Tumgik
#rf radio antenna
rfantennaindia · 1 year
Text
Tumblr media
0 notes
noosphe-re · 2 years
Photo
Tumblr media
Novel antenna design with four concentric spirals, each having 2.5 turns. Rf power is connected to the centre and ground is at the outer connectors
Gans, Timo & Crintea, Dragos & O'Connell, Deborah & Czarnetzki, Uwe. (2007). A planar inductively coupled radio-frequency magnetic neutral loop discharge. Journal of Physics D: Applied Physics. 40. 4508. 10.1088/0022-3727/40/15/021.
65 notes · View notes
wordacrosstime · 2 years
Text
Practical RF Design Manual
[Practical RF Design Manual by Doug DeMaw (Milton F "Doug" DeMaw). 1997. MFJ Publishing. 2nd Edition 1997 : 246 pages. ISBN 1-891237-00-4]
For many years I was an amateur radio - "ham radio" - operator, beginning when I was 13 years old and going up until I was about 40 years old.  For those who are interested, my call sign was WA6FEB and I held an Extra Class ham radio license (this is the highest classification).  My fascination with radio was fostered by my step-father, the late Sam Martin (WB6WZN, later N7TBV), who had learned his electronics and radio theory while serving in the US Navy.
Sam had many years’ worth of a magazine called QST, which was one of the premier journals available for ham radio enthusiasts.  Doug DeMaw, the author of the book under review here, was a prolific contributor to QST and to other ham radio publications.  I was (and remain) a huge fan of his writings, especially his transmitter and receiver projects for ham radio folks.
What I did not know then, but have come to learn, is that DeMaw was truly a world-class electrical and electronic engineer.  He was known to much of the world as a ham radio person first and foremost, but he was a professional engineer who had an extraordinarily broad grasp of all aspects of radio transmission and reception, covering all power levels from the very tiny (what we in the ham radio community called QRP, or low-power, operation, usually less than 1 watt) to the industrial (the 50,000-watt and 100,000-watt “clear channel” broadcasts from commercial radio stations, for example).  DeMaw was well-versed in design considerations spanning operating frequencies from the US AM broadcast band (560 KHz to 1600 KHz) all the way up to the UHF range (where television broadcast channel 14 begins in the US, or around 470 MHz and beyond).  His knowledge went beyond component-level design of devices to include the design and tuning of antennas and other auxiliary devices to aid in the radio experience.
All of this knowledge is subsumed under the aegis of RF - radio frequency.  RF in modern terms is usually linked to RF ID chips, which are becoming quite common in scenarios that require tracking (such as shipment packages), but this is a very restricted window into the RF world.  To really see just how vast an enterprise RF electronics is, one might consult this book.
This volume is truly a gem.  I dearly wish I had access to it back in the early 1970s when I was first getting into radio.  It would have illuminated a lot of practical design issues for me, especially on the design of receivers.  Receivers are generally more complicated and finicky than transmitters – it’s easier to generate radio energy and cast it out into the universe than it is to gather it in and make sense of it.  This book leads the reader through 7 broad-based topics and roughly 40 overall subsections within those topics, starting with transmitter and receiver fundamentals and leading the reader through considerations related to power regulation, signal quality, the use of different types of components for different frequencies of operation and different power levels, and so on.
Unlike much of DeMaw’s writing with which I had been previously acquainted, this book is definitely not a book for someone looking to do a home project.  There are no comprehensive instructions on assembling or testing transmitters, receivers, or other associated machinery.  This book is written for a true engineer who wants to become familiar with many (most) of the gotchas that accompany real in-the-trenches electronic engineering work.  And in this vein, this book is as useful to a professional radio engineer (such as someone who is the engineer-in-charge at a radio or television station, for instance) as it is to a radio hobbyist.  It is also not the sort of book from which to learn first principles of electronics; for this, there are many more suitable books that introduce electronics at the most elementary level (Ohm’s Law, Kirchhoff’s Law, how vacuum tubes and transistors work, what makes oscillators work, and so on).  This book assumes that the reader already has some engineering skin in the game, as the saying goes.
Whom would I recommend this book to?  Anyone who wishes to know something about electronics that precedes the modern all-digital era where whole systems are embedded on integrated circuit (IC) chips.  While those circuits may make for easier and more controlled design, they take away a lot of the learning, guesswork, and outright fun of figuring these things out for yourself.  DeMaw’s work hearkens back to what many of us current and former ham radio people think of as a sort of golden era of communications – a time before cell phones and before email.
A couple of comments about the text itself:
There are some typos both in the text and on the many diagrams.  For the most part these are easy to spot if you are already versed in basic electronics, but they would be profoundly confusing to someone who doesn’t know what they’re looking at.  Anyone who doesn’t know how to read a basic schematic diagram of a circuit will not find this volume very helpful.
Bearing in mind that some of the material in this book dates to the 1970s and 1980s, it is possible that some of the actual components cited in the text no longer exist or are not easily available.  Happily, the author describes them in sufficient detail that a modern engineer or hobbyist can find current components whose characteristics match what DeMaw had at his disposal when the book was written.  DeMaw was fairly fastidious about describing the important pieces of each circuit or circuit fragment in the book.  One needs but to pay attention to the text to make the connection.
I was delighted to read through this volume.  I am not currently an active hobbyist, but as I near retirement age, I am giving a return to ham radio serious thought.  With that in mind, this book will be an invaluable title in my collection when I once again wield a soldering iron and set out to make some more home-brew radio equipment as I did so many years ago.
Tumblr media Tumblr media
[Photo credits with thanks to : Book Cover of 2nd edition 1 August 1997 © 1997 M F J Enterprises Inc / Portrait © Copyright Holder (apologies not known)]
Kevin Gillette
Words Across Time
10 January 2023
wordsacrosstime
7 notes · View notes
Text
Are EMF’s safe? (come, child, ruin your night)
y’all ready for this? I’m not anti-5G, btw turn your wifi off before bed and maybe stop keepin’ ya phone so close all the time
But like... why, though?
I've had my suspicions about cell towers being hazardous to health for a few years now and felt convinced enough to not bother researchin' it for confirmation. Now that I'm blah blah blah, I decided to actually bother. Since it got kinda heavy, I had to ask myself if I should put in hella more effort creatin' a damn research report of sorts for y'all asses present the info for others like it's a damn PSA. And my conscious won. T~T
But like... what, though?
A base station (aka: cell phone tower) is that shit you see everywhere but never notice. It's usually tall af and has panel antennas on it. It's "used for the transmission and reception of the radio signals between the mobile phones and the network." The problem with 'em is the electromagnetic field (EMF) their equipment can give off... for half a mile. 😐
In short, they've been found to cause health problems. Like cancer. 🤷🏿‍♂️
Fun fact, panel antennas can be installed on the roof/side of buildings that may be directly across the street from someone's workplace... with the antenna at their elevation. 🤷🏿‍♀️
Real Quick
For those who don’t trust EMF-Portal, it (sometimes) has links to the study/article. Full-text PDF can be requested directly from the authors on ResearchGate.net’s article for the study. Full-text PDF can (usually) be found online in English and German with the right search.
