GenerationResponse(BaseModel): generated_text: str @app.post("/generate", response_model=GenerationResponse) async def generate_text(request: GenerationRequest, background_tasks: BackgroundTasks): response = await client.chat.completions.create( model="gpt-3.5-turbo", messages=["role": "user", "content": request.prompt] ) generated_text = response.choices[0].message.content # Simulate some post-processing in the background background_tasks.add_task(log_generation, request.prompt, generated_text) return GenerationResponse(generated_text=generated_text) async def log_generation(prompt: str, generated_text: str): # Simulate logging or additional processing await asyncio.sleep(2) print(f"Logged: Prompt 'prompt' generated text of length len(generated_text)") if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)
This FastAPI application creates an endpoint /generate that accepts a prompt and returns generated text. It also demonstrates how to use background tasks for additional processing without blocking the response.
Best Practices and Common Pitfalls
As you work with async LLM APIs, keep these best practices in mind:
Use connection pooling: When making multiple requests, reuse connections to reduce overhead.
Implement proper error handling: Always account for network issues, API errors, and unexpected responses.
Respect rate limits: Use semaphores or other concurrency control mechanisms to avoid overwhelming the API.
Monitor and log: Implement comprehensive logging to track performance and identify issues.
Use streaming for long-form content: It improves user experience and allows for early processing of partial results.
0 notes
eduanta · 6 months ago
Text
Creating a Machine Learning-Powered Recommendation System with FastAPI and Scikit-learn
🔍 Interested in building a recommendation engine? Learn how to use FastAPI and Scikit-learn to create and deploy a machine learning-powered recommendation system as a REST API. We offer help with:
Setting up FastAPI and Scikit-learn.
Developing the recommendation model.
Deploying your system as a REST API.
💬 Contact us on WhatsApp at +971501618774 for personalized support!
0 notes
august-infotech · 1 year ago
Text
FastAPI Authentication Security with Token: A Comprehensive Guide
Benefit from the collective wisdom of the FastAPI community. August Infotech shares community insights, tips, and tricks to enhance your understanding of FastAPI and stay abreast of the latest developments in the ecosystem.
FastAPI is a powerful tool, and with the right knowledge, you can harness its potential to build secure and efficient APIs. August Infotech's comprehensive guide is your go-to resource for mastering FastAPI authentication and security. Elevate your development skills, fortify your applications, and stay ahead of the curve with this must-read guide.
Ready to embark on a journey towards secure and performant FastAPI applications? Read the full guide here: https://bit.ly/48yyyk1
#WebDevelopment #APIs #TokenAuthentication #Python #TechBlog
0 notes
billloguidice · 1 year ago
Text
Learn Ruby on Rails with The Pragmatic Programmers Book Bundle!
Learn Ruby on Rails with The Pragmatic Programmers Book Bundle! #sale #ruby #rubyonrails #rails #microservices #book #education #learning #coding #programming #software #ebook
Check out the three book bundle options at this link. Want to write powerful, easy-to-maintain code with the Ruby programming language? Looking to create great web apps quickly with Rails? This bundle of books from the experts at Pragmatic Programmers will get you on track! Explore topics like metaprogramming, optimization, testing, sustainable development, and much more, and help support Active…
Tumblr media
View On WordPress
0 notes
devdogblog · 1 year ago
Text
ใช้ FastAPI ให้เร็วขึ้นถึงเกือบเท่า Go Gin
จากบทความก่อนหน้านี้ Python ก็เร็วเท่า GoLang ได้ จริงไหม? เรามาทำให้ FastAPI ของเราให้เร็วขึ้นถึงเกือบเท่า Go Gin ในบทความนี้ จะทำการใช้ Docker เข้ามาช่วยในการทดสอบความเร็วในการประมวลผล ระหว่าง Python3.11 pypy3.10 และ Go1.20.6 นะครับ โดย Docker จะถึงตั้งค่าไว้แบบเดี่ยวกัน และใช้ โค๊ต การทำงานแบบเดียวกัน โค๊ตที่ใช้ในการทดสอบด้วย FastAPI import timeit import platform from fastapi import…
Tumblr media
View On WordPress
1 note · View note
getcodify · 2 years ago
Text
FASTAPI: A Simple Guide with Installation Steps
FASTAPI is a modern, fast (high-performance), web framework for building APIs with Python. It is known for its simplicity, scalability, and speed. In this article, we will walk you through the installation process and provide a basic understanding of how to get started with FASTAPI. Installation Steps To begin with FASTAPI, you need to have Python installed on your system. Make sure you have…
Tumblr media
View On WordPress
0 notes
devsnews · 2 years ago
Link
This week's issue contains some of the most interesting articles and news, selected from all the content published in the previous week on the Developers News website. In this issue you will read about, Container Face-Off, React 18 with Redux, Continuous Testing, Kubernetes vs OpenStack, Tech Books, Go Pointer, FastAPI, Helm, SQL JOIN, and more
0 notes
geekpython · 2 years ago
Text
1 note · View note
djotaku · 2 years ago
Text
Programming Update: Jan 2023 and Feb 2023
Programming starts off a bit slow in 2023, but then really takes off in February. #Golang finally really starts making sense to me and I reimplement an API in Go.
January January was a relatively light programming month for me. I was focused on finishing up end of year blog posts and other tasks. Since Lastfmeoystats is used to generate the stats I need for my end of year music post, I worked on it a little to make some fixes.  The biggest fix was to change the chart titles not to be hardcoded. I didn’t realize it until I was reviewing my blog post, but I…
Tumblr media
View On WordPress
0 notes
all-hail-trash-prince · 10 months ago
Text
Man why is working with web apps so obnoxious. "422 unprocessable entity teehee. Good luck figuring out which entity it is, much less why I refuse to process it"
10 notes · View notes
eduanta · 6 months ago
Text
Building APIs with FastAPI
FastAPI is quickly becoming the go-to framework for building APIs in Python. Its ease of use and performance make it perfect for modern web applications. Learn how to create robust APIs with FastAPI! #FastAPI #APIs #Python
For more details, contact us at: 📞 WhatsApp: +971 50 161 8774 📧 Email: [email protected]
0 notes
psychictyrantpuppy · 1 year ago
Text
Tumblr media
11.01.24
Today was a very snowy day
🤍 I programmed inference point on Fastapi for digit recognition for my internship task
🤍 6 Duolingo lessons
🤍 Workout and stretching
Tumblr media
12 notes · View notes
govindhtech · 2 months ago
Text
Open Platform For Enterprise AI Avatar Chatbot Creation
Tumblr media
How may an AI avatar chatbot be created using the Open Platform For Enterprise AI framework?
I. Flow Diagram
The graph displays the application’s overall flow. The Open Platform For Enterprise AI GenAIExamples repository’s “Avatar Chatbot” serves as the code sample. The “AvatarChatbot” megaservice, the application’s central component, is highlighted in the flowchart diagram. Four distinct microservices Automatic Speech Recognition (ASR), Large Language Model (LLM), Text-to-Speech (TTS), and Animation are coordinated by the megaservice and linked into a Directed Acyclic Graph (DAG).
Every microservice manages a specific avatar chatbot function. For instance:
Software for voice recognition that translates spoken words into text is called Automatic Speech Recognition (ASR).
By comprehending the user’s query, the Large Language Model (LLM) analyzes the transcribed text from ASR and produces the relevant text response.
The text response produced by the LLM is converted into audible speech by a text-to-speech (TTS) service.
The animation service makes sure that the lip movements of the avatar figure correspond with the synchronized speech by combining the audio response from TTS with the user-defined AI avatar picture or video. After then, a video of the avatar conversing with the user is produced.
An audio question and a visual input of an image or video are among the user inputs. A face-animated avatar video is the result. By hearing the audible response and observing the chatbot’s natural speech, users will be able to receive input from the avatar chatbot that is nearly real-time.
Create the “Animation” microservice in the GenAIComps repository
We would need to register a new microservice, such “Animation,” under comps/animation in order to add it:
Register the microservice
@register_microservice( name=”opea_service@animation”, service_type=ServiceType.ANIMATION, endpoint=”/v1/animation”, host=”0.0.0.0″, port=9066, input_datatype=Base64ByteStrDoc, output_datatype=VideoPath, ) @register_statistics(names=[“opea_service@animation”])
It specify the callback function that will be used when this microservice is run following the registration procedure. The “animate” function, which accepts a “Base64ByteStrDoc” object as input audio and creates a “VideoPath” object with the path to the generated avatar video, will be used in the “Animation” case. It send an API request to the “wav2lip” FastAPI’s endpoint from “animation.py” and retrieve the response in JSON format.