5 Studies
V/m = volts per meter 7191 cancer deaths were selected according to the above mentioned criterias out of a total of 22,493 cancer deaths. The most significant causes were lung cancer (19.6 %), stomach cancer (14.1 %), prostate cancer (12.6 %), and breast cancer (11.5 %). The mean electric field intensity of the measurements in 2008 was 7.32 V/m, varying from 0.4 to 12.4 V/m. At a distance of up to 100 m [328.08 ft], the absolute number of deaths was 3569, (49.6 % of all deaths), the mortality rate was 43.4 persons per 10,000 [0.43%] and the relative risk was 1.35 in relation to the mortality rate of 32.1 per 10,000 [0.32%] inhabitants of the entire Belo Horizonte municipality [in Minas Gerais, Brazil]. A mortality rate of 34.8 per 10,000 [0.35%] inhabitants was observed for the residents living within 500 m [1,640.42 ft] of the base stations; this rate decreased for residents living farther from the base stations.
—Mortality by neoplasia and cellular telephone base stations in the Belo Horizonte municipality, Minas Gerais state, Brazil; Science of The Total Environment (2011); EMF-Portal
ResearchGate.net’s article
Tumblr media Tumblr media
The result of the study [of 967 permanent residents] shows that the proportion of newly developing cancer cases was significantly higher among those [320] patients who had lived during the past ten years at a distance of up to 400 metres [1,312.34 ft] from the cellular transmitter site, which has been in operation since 1993, compared to those patients living further away, and that the patients fell ill on average 8 years earlier. In the years 1999-2004, ie after five years' operation of the transmitting installation, the relative risk of getting cancer had trebled for the residents of the area in the proximity of the installation compared to the inhabitants of Naila[,Germany,] outside the area.
—The Influence of Being Physically Near to a Cell Phone Transmission Mast on the Incidence of Cancer (original title: ‘Einfluss der räumlichen Nähe von Mobilfunksendeanlagen auf die Krebsinzidenz’); Umwelt · Medizin · Gesellschaft (2004); ResearchGate.net
EMF-Portal
Tumblr media
9 cancer cases were observed in the first period 2000 - 2004 and 14 cases in the period 2005 - June 2007 among [1,283] residents living within a radius of 400 m [1,312.34 ft] to a mobile phone base station [in Germany (Hennen, suburb of Iserlohn, Westfalia)]. The mean age of disease onset was 59.2 years in the first period and 59.3 years in the second period in comparison to the expected value of 66.4 years evaluated from the Saarland Cancer Registry. The authors concluded, that a statistically significant increase of cancer incidence was observed 5 years after the base station has been started operating.
—[Incidence of cancer adjacent to a mobile telephone basis station in Westfalia] (original title: Krebsinzidenz von Anwohnern im Umkreis einer Mobilfunksendeanlage in Westfalen - Interview-basierte Piloterhebung und Risikoschätzung); Umwelt · Medizin · Gesellschaft (2009); EMF-Portal
Area A: ≤ 350 m / 1148.3 ft from base station Area B: > 350 m / 1148.3 ft from base station Of the 622 people of area A, 8 cases of different kinds of cancer were diagnosed in a period of one year (from July 1997 - June 1998). The cancer incidence rate was 129 cases per 10,000 [1.29%] persons per year in area A compared to 16/10,000 [0.16%] in area B and 31/10,000 [0.31%] in the town of Netanya [in Israel]. Relative cancer rates for females were 10.5 for area A, 0.6 for area B and 1 for Netanya. The authors conclude that the study indicates an association between increased incidence of cancer and living in proximity to a mobile phone base station.
—Increased incidence of cancer near a cell-phone transmitter station; International Journal of Cancer Prevention (2004); EMF-Portal
ResearchGate.net
Tumblr media
Took forever to get this damn infographic just right. >.>
A long-term study was conducted in Germany to investigate the influence of a mobile phone base station on neurotransmitters under true-to-life conditions. µW/m² = microWatts per square meter 24 out of 60 participants were exposed to a power density of < 60 µW/m², 20 participants to 60 - 100 µW/m², and 16 participants to more than 100 µW/m² . The values of the stress hormones adrenaline and noradrenaline grew significantly during the first 6 months after starting the GSM base station; the values of the precursor substance dopamine substantially decreased in this time period. The initial condition was not restored even after 1.5 years. Due to the not regulable chronic difficulties of the stress balance, the phenylethylamine levels dropped until the end of the investigation period. The effects show a dose-effect relationship and are situated far under the valid limit values.
—[Modification of clinically important neurotransmitters under the influence of modulated high-frequency fields - A long-term study under true-to-life conditions] (original title: Veränderung klinisch bedeutsamer Neurotransmitter unter dem Einfluss modulierter hochfrequenter Felder - Eine Langzeiterhebung unter lebensnahen Bedingungen); Umwelt · Medizin · Gesellschaft (2011); EMF-Portal
ResearchGate.net’s German article EMF:data page (German)
While I did find 17 different figures for it, I’mma save myself the bother of describin’ dat noise and not include ‘em thanks~.
But what does the FCC say?
FCC.gov’s conclusion seems to be that they’re generally safe for civilian life as long as you don’t get close and aren’t directly in front of the antenna’s trajectory (don’t climb a fuckin’ tower or enter those rooms/buildings). A very “it’s fine” set of conclusions tbh. Hella contrasted by other sources.
Nonetheless… below is the index...
FCC’s RF Safety FAQ Index:
What is "radiofrequency" and microwave radiation?
What is non-ionizing radiation?
How is radiofrequency energy used?
How is radiofrequency radiation measured?
What biological effects can be caused by RF energy?
Can people be exposed to levels of radiofrequency radiation and microwaves that could be harmful?
Can radiofrequency radiation cause cancer?
What research is being done on RF biological effects?
What levels are safe for exposure to RF energy?
Why has the FCC adopted guidelines for RF exposure?
How safe are mobile phones? Can they cause cancer?
How can I obtain the specific absorption rate (SAR) value for my mobile phone?
Do "hands-free" ear pieces for mobile phones reduce exposure to RF emissions?   What about mobile phone accessories that claim to shield the head from RF radiation?
Can mobile phones be used safely in hospitals and near medical telemetry equipment?
Are wireless and PCS towers and antennas safe?
Are cellular and other radio towers located near homes or schools safe for residents and students?
Are emissions from radio and television antennas safe?
How safe are radio antennas used for paging and "two-way" communications?   What about "push-to-talk" radios such as "walkie-talkies?"
How safe are microwave and satellite antennas?
Are RF emissions from amateur radio stations harmful?
What is the FCC's policy on radiofrequency warning signs?  For example, when should signs be posted, where should they be located and what should they say?
Can implanted electronic cardiac pacemakers be affected by nearby RF devices such as microwave ovens or cellular telephones?
Does the FCC regulate exposure to radiation from microwave ovens, television sets and computer monitors?
Does the FCC routinely monitor radiofrequency radiation from antennas?
Does the FCC maintain a database that includes information on the location and technical parameters of all the towers and antennas it regulates?
Which other federal agencies have responsibilities related to potential RF health effects?
Can local and state governmental bodies establish limits for RF exposure?
Where can I obtain more information on potential health effects of radiofrequency energy?
The Government Accountability Office (GAO) prepared a [2012] report of its investigation into safety concerns related to mobile phones.  The report concluded that further research is needed to confirm whether mobile phones are completely safe for the user, and the report recommended that the FDA take the lead in monitoring the latest research results.
Professional Opinion...
Safe Distance from Cell Towers…
It is also difficult to predict a safe distance from cell towers.  For example, cell towers are designed to transmit most of their radio frequency (RF) energy horizontally.  Some areas below the tower may have lower levels than locations farther away that are more in line with the vertical height of the antennas. The exposure from a cell tower will depend on the type of antennas, the number of antennas, how much the antennas are actually being used, the time of day, etc.  The distance needed to reduce exposures down to the General Public Precautionary Level of 100 microwatts per meter squared (μW/m²) is often around a quarter of a mile (1320 feet) or more.  Due to the uncertainty, on-site testing with a broadband RF test meter is strongly recommended. A German study reported that people living within 400 meters (1312 feet) of cell towers had over 3 times the normal rate for new cancers (City of Naila 2004).  In an Israeli study, the relative risk for cancer was about 4 times greater within 350 meters (1148 feet) of the cell tower (Wolf et al. 1997).  Based on findings like these, a minimum safety distance of 1/4 mile (1320 feet) might be considered prudent. (...) The suggestions for safety distances in this chart are generally based on Michael Neuert’s [engineer, licensed electrician, and health educator] professional on-site testing of the various EMF sources in the San Francisco Bay Area since 1992.
—What Distance is Safe? By Michael R Neuert, MA, BSME, ©2023
helpful table if you want all that info: What EMF Level is Safe? By Michael R Neuert, MA, BSME, ©2023
i know what i said
Based on the accumulated evidence, we recommend that IARC [the International Agency for Research on Cancer] re-evaluate its 2011 classification of the human carcinogenicity of RFR [radio-frequency radiation], and that WHO [the World Health Organization] complete a systematic review of multiple other health effects such as sperm damage. In the interim, current knowledge provides justification for governments, public health authorities, and physicians/allied health professionals to warn the population that having a cell phone next to the body is harmful, and to support measures to reduce all exposures to RFR.
—Risks to Health and Well-Being From Radio-Frequency Radiation Emitted by Cell Phones and Other Wireless Devices; Front Public Health (2019 Aug 13); NCBI
Lookup (or pull out) your cellphone’s manual and search for the sections on “radio frequency exposure” and “Specific Absorption Rate (SAR) information” to see how close the phone can safely be kept near your body… and that it should be kept away from “the bellies of pregnant women and for teenagers, away from the lower abdomen.” 😐
For an informative giggle, here’s the “Harmful Cell Phones” segment from season 7 of The Colbert Report.
1 note · View note
oldguydoesstuff · 9 months
Text
Tumblr media
The "Ubitron" vacuum tube, short for "undulating beam interaction". This 1957 army-sponsored invention operated at 70,000 volts and was capable of generating 150 kilowatts of radio-frequency power at a whopping 54 Ghz.
Project eventually was cancelled because no waveguide or antenna could be built that could handle that much RF energy.
112 notes · View notes
Tumblr media
Battery-free technology can power electronic devices using ambient radiofrequency signals
Ubiquitous wireless technologies like Wi-Fi, Bluetooth, and 5G rely on radio frequency (RF) signals to send and receive data. A new prototype of an energy harvesting module—developed by a team led by scientists from the National University of Singapore (NUS)—can now convert ambient or "waste" RF signals into direct current (DC) voltage. This can be used to power small electronic devices without the use of batteries. RF energy harvesting technologies, such as this, are essential as they reduce battery dependency, extend device lifetimes, minimize environmental impact, and enhance the feasibility of wireless sensor networks and IoT devices in remote areas where frequent battery replacement is impractical. However, RF energy harvesting technologies face challenges due to low ambient RF signal power (typically less than -20 dBm), where current rectifier technology either fails to operate or exhibits a low RF-to-DC conversion efficiency. While improving antenna efficiency and impedance matching can enhance performance, this also increases on-chip size, presenting obstacles to integration and miniaturization.
Read more.
43 notes · View notes
usafphantom2 · 10 months
Text
Tumblr media
BAE Systems will improve GPS technology in the Eurofighter Typhoon
Fernando Valduga By Fernando Valduga 11/17/2023 - 14:00 in Military
After successful activities to demonstrate functional compatibility and feasibility of physical installation, BAE Systems' Digital Anti-jam GPS Receiver (DIGAR) was selected to continue in the next phase of the Phase 4 Improvements (P4E) capability program on the Eurofighter Typhoon aircraft.
DIGAR will increase the protection of the aircraft against GPS signal interference, falsification and radio frequency (RF) interference, so that pilots can perform their missions in the most contested RF environments.
DIGAR uses advanced electronic antenna, high-performance signal processing and digital beam formation for significantly improved GPS signal reception and superior interference immunity. These capabilities considerably increase the level of protection against GPS interference and are critical for combat aircraft while maneuvering in a contested battle space.
The fighter will also receive the new GEMVII-6 airborne digital GPS receiver from BAE Systems which, when coupled to the electronic unit of the DIGAR antenna, allows the platform to conduct high-capacity digital beam formation anti-jamming.
“Modern fighters require accurate positioning and navigation data for mission success in GPS-contested environments,” said Luke Bishop, director of Navigation Systems and Sensors at BAE Systems. "Our DIGAR antenna electronic components and GEM VII GPS receivers are reliable to protect these vital platforms in GPS-challenged environments to support mission success."
Tumblr media
The Eurofighter Typhoon is the backbone of the combat to air defense of the United Kingdom and several of its main European and international allies. Serving nine nations, it provides 24/7 air security, 365 days a year and is in frontline operations, including NATO's ongoing air policing throughout Eastern Europe.
BAE Systems, as part of the Eurofighter consortium of four countries behind the aircraft, is continuously investing in the Typhoon jet to maintain its cutting-edge military capability.
In addition to the Typhoon, DIGAR is also installed on the F-16, F-15 and other special-purpose aircraft in the U.S., such as air interdiction and force protection platforms, intelligence, surveillance and reconnaissance aircraft and unmanned aerial vehicles.
Leveraging more than 40 years of GPS experience, BAE Systems' GPS product family offers suitable size, weight and power characteristics for a variety of applications, including portable electronics, precision guided ammunition, unmanned aerial vehicles, vehicles and aircraft.
The work at DIGAR and GEMVII takes place at BAE Systems' facilities in Cedar Rapids, Iowa, where the company invested in a state-of-the-art engineering and production center with 25,800 square meters.
Tags: Military AviationBAE SystemsEurofighter TyphoonGPS
Sharing
tweet
Fernando Valduga
Fernando Valduga
Aviation photographer and pilot since 1992, has participated in several events and air operations, such as Cruzex, AirVenture, Dayton Airshow and FIDAE. He has work published in specialized aviation magazines in Brazil and abroad. Uses Canon equipment during his photographic work in the world of aviation.
Related news
MILITARY
USAF completes new round of missile tests on the F-35
11/17/2023 - 08:00
MILITARY
IMAGES: USAF retires the last E-8C JSTARS aircraft
16/11/2023 - 21:37
Czech Air Force Gripen during Tiger Meet 2023. (Photo: Giovanni Colla)
MILITARY
IMAGES: Gripen Fighters at NATO's Tiger Meet 2023
16/11/2023 - 18:46
MILITARY
Commercial tanker refueled USAF fighters that were going to exercise in Singapore
16/11/2023 - 16:00
HELICOPTERS
Ukraine will receive a Black Hawk helicopter through crowdfunding
16/11/2023 - 12:30
AERONAUTICAL ACCIDENTS
Accident with two Indonesian Air Force Super Tucanos
16/11/2023 - 09:29
13 notes · View notes
jaydee3779 · 5 months
Text
Tumblr media Tumblr media Tumblr media
radiohead, ...yes.
I saw a pic of these retro fm radio headphones from 1969 (the panasonic rf-60) on twitter (source <-here) that are like in a OTT retro tech sort of way. the radio antennas on it look fun and cumbersome to deal with.