Remember to import it in comps/init.py and add the “Base64ByteStrDoc” and “VideoPath” classes in comps/cores/proto/docarray.py!
This link contains the code for the “wav2lip” server API. Incoming audio Base64Str and user-specified avatar picture or video are processed by the post function of this FastAPI, which then outputs an animated video and returns its path.
The functional block for its microservice is created with the aid of the aforementioned procedures. It must create a Dockerfile for the “wav2lip” server API and another for “Animation” to enable the user to launch the “Animation” microservice and build the required dependencies. For instance, the Dockerfile.intel_hpu begins with the PyTorch* installer Docker image for Intel Gaudi and concludes with the execution of a bash script called “entrypoint.”
Create the “AvatarChatbot” Megaservice in GenAIExamples
The megaservice class AvatarChatbotService will be defined initially in the Python file “AvatarChatbot/docker/avatarchatbot.py.” Add “asr,” “llm,” “tts,” and “animation” microservices as nodes in a Directed Acyclic Graph (DAG) using the megaservice orchestrator’s “add” function in the “add_remote_service” function. Then, use the flow_to function to join the edges.
Specify megaservice’s gateway
An interface through which users can access the Megaservice is called a gateway. The Python file GenAIComps/comps/cores/mega/gateway.py contains the definition of the AvatarChatbotGateway class. The host, port, endpoint, input and output datatypes, and megaservice orchestrator are all contained in the AvatarChatbotGateway. Additionally, it provides a handle_request function that plans to send the first microservice the initial input together with parameters and gathers the response from the last microservice.
In order for users to quickly build the AvatarChatbot backend Docker image and launch the “AvatarChatbot” examples, we must lastly create a Dockerfile. Scripts to install required GenAI dependencies and components are included in the Dockerfile.
II. Face Animation Models and Lip Synchronization
GFPGAN + Wav2Lip
A state-of-the-art lip-synchronization method that uses deep learning to precisely match audio and video is Wav2Lip. Included in Wav2Lip are:
A skilled lip-sync discriminator that has been trained and can accurately identify sync in actual videos
A modified LipGAN model to produce a frame-by-frame talking face video
An expert lip-sync discriminator is trained using the LRS2 dataset as part of the pretraining phase. To determine the likelihood that the input video-audio pair is in sync, the lip-sync expert is pre-trained.
A LipGAN-like architecture is employed during Wav2Lip training. A face decoder, a visual encoder, and a speech encoder are all included in the generator. Convolutional layer stacks make up all three. Convolutional blocks also serve as the discriminator. The modified LipGAN is taught similarly to previous GANs: the discriminator is trained to discriminate between frames produced by the generator and the ground-truth frames, and the generator is trained to minimize the adversarial loss depending on the discriminator’s score. In total, a weighted sum of the following loss components is minimized in order to train the generator:
A loss of L1 reconstruction between the ground-truth and produced frames
A breach of synchronization between the lip-sync expert’s input audio and the output video frames
Depending on the discriminator score, an adversarial loss between the generated and ground-truth frames
After inference, it provide the audio speech from the previous TTS block and the video frames with the avatar figure to the Wav2Lip model. The avatar speaks the speech in a lip-synced video that is produced by the trained Wav2Lip model.
Lip synchronization is present in the Wav2Lip-generated movie, although the resolution around the mouth region is reduced. To enhance the face quality in the produced video frames, it might optionally add a GFPGAN model after Wav2Lip. The GFPGAN model uses face restoration to predict a high-quality image from an input facial image that has unknown deterioration. A pretrained face GAN (like Style-GAN2) is used as a prior in this U-Net degradation removal module. A more vibrant and lifelike avatar representation results from prettraining the GFPGAN model to recover high-quality facial information in its output frames.
SadTalker
It provides another cutting-edge model option for facial animation in addition to Wav2Lip. The 3D motion coefficients (head, stance, and expression) of a 3D Morphable Model (3DMM) are produced from audio by SadTalker, a stylized audio-driven talking-head video creation tool. The input image is then sent through a 3D-aware face renderer using these coefficients, which are mapped to 3D key points. A lifelike talking head video is the result.
Intel made it possible to use the Wav2Lip model on Intel Gaudi Al accelerators and the SadTalker and Wav2Lip models on Intel Xeon Scalable processors.