I wanted to draw a character wearing them so now here's my oc, Zoah wearing them. (+ some cool alts I accidentally made by mucking around with the colours.)
2 notes · View notes
rfantennaindia · 1 year
Text
Tumblr media
5G 12dBi Magnetic Antenna with RG174 Cable
A 5G 12dBi magnetic antenna is a type of antenna designed to enhance the performance of 5G wireless communication devices, such as routers, hotspots, or modems. Let's break down the key features:
5G: 5G is the fifth generation of wireless technology, which offers faster data speeds, lower latency, and greater capacity compared to previous generations (4G, 3G, etc.). The antenna is specifically designed to work with 5G networks and devices.
12dBi Gain: The "12dBi" figure refers to the antenna's gain, which is a measure of how much the antenna can increase the power of the signal it receives or transmits. A higher gain indicates better signal reception and transmission capabilities. In this case, a 12dBi gain suggests that this antenna can significantly boost the signal strength.
Magnetic Antenna: The term "Magnetic Antenna" indicates that the antenna can be attached to metal surfaces using a magnetic base. This feature provides flexibility in terms of placement and allows for easy positioning on metallic surfaces, like the roof of a car or a metal housing for a 5G device.
Magnetic antennas are often used in mobile applications or in scenarios where temporary or flexible mounting is required. This type of antenna is convenient because it can be easily installed and removed, making it suitable for mobile installations or where drilling holes or more permanent mounting solutions are not practical.
0 notes
quartz-components · 10 months
Text
This FS1000A 433mHz Tx & Rx RF Module is a Compact, Economic and easy to use wireless RF module with both transmitter and receiver. The module operates at 433MHz and could communicate upto a range of 100 meters with proper antenna design. Practically with normal antenna it could cover distance of 20-50 meters. It can transmit at a speed of 1Kbps to 10Kbps and is easy to use with microcontrollers like Arduino, PIC, AVR etc..
5 notes · View notes
trendingreportz · 4 days
Text
Millimeter Wave Technology Market - Forecast(2024 - 2030)
Millimeter Wave Technology Market Overview
Millimeter Wave Technology Market is analysed to grow at a CAGR of 18.9% during the forecast 2021-2026 to reach $2.56 billion by 2026. Millimeter radio waves also known as Millimeter band which is electromagnetic waves with wavelength between 1 and 10 Millimeters. They have respective frequencies ranging from 30-300 GHz with respect to the applications. The Millimeter wave technology is applied mainly in Radio Detection and Ranging (RADAR) systems. The increasing demand of higher data transmission technologies and product miniaturization to offer high bandwidth tend to significantly drive the Millimeter wave technology market during the forecast period. Moreover, with the increasing trend of multi-input multi-output (MIMO) communications, MMW is been offering interest in understanding the capabilities of low-complexity approaches such as beamforming that require only a single RF chain in MMW systems. This application further helps in spatial processing for sensing and integrating information pertaining to a location in space which tends to uplift its market growth in the Aerospace sector. However, for most Millimeter wavebands, rain attenuation leads to a few dB of additional path loss within the distance range of 1 km which degrades the signal caused by the electromagnetic interference. Consequently, MMW technology is extensively utilized in various services such as radio broadcaster, remote sensing, automotive radars, wireless sensing, imaging and others which is analysed to create huge market growth across the globe.
Report Coverage
The report: “Millimeter Wave Technology Industry Outlook – Forecast (2021-2026)”, by IndustryARC covers an in-depth analysis of the following segments of the Millimeter Wave Technology Market.
By Product Type: Scanner Systems (Active Systems, Passive Systems), Radar and Satellite Communications Systems (Perimeter Surveillance Radar Systems, Application-Specific Radar Systems and Satellite Communication Systems), Telecommunication Equipment (Small-Cell Equipment, Macrocell Equipment) and Others.
By Frequency Band: 24 GHz to 57 GHz, 57 GHz to 86 GHz, 86 GHz to 300 GHz and Others.
By License Type: Light Licensed, Unlicensed and Fully Licensed.
By Component: Antennas & Transceiver Components, Frequency Sources, Communication & Networking, Imaging Components, RF & Radio Components, Sensors & Controls, Power & Battery Components, Interface Components and Others.
By End-Use Industry: Mobile & Telecommunication, Consumer Electronics, Automotive, Healthcare, Industrial, Aerospace & Défense and Others.
By Geography: North America(U.S., Canada and Mexico); Europe(U.K., Germany, Italy, France, Spain, Russia, Rest of Europe); APAC (China, Japan, South Korea, India, Australia, Rest of APAC); South America(Brazil, Argentina, Rest of Americas); RoW (Middle East & Africa).
Request Sample
Key Takeaways
Increasing demand of Broadband and high mobile speeds across the globe is analysed to significantly drive the Millimeter Wave Technology Market during the forecast period 2021-2026.
Antennas & Transceiver Components are analysed to hold significant share in 2020 owing to its increasing adoption in the automotive sector for AEB (automatic emergency braking) applications.
Mobile & Telecommunication sector is expected to hold the highest market share in the forecast period among other end-use industries owing to the increasing demand for wireless communications technologies and its huge adoption in different smartphones.
Asia-Pacific is analysed to hold the highest share in 2020 owing to the extensive application of Millimeter wave technology in telecommunications and mobile applications and increasing production of smartphones in this region.
Millimeter Wave Technology Market Segment Analysis - By Component
By Component, the Millimeter Wave Technology Market Report is segmented into Antennas & Transceiver Components, Frequency Sources, Communication & Networking, Imaging Components, RF & Radio Components, Sensors & Controls, Power & Battery Components, Interface Components and Others. Antennas & Transceiver components is analysed to hold highest share 21.56% in 2020 owing to its increasing adoption in automotive sector. Millimeter wave technology has profoundly impacted the evolution of the radar sensors and has offered significant capabilities and efficiency improvements. The automotive industry is expected to benefit from this development. The increasing AEB (automatic emergency braking) applications in the 77 GHz radar system is one such indicator which tend to bring major opportunities for its market growth during the forecast period. With the recent focus on safety, such as the release of new federal guidance for automated vehicles, such as Automated Vehicles 3.0 by the National Highway Traffic Safety Administration (NHTSA), the market potential has been extended for use in the mid-end cars which tend to bring significant growth in its demand during the forecast period.
Inquiry Before Buying
Millimeter Wave Technology Market Segment Analysis - By End-Use Industry
By End-Use Industry, the Millimeter Wave Technology Market Report is segmented into Mobile & Telecommunication, Consumer Electronics, Automotive, Healthcare, Industrial, Aerospace & Défense and Others. Mobile & Telecommunication sector is analysed to hold the highest share during the forecast period 2021-2026. The Millimeter waves are considered to be the key enabling technology for successful deployment of 5th generation wireless communication network across the globe which is a major growing factor for its market growth in Mobile & Telecommunication sector. Increasing investment and adoption of 5G technology network is expected to create a huge demand for Millimeter wave technology equipment. The telecommunication industry is going under a radical change with the growing data consumption and limited bandwidth. Moreover, in last few years, the production and sales of smartphones, tablets and other mobile devices has brought a significant growth in the demand for wireless connectivity solutions. For instance, according to Global System for Mobile Communications Association (GSMA) Mobile economy report 2021, there were approximately 5.2 billion unique mobile subscribers in 2020 which was forecasted to reach 5.7 billion by the end of 2025 among which smartphones accounted for 60% of the connections and it is expected that the number would reach approximately six billion in 2026, with an 80% share of smartphones. This tend to bring significant growth in the demand of Millimeter wave technologies for supreme wireless connectivity solutions, further driving its market growth during the forecast period.
Millimeter Wave Technology Market Segment Analysis – By Geography
Asia-Pacific is analysed to be the major region with a share of 35% in 2020 for the Millimeter Wave Technology Market owing to the increasing application of Millimeter wave technology in Mobile & Telecommunication sector. Asia Pacific Millimeter wave technology market is primarily driven by increasing data consumption that has created the demand for efficient wireless backhaul solutions which tend to uplift the demand of telecommunication equipment further driving the market growth in this region. Moreover, with increasing infrastructural investment to set up 5th generation wireless network is analysed to be a driving factor for the growth of Millimeter wave technology in this region during the forecast period. For instance, as per the CISCO VNI, Asia Pacific accounted for 47% of global data traffic in 2021. This tend to create huge demand for the high bandwidth data transmission solutions which further drive the Millimeter wave technology market growth. Moreover, according to India Brand Equity Foundation (IBEF), mobile phone exports in India reached a record of $ 1.5 billion in 2020, of which 98% are expected to be smartphones. This increasing production of smartphones in this region is anticipated to bring huge demand for high broadband and mobile speed technologies which will drive the market growth of Millimeter wave technology in this region.
Schedule a Call
Millimeter Wave Technology Market Drivers
Increasing demand of broadband and 5G connectivity solutions will enhance Millimeter wave technology market growth
High broadband speed is a crucial part for a wide range of end-use applications. With the increasing demand of broadband speed improvements which has resulted in increased consumption of high-bandwidth content tend to be a major driving factor for the market growth of Millimeter wave technology during the forecast period. In the next few years, the global average broadband speed is expected to grow from 62.5 Mbps to >130 Mbps owing to several factors such as deployment and adoption of fibre-to-the-home (FTTH), high-speed DSL and cable broadband adoption, as well as overall broadband penetration. These factors have brought growth in the adoption of various Millimeter wave technologies further driving its market growth during the forecast period. According to Organization for Economic Co-operation and Development (OECD), the communication network and service environment would become more complex by 2023, and the 5G technology market would witness immense growth due to the ongoing advancements in 5G network infrastructure. The unique characteristics of Millimeter waves enable near-line-of-sight wireless networks and make point-to-multipoint technology possible, enabling a single transmitter to serve multiple transceivers at various locations. This tend to drive its market growth during the forecast period.
Increasing application of Millimeter wave technology to reduce data traffic will propel the Millimeter Wave Technology Market
With the increasing users of smartphones and adoption of cloud-based services across various end-users, the data traffic issue has been a major factor that disrupts their working efficiency through latency and data crash. Data traffic refers to the amount of data which is transferred between the internet and the hosting account on the web server. With the user moving towards more data intensive content such as video streaming, augmented reality, voice over data, 4K video, increasing number of internet user on smart phone etc. data traffic is expected to rise in future. Growing data traffic creates bandwidth complexities and network congestion. For instance, according to Cisco Internet Annual Reports, 5G connection will generate nearly 3 times more traffic than a 4G connection by 2023 among which IoT devices will account for 50% of all networked devices. With the implementation of Millimeter wave technology, it is easy to transmit large amount of data as the frequency is directly proportional to bit rates. Thus, the Millimeter waves are suitable for transmission of digital data, cellular communications. This creates need for efficient wireless mobile backhaul. These features uplift its demand across various end-use industries using cloud-based services, further driving its market growth.
Buy Now
Millimeter Wave Technology Market Challenges
Low penetration power through obstacles is analysed to hamper Millimeter Wave Technology Market growth
While Millimeter wave technology offers massive advantages over other radio frequencies but on the other hand, they also have some disadvantages which include low penetration power through obstacles. Millimeter waves are not capable of bouncing off physical objects which disrupts the connectivity and bring major challenges for its adoption especially in closed locations. Obstacles such as tree branches and walls can interfere and absorb the transmission and halt the signal. Additionally, Millimeter waves are more expensive than other commonly used frequencies. This makes the technology almost inaccessible for smaller companies that do not have the finances. Currently, mobile network providers are focused on building Millimeter wave-friendly 5G infrastructure. Moreover, rise in environmental concerns and adverse impact by Millimeter wave technology on the environment hamper its market growth across the globe.
Millimeter Wave Technology Market Landscape
Production Innovation, Acquisitions, Collaboration, and R&D activities are key strategies adopted by players in the Millimeter Wave Technology Market. In 2020, the market of Millimeter Wave Technology industry outlook has been fragmented by several companies. Millimeter Wave Technology top 10 companies include:
Axxcss Wireless Solutions
NEC Corporation
Siklu Communication
L3 HARRIS
Smiths Group
Eravant,
Aviat Networks
Farran Technologies
Millimeter Wave Products
Keysight Technologies
Acquisitions/Technology Launches/Partnerships
In March 2020, Keysight technologies and VIOMI, the pioneer of IoT@Home, announced their strategic partnership to advance 5G enabled IoT smart homes. Keysight’s 5G solutions were chosen by VIOMI to test the radio frequency (RF) performance of the company’s IoT devices for home applications. This will enhance the market growth of MMW technology in consumer electronics sector.
In January 2020, NEC Corporation launched their new Millimeter-wave distributed antenna radio unit to make better use of the 5G Millimeter-wave spectrum (28 GHz band). This will uplift channel quality for indoor 5G applications, further driving MMW technology market growth.