Read more on Govindhtech.com
2 notes · View notes
mindyourtopics44 · 1 year ago
Text
25 Python Projects to Supercharge Your Job Search in 2024
Tumblr media
Introduction: In the competitive world of technology, a strong portfolio of practical projects can make all the difference in landing your dream job. As a Python enthusiast, building a diverse range of projects not only showcases your skills but also demonstrates your ability to tackle real-world challenges. In this blog post, we'll explore 25 Python projects that can help you stand out and secure that coveted position in 2024.
1. Personal Portfolio Website
Create a dynamic portfolio website that highlights your skills, projects, and resume. Showcase your creativity and design skills to make a lasting impression.
2. Blog with User Authentication
Build a fully functional blog with features like user authentication and comments. This project demonstrates your understanding of web development and security.
3. E-Commerce Site
Develop a simple online store with product listings, shopping cart functionality, and a secure checkout process. Showcase your skills in building robust web applications.
4. Predictive Modeling
Create a predictive model for a relevant field, such as stock prices, weather forecasts, or sales predictions. Showcase your data science and machine learning prowess.
5. Natural Language Processing (NLP)
Build a sentiment analysis tool or a text summarizer using NLP techniques. Highlight your skills in processing and understanding human language.
6. Image Recognition
Develop an image recognition system capable of classifying objects. Demonstrate your proficiency in computer vision and deep learning.
7. Automation Scripts
Write scripts to automate repetitive tasks, such as file organization, data cleaning, or downloading files from the internet. Showcase your ability to improve efficiency through automation.
8. Web Scraping
Create a web scraper to extract data from websites. This project highlights your skills in data extraction and manipulation.
9. Pygame-based Game
Develop a simple game using Pygame or any other Python game library. Showcase your creativity and game development skills.
10. Text-based Adventure Game
Build a text-based adventure game or a quiz application. This project demonstrates your ability to create engaging user experiences.
11. RESTful API
Create a RESTful API for a service or application using Flask or Django. Highlight your skills in API development and integration.
12. Integration with External APIs
Develop a project that interacts with external APIs, such as social media platforms or weather services. Showcase your ability to integrate diverse systems.
13. Home Automation System
Build a home automation system using IoT concepts. Demonstrate your understanding of connecting devices and creating smart environments.
14. Weather Station
Create a weather station that collects and displays data from various sensors. Showcase your skills in data acquisition and analysis.
15. Distributed Chat Application
Build a distributed chat application using a messaging protocol like MQTT. Highlight your skills in distributed systems.
16. Blockchain or Cryptocurrency Tracker
Develop a simple blockchain or a cryptocurrency tracker. Showcase your understanding of blockchain technology.
17. Open Source Contributions
Contribute to open source projects on platforms like GitHub. Demonstrate your collaboration and teamwork skills.
18. Network or Vulnerability Scanner
Build a network or vulnerability scanner to showcase your skills in cybersecurity.
19. Decentralized Application (DApp)
Create a decentralized application using a blockchain platform like Ethereum. Showcase your skills in developing applications on decentralized networks.
20. Machine Learning Model Deployment
Deploy a machine learning model as a web service using frameworks like Flask or FastAPI. Demonstrate your skills in model deployment and integration.
21. Financial Calculator
Build a financial calculator that incorporates relevant mathematical and financial concepts. Showcase your ability to create practical tools.
22. Command-Line Tools
Develop command-line tools for tasks like file manipulation, data processing, or system monitoring. Highlight your skills in creating efficient and user-friendly command-line applications.
23. IoT-Based Health Monitoring System
Create an IoT-based health monitoring system that collects and analyzes health-related data. Showcase your ability to work on projects with social impact.
24. Facial Recognition System
Build a facial recognition system using Python and computer vision libraries. Showcase your skills in biometric technology.
25. Social Media Dashboard
Develop a social media dashboard that aggregates and displays data from various platforms. Highlight your skills in data visualization and integration.
Conclusion: As you embark on your job search in 2024, remember that a well-rounded portfolio is key to showcasing your skills and standing out from the crowd. These 25 Python projects cover a diverse range of domains, allowing you to tailor your portfolio to match your interests and the specific requirements of your dream job.
If you want to know more, Click here:https://analyticsjobs.in/question/what-are-the-best-python-projects-to-land-a-great-job-in-2024/
2 notes · View notes