0 notes
integrating-sphere · 10 days
Text
Guide to Using a Spectrum Analyzer for Harmonic Measurement
Tumblr media
A spectrum analyzer is an instrument used to measure signal spectra, displaying frequency components and their relative amplitudes, aiding engineers and technicians in understanding signal characteristics. In spectrum analysis, harmonics are crucial. Harmonics are integer multiples of the fundamental frequency signal, typically generated by nonlinear systems. In audio, radio frequency (RF), and power systems, the presence of harmonics can lead to issues like interference and efficiency loss. Understanding and managing these harmonics are vital to ensuring the proper operation of systems. SPA-3P6G_Spectrum Analzer Usage Guide: Measuring and Analyzing Harmonics • Understanding Harmonics Basics: Harmonics are signals with frequencies that are integer multiples of the fundamental frequency. While pure signals ideally lack harmonics, real-world systems with nonlinear components generate them. • Selecting the Right Spectrum Analyzer: Choose a spectrum analyzer that covers the frequency range of the signal of interest and its harmonics. • Preparing the Spectrum Analyzer: Preheat the spectrum analyzer for stability and accuracy. Check calibration status and calibrate if necessary. • Setting Spectrum Analyzer Parameters: Set parameters like center frequency, frequency span, resolution bandwidth (RBW), video bandwidth (VBW), and scan time based on signal characteristics. • Connecting the Signal Source: Use appropriate cables to connect the signal source to the spectrum analyzer’s input port. If using antennas, ensure correct installation and orientation. • Initial Scan: Perform an initial spectrum scan to observe signal distribution across the frequency range and identify the fundamental frequency and harmonic ranges. • Precisely Locate Fundamentals and Harmonics: Adjust center frequency and frequency span to center the fundamental frequency on the display. Use narrower resolution bandwidth for accurate frequency measurements. • Measure Harmonic Amplitudes and Frequencies: Utilize the spectrum analyzer’s marker function to measure harmonic amplitudes and frequencies, ensuring amplitude calibration accuracy. • Analyze Harmonic Spectrum Characteristics: Analyze harmonic frequency, amplitude, bandwidth, and modulation type to identify harmonic sources and generation mechanisms. • Using Tracking Generators: If the spectrum analyzer has a tracking generator, generate signals at the same frequencies for further analysis and harmonic source localization. • Time Domain Analysis: Some spectrum analyzers offer time-domain analysis to observe transient characteristics of harmonic signals. • Advanced Spectrum Analyzer Features: Utilize features like max hold, min hold, and averaging modes to reduce random noise effects for clearer harmonic observation. • Harmonic Source Localization: Based on measurement results, attempt to localize harmonic sources. Move the spectrum analyzer or use directional antennas if necessary. • Harmonic Suppression Measures: Upon identifying harmonic sources, implement corresponding suppression measures such as filtering, cable rearrangement, device setting adjustments, or using harmonic filters. • Documentation: Record measurement processes and results, including harmonic frequencies, amplitudes, possible harmonic sources, and suppression measures taken. • Continuous Monitoring: After addressing harmonic issues, regularly monitor using the spectrum analyzer to ensure harmonics do not reoccur. • Maintenance of Spectrum Analyzer: Regularly maintain and calibrate the spectrum analyzer to preserve its performance and accuracy. • Advanced Analysis: For complex harmonic issues, conduct advanced analyses such as total harmonic distortion (THD) analysis, power spectral density analysis, or modulation spectrum analysis. Precautions: • Ensure input signal levels do not overload to avoid measurement errors. • Consider the modulation characteristics of signals, as modulation may affect harmonic measurements and analysis. • Use specific measurement accessories (such as harmonic mixers or harmonic filters) for particular harmonic measurement tasks. • Be mindful of DC components in signals, as they may affect measurement results. • Consider environmental factors (such as temperature, humidity, and electromagnetic interference) that may influence measurement results. • By following these steps and precautions, the spectrum analyzer can be a powerful tool for measuring and analyzing harmonics, assisting engineers in enhancing system performance and reliability. Read the full article
0 notes
communicationblogs · 13 days
Text
Millimeter Wave Technology Market — Forecast(2024–2030)
Millimeter Wave Technology Market Overview
Tumblr media
Report Coverage
The report: “Millimeter Wave Technology Industry Outlook — Forecast (2024–2030)”, by IndustryARC covers an in-depth analysis of the following segments of the Millimeter Wave Technology Market.
By Product Type: Scanner Systems (Active Systems, Passive Systems), Radar and Satellite Communications Systems (Perimeter Surveillance Radar Systems, Application-Specific Radar Systems and Satellite Communication Systems), Telecommunication Equipment (Small-Cell Equipment, Macrocell Equipment) and Others.
By Frequency Band: 24 GHz to 57 GHz, 57 GHz to 86 GHz, 86 GHz to 300 GHz and Others.
By License Type: Light Licensed, Unlicensed and Fully Licensed.
By Component: Antennas & Transceiver Components, Frequency Sources, Communication & Networking, Imaging Components, RF & Radio Components, Sensors & Controls, Power & Battery Components, Interface Components and Others.
By End-Use Industry: Mobile & Telecommunication, Consumer Electronics, Automotive, Healthcare, Industrial, Aerospace & Défense and Others.
By Geography: North America(U.S., Canada and Mexico); Europe(U.K., Germany, Italy, France, Spain, Russia, Rest of Europe); APAC (China, Japan, South Korea, India, Australia, Rest of APAC); South America(Brazil, Argentina, Rest of Americas); RoW (Middle East & Africa).
Request Sample
Key Takeaways
Increasing demand of Broadband and high mobile speeds across the globe is analysed to significantly drive the Millimeter Wave Technology Market during the forecast period 2024–2030.
Antennas & Transceiver Components are analysed to hold significant share in 2020 owing to its increasing adoption in the automotive sector for AEB (automatic emergency braking) applications.
Mobile & Telecommunication sector is expected to hold the highest market share in the forecast period among other end-use industries owing to the increasing demand for wireless communications technologies and its huge adoption in different smartphones.
Asia-Pacific is analysed to hold the highest share in 2020 owing to the extensive application of Millimeter wave technology in telecommunications and mobile applications and increasing production of smartphones in this region.
Inquiry Before Buying
Millimeter Wave Technology Market Segment Analysis — By Component
By Component, the Millimeter Wave Technology Market Report is segmented into Antennas & Transceiver Components, Frequency Sources, Communication & Networking, Imaging Components, RF & Radio Components, Sensors & Controls, Power & Battery Components, Interface Components and Others. Antennas & Transceiver components is analysed to hold highest share 21.56% in 2020 owing to its increasing adoption in automotive sector. Millimeter wave technology has profoundly impacted the evolution of the radar sensors and has offered significant capabilities and efficiency improvements. The automotive industry is expected to benefit from this development. The increasing AEB (automatic emergency braking) applications in the 77 GHz radar system is one such indicator which tend to bring major opportunities for its market growth during the forecast period. With the recent focus on safety, such as the release of new federal guidance for automated vehicles, such as Automated Vehicles 3.0 by the National Highway Traffic Safety Administration (NHTSA), the market potential has been extended for use in the mid-end cars which tend to bring significant growth in its demand during the forecast period.
Schedule a Call
Millimeter Wave Technology Market Segment Analysis — By End-Use Industry
By End-Use Industry, the Millimeter Wave Technology Market Report is segmented into Mobile & Telecommunication, Consumer Electronics, Automotive, Healthcare, Industrial, Aerospace & Défense and Others. Mobile & Telecommunication sector is analysed to hold the highest share during the forecast period 2021–2026. The Millimeter waves are considered to be the key enabling technology for successful deployment of 5th generation wireless communication network across the globe which is a major growing factor for its market growth in Mobile & Telecommunication sector. Increasing investment and adoption of 5G technology network is expected to create a huge demand for Millimeter wave technology equipment. The telecommunication industry is going under a radical change with the growing data consumption and limited bandwidth. Moreover, in last few years, the production and sales of smartphones, tablets and other mobile devices has brought a significant growth in the demand for wireless connectivity solutions. For instance, according to Global System for Mobile Communications Association (GSMA) Mobile economy report 2021, there were approximately 5.2 billion unique mobile subscribers in 2020 which was forecasted to reach 5.7 billion by the end of 2025 among which smartphones accounted for 60% of the connections and it is expected that the number would reach approximately six billion in 2026, with an 80% share of smartphones. This tend to bring significant growth in the demand of Millimeter wave technologies for supreme wireless connectivity solutions, further driving its market growth during the forecast period.
Millimeter Wave Technology Market Segment Analysis — By Geography
Asia-Pacific is analysed to be the major region with a share of 35% in 2020 for the Millimeter Wave Technology Market owing to the increasing application of Millimeter wave technology in Mobile & Telecommunication sector. Asia Pacific Millimeter wave technology market is primarily driven by increasing data consumption that has created the demand for efficient wireless backhaul solutions which tend to uplift the demand of telecommunication equipment further driving the market growth in this region. Moreover, with increasing infrastructural investment to set up 5th generation wireless network is analysed to be a driving factor for the growth of Millimeter wave technology in this region during the forecast period. For instance, as per the CISCO VNI, Asia Pacific accounted for 47% of global data traffic in 2021. This tend to create huge demand for the high bandwidth data transmission solutions which further drive the Millimeter wave technology market growth. Moreover, according to India Brand Equity Foundation (IBEF), mobile phone exports in India reached a record of $ 1.5 billion in 2020, of which 98% are expected to be smartphones. This increasing production of smartphones in this region is anticipated to bring huge demand for high broadband and mobile speed technologies which will drive the market growth of Millimeter wave technology in this region.
Buy Now
Millimeter Wave Technology Market Drivers
Increasing demand of broadband and 5G connectivity solutions will enhance Millimeter wave technology market growth
High broadband speed is a crucial part for a wide range of end-use applications. With the increasing demand of broadband speed improvements which has resulted in increased consumption of high-bandwidth content tend to be a major driving factor for the market growth of Millimeter wave technology during the forecast period. In the next few years, the global average broadband speed is expected to grow from 62.5 Mbps to >130 Mbps owing to several factors such as deployment and adoption of fibre-to-the-home (FTTH), high-speed DSL and cable broadband adoption, as well as overall broadband penetration. These factors have brought growth in the adoption of various Millimeter wave technologies further driving its market growth during the forecast period. According to Organization for Economic Co-operation and Development (OECD), the communication network and service environment would become more complex by 2023, and the 5G technology market would witness immense growth due to the ongoing advancements in 5G network infrastructure. The unique characteristics of Millimeter waves enable near-line-of-sight wireless networks and make point-to-multipoint technology possible, enabling a single transmitter to serve multiple transceivers at various locations. This tend to drive its market growth during the forecast period.
Increasing application of Millimeter wave technology to reduce data traffic will propel the Millimeter Wave Technology Market
With the increasing users of smartphones and adoption of cloud-based services across various end-users, the data traffic issue has been a major factor that disrupts their working efficiency through latency and data crash. Data traffic refers to the amount of data which is transferred between the internet and the hosting account on the web server. With the user moving towards more data intensive content such as video streaming, augmented reality, voice over data, 4K video, increasing number of internet user on smart phone etc. data traffic is expected to rise in future. Growing data traffic creates bandwidth complexities and network congestion. For instance, according to Cisco Internet Annual Reports, 5G connection will generate nearly 3 times more traffic than a 4G connection by 2023 among which IoT devices will account for 50% of all networked devices. With the implementation of Millimeter wave technology, it is easy to transmit large amount of data as the frequency is directly proportional to bit rates. Thus, the Millimeter waves are suitable for transmission of digital data, cellular communications. This creates need for efficient wireless mobile backhaul. These features uplift its demand across various end-use industries using cloud-based services, further driving its market growth.
Millimeter Wave Technology Market Challenges
Low penetration power through obstacles is analysed to hamper Millimeter Wave Technology Market growth
While Millimeter wave technology offers massive advantages over other radio frequencies but on the other hand, they also have some disadvantages which include low penetration power through obstacles. Millimeter waves are not capable of bouncing off physical objects which disrupts the connectivity and bring major challenges for its adoption especially in closed locations. Obstacles such as tree branches and walls can interfere and absorb the transmission and halt the signal. Additionally, Millimeter waves are more expensive than other commonly used frequencies. This makes the technology almost inaccessible for smaller companies that do not have the finances. Currently, mobile network providers are focused on building Millimeter wave-friendly 5G infrastructure. Moreover, rise in environmental concerns and adverse impact by Millimeter wave technology on the environment hamper its market growth across the globe.
Millimeter Wave Technology Market Landscape
Production Innovation, Acquisitions, Collaboration, and R&D activities are key strategies adopted by players in the Millimeter Wave Technology Market. In 2020, the market of Millimeter Wave Technology industry outlook has been fragmented by several companies. Millimeter Wave Technology top 10 companies include:
Axxcss Wireless Solutions
NEC Corporation
Siklu Communication
L3 HARRIS
Smiths Group
Eravant,
Aviat Networks
Farran Technologies
Millimeter Wave Products
Keysight Technologies
Acquisitions/Technology Launches/Partnerships
In March 2020, Keysight technologies and VIOMI, the pioneer of IoT@Home, announced their strategic partnership to advance 5G enabled IoT smart homes. Keysight’s 5G solutions were chosen by VIOMI to test the radio frequency (RF) performance of the company’s IoT devices for home applications. This will enhance the market growth of MMW technology in consumer electronics sector.
In January 2020, NEC Corporation launched their new Millimeter-wave distributed antenna radio unit to make better use of the 5G Millimeter-wave spectrum (28 GHz band). This will uplift channel quality for indoor 5G applications, further driving MMW technology market growth.
For more Electronics related reports, please click here
0 notes
digitrenndsamr · 13 days
Text
RF Semiconductor Market to Receive Overwhelming Hike in Revenues By 2031
Allied Market Research, titled, “RF Semiconductor Market," The RF semiconductor market was valued at $18.9 billion in 2021, and is estimated to reach $39.6 billion by 2031, growing at a CAGR of 8.4% from 2022 to 2031. The rapid development of 5G technology and the rapid adoption of IoT technology has increased the need for robust network capacity are some of the factors driving the RF Semiconductor market.  
RF Power Semiconductors stands for Radio Frequency Power Semiconductors. These electronic devices are used for cellular and mobile wireless communications. There are numerous applications such as military radar, air and maritime traffic control systems. Various materials such as silicon, gallium arsenide, and silicon germanium are used to manufacture RF power semiconductors.  
The growth of the RF semiconductor market is fueled by the massive adoption of AI technology. AI enhances business by improving the customer experience, enabling predictive maintenance and improving network reliability. By integrating effective machine learning algorithms, the company can reduce the design complexity of RF semiconductor devices and maximize RF parameters such as channel bandwidth, spectrum monitoring and antenna sensitivity. And while AI unlocks new capabilities for military applications, wireless applications in spectrum acquisition, communication systems, signal classification and detection in adverse spectrum conditions will also benefit greatly.  
Robust network capacity has become essential with the proliferation of IoT technologies. IoT helps build a connected framework of physical things, such as smart devices, through secure networks using RF technology. For example, RF transceivers are used in smart home devices to connect to the internet via Bluetooth and Wi-Fi. Moreover, with the increasing number of smart city projects in various regions of the world, the demand for smart devices has increased significantly. In recent years, players in the RF semiconductor industry have been focused on product innovation, to stay ahead of their competitors. For instance: In January 2020, Qorvo Inc. launched the Qorvo QPG7015M IoT transceiver, which enables the simultaneous operation of all low-power, open-standard smart home technologies. Additionally, it is targeted at gateway IoT solutions that require the full-range capability of Bluetooth low energy (BLE), Zigbee, and Thread protocols, with +20 dBm (decibel per milliwatt) outputs. 
The RF Semiconductor market is segmented on the basis of product type, application, and region. By product type, the market is segmented into RF power amplifiers, RF switches, RF filters, RF duplexers, and other RF devices. By application, the market is categorized into telecommunication, consumer electronics, automotive, aerospace & defense, healthcare, and others. Region-wise, the RF Semiconductor market is analyzed across North America (U.S., Canada, and Mexico), Europe (UK, Germany, France, and rest of Europe), Asia-Pacific (China, Japan, India, South Korea, and rest of Asia-Pacific) and LAMEA (Latin America, the Middle East, and Africa).   
Tumblr media
The outbreak of COVID-19 has significantly impacted the growth of the global RF Semiconductor sector in 2020, owing to the significant impact on prime players operating in the supply chain. On the contrary, the market was principally hit by several obstacles amid the COVID-19 pandemic, such as a lack of skilled workforce availability and delay or cancelation of projects due to partial or complete lockdowns, globally.  
According to Minulata Nayak, Lead Analyst, Semiconductor and Electronics, at Allied Market Research, “The global RF Semiconductor market share is expected to witness considerable growth, owing to rising demand for the rapid development of 5G technology and the rapid adoption of IoT technology has increased the need for robust network capacity and has developed the RF semiconductor market size. On the other hand, the use of alternative materials such as gallium arsenide or gallium nitride improves device efficiency but also increases the cost of RF devices which is restraining the market growth during the anticipated period. Furthermore, the increased use of RF energy in the number of smart city projects in various countries around the world is creating opportunities for the RF Semiconductor market trends.” 
According to RF Semiconductor market analysis, country-wise, the rest of the Asia-Pacific region holds a significant share of the global RF Semiconductor market, owing to the presence of prime players. Major organizations and government institutions in this country are intensely putting resources into these global automotive data cables. These prime sectors have strengthened the RF Semiconductor market growth in the region.  
KEY FINDINGS OF THE STUDY 
In 2021, by product type, the RF filters segment was the highest revenue contributor to the market, with $5,372.82 million in 2021, and is expected to follow the same trend during the forecast period.   
By application, the consumer electronics segment was the highest revenue contributor to the market, with $6,436.63 million in 2021. 
Asia-Pacific contributed the major share in the RF Semiconductor market, accounting for $7,937.05 million in 2021, and is estimated to reach $17,059.52 million by 2031, with a CAGR of 8.62%. 
The RF Semiconductor market key players profiled in the report include Analog Devices Inc., Microchip Technology Inc., MACOM Technology, NXP Semiconductors, Qorvo, Inc., Qualcomm Incorporated, Texas Instruments Inc., Toshiba Electronic Devices & Storage Corporation, TDK Electronics, and Teledyne Technologies Inc. The market players have adopted various strategies, such as product launches, collaborations & partnerships, joint ventures, and acquisitions to expand their foothold in the RF Semiconductor industry. 
0 notes
flexirfinc · 24 days
Text
SMA Power Splitters vs. Power Dividers: Key Differences and Applications Explained
When dealing with radio frequency (RF) and microwave systems, understanding the roles and differences between SMA power splitters and power dividers is crucial. Both components are essential for managing signal distribution and splitting, but they have different purposes and distinct characteristics. An SMA power splitter��is designed to distribute a single input signal into multiple output signals. The term “SMA” refers to the connector type used in these splitters, known for their durability and reliability. SMA connectors are often used in high-frequency applications, making them suitable for various RF and microwave systems.
A power divider, on the other hand, is a device that splits a single input signal into several output signals in the same way that a power splitter does. Nonetheless, applications where phase relationships and signal integrity are crucial frequently utilize power dividers. Power dividers divide an input signal into several outputs with different electrical properties, including phase shifts or equal power distribution. Applications for power dividers in radiofrequency (RF) and microwave technology include satellite systems, radar, and communication. They are essential for creating balanced and stable signal paths, ensuring that each output signal maintains the desired electrical properties.
Critical Differences Between SMA Power Splitters and Power Dividers
Design and Functionality:
SMA Power Splitters: Designed primarily for equal signal splitting. They ensure that the input signal is divided equally among the output ports. This is ideal for applications where the signal needs to be distributed evenly without significant signal degradation.
Power Dividers: Focus on maintaining specific electrical characteristics in the output signals. They are used when precise control over signal distribution and phase relationships is required. Power divider are often designed to meet exact specifications, making them suitable for more complex applications.
Applications:
SMA Power Splitters: These are commonly used in antenna systems, signal routing, and test setups. They are ideal for applications where simple signal distribution is needed.
Power Dividers: These are used in more advanced applications like communication, radar, and satellite systems, where precise signal distribution and phase control are critical. They are often used in scenarios that require detailed signal analysis and control.
Choosing the Right Component for Your Needs
Selecting between an SMA power splitter and a power divider depends on your requirements. An SMA power splitter is usually the best choice if you need to distribute a signal evenly to multiple outputs. These devices are reliable and straightforward, making them suitable for many standard applications.
However, a power divider may be more appropriate if your application requires precise control over signal characteristics. Power dividers are designed to maintain exact signal properties, making them ideal for advanced RF and microwave systems where performance and accuracy are paramount.
Anyone with RF and microwave systems must understand the distinctions between SMA power splitters and power dividers. Even though both parts split signals, they have diverse uses and unique benefits. You can guarantee excellent performance and dependability in your signal distribution systems by selecting the appropriate device for your needs.
Flexi RF Inc provides an extensive assortment of premium items for anyone seeking to investigate various radio frequency components, such as SMA power splitters and dividers. Flexi RF offers solutions designed to satisfy the multiple demands of the microwave and radio frequency industries while maintaining a dedication to innovation and client satisfaction.
Source:https://worldnewsfox.com/business/sma-power-splitters-vs-power-dividers-key-differences-and-applications-explained/
0 notes
usafphantom2 · 1 year
Text
Tumblr media
Russia develops AI communication system for fifth-generation aircraft
Fernando Valduga By Fernando Valduga 04/25/2023 - 19:00in Military, Technology
NPP Polet of the Russian holding company Ruselectronics has developed a set of embedded digital communication tools using artificial intelligence (AI) technologies. The equipment is intended for fifth generation aircraft.
Its use will improve the quality of information transfer between aircraft and ground complexes, the holding company's press service reported.
The complex operates in the high and very high frequency bands. The use of cognitive radio technology allows to significantly increase immunity to interference and recognition of complex on-board communications.
Tumblr media
The equipment ensures the reliability of the transmission of information due to noise-immune encoding, interletion of symbols in the message, synchronization of common time in the processing of signals, possibility of simultaneous transmission of messages in parallel channels, increasing the reach of stable communication, as well as the use of artificial intelligence technologies.
"The development of radio electronics is becoming a decisive factor in influencing the formation of the emergence of fifth-generation aircraft. The solution of many functional tasks that increase the efficiency of aviation operations is carried out with the help of on-board digital communication systems. Currently, these complexes are widely used for the exchange of messages between aircraft avionics and ground services. Our new complex is an initiative development and is planned to be implemented as part of the S-111 communications complex," said Aleksey Komyakov, Director General of NPP Polet.
Tumblr media
The complex includes computing devices, interlayers and deinterlayers, RF antenna matching devices, digital signal processing units, error correction encoding and decoding devices, as well as a satellite global navigation system signal receiver with an antenna and a digital signal processing and synchronization bus.
Tags: Military AviationArtificial IntelligenceRussiaTechnology
Fernando Valduga
Fernando Valduga
Aviation photographer and pilot since 1992, he has participated in several events and air operations, such as Cruzex, AirVenture, Dayton Airshow and FIDAE. He has works published in specialized aviation magazines in Brazil and abroad. Uses Canon equipment during his photographic work throughout the world of aviation.
Related news
MILITARY
Swedish Armed Forces launch the largest military exercise in more than 25 years
04/25/23 - 18:47
MILITARY
IMAGES: First L-39NG aircraft produced in series performs inaugural flight
25/04/2023 - 16:00
MILITARY
Raytheon reveals the AI-based RAIVEN threat identification system
04/25/23 - 2:00 PM
BRAZILIAN NAVY
NAVY: Federal Police know the capabilities of SARP ScanEagle
04/25/23 - 1:00 PM
MILITARY
Russian attack helicopters destroy their own armored vehicles
25/04/2023 - 12:00
HELICOPTERS
Airbus Helicopters presents the first military versions of the H125 to the US market
04/25/23 - 11:00
6 notes · View notes