#infrarrojos
Explore tagged Tumblr posts
Text
Charla sobre zapatillas: Air Jordan 6 “Infrarrojos”
de Air Jordan 6 “Infrarrojos” Hace un regreso triunfal en 2019, rindiendo homenaje a la combinación de colores icónica usada por Michael Jordan durante su primera aparición en el Campeonato de la NBA en 1991. Este relanzamiento tiene como objetivo recrear todas las características populares que hicieron del modelo original un favorito de los fanáticos, al mismo tiempo que incorpora detalles…
View On WordPress
0 notes
Text
Transcend DrivePro Body 30 Innovación Tecnológica en Bodycam
(Por SoySeguridadPrivada) – Es la reina de las bodycam operativas para cuerpos de seguridad. La DrivePro Body 30 de Transcend, diseñada para soportar las condiciones más adversas, cuenta con impermeabilidad IP67 y resistencia a golpes de grado militar (MIL-STD-810G 516.6-Transit Drop Test). Dispone de un sensor de imagen de alta sensibilidad y LED infrarrojos que permite capturar imágenes de alta…
#alta resolución#bodycam#camara policial#DrivePro Body 30#infrarrojos#IP67#LED#oscuridad#Seguridad Privada#seguridad pública#sensor alta sensibilidad#Transcend
0 notes
Text
Masajeador de rodilla inalámbrico por infrarrojos: calor y vibración por infrarrojos para aliviar el dolor.
Masajeador de rodilla por infrarrojos con calor infrarrojo y vibración para un alivio eficaz del dolor de rodilla, diseñado para aliviar la hinchazón, la rigidez y las lesiones . Este masajeador de rodilla por infrarrojos proporciona un masaje de vibración circundante 5D, lo que garantiza un alivio integral del dolor y una relajación. Certificado por KC, RoHS, CE y FCC , este dispositivo para aliviar el dolor de rodilla es seguro y eficiente. Con un diseño liviano y ergonómico y un control intuitivo de pantalla táctil LED, este masajeador de rodilla es perfecto para uso doméstico o mientras viaja. Disfrute de configuraciones de calor ajustables y modos de vibración para comodidad y alivio personalizados.
Masajeador de rodilla inalámbrico por infrarrojos: calor infrarrojo y vibración para aliviar el dolor.
Masajeador de rodilla por infrarrojos con calor infrarrojo y vibración para un alivio eficaz del dolor de rodilla, diseñado para aliviar la hinchazón, la rigidez y las lesiones . Este masajeador de rodilla por infrarrojos proporciona un masaje de vibración circundante 5D, lo que garantiza un alivio integral del dolor y una relajación. Certificado por KC, RoHS, CE y FCC , este dispositivo para aliviar el dolor de rodilla es seguro y eficiente. Con un diseño liviano y ergonómico y un control intuitivo de pantalla táctil LED, este masajeador de rodilla es perfecto para uso doméstico o mientras viaja. Disfrute de configuraciones de calor ajustables y modos de vibración para comodidad y alivio personalizados.
#masajeador#rodilla#onlineshopping#tiendaenlínea#ishopelite#tiendavirtual#compras online#ejercita#ejercicio#fitness#masajeadorderodilla#infrarrojos#dolor
0 notes
Text
Descubre el Flipper Zero: Tu Aliado en Seguridad y Hacking Ético
Descubre el Flipper Zero: Tu Aliado en Seguridad y Hacking Ético. Con capacidades de auditoría, emulación, y control, potencia tus habilidades y protege tus sistemas. Mantén actualizado y únete a la comunidad. ¡Explora un mundo de seguridad informática!
En un mundo digitalizado donde la seguridad de la información es crucial, contar con herramientas confiables se vuelve imprescindible. En este artículo, exploraremos el Flipper Zero, un dispositivo multifuncional que no solo brinda seguridad, sino que también potencia tus habilidades en hacking ético y te ofrece una gama de utilidades que te sorprenderán. ¿Qué es el Flipper Zero? El Flipper Zero…
View On WordPress
#Actualizaciones de firmware#Análisis de sistemas#Auditoría de seguridad#Automatización doméstica#Ética hacker#Bluetooth#Captura de señales#Comunidad de usuarios#Control remoto#Desarrollo de software#Explotación responsable#Flipper Zero#Foros en línea#Hacking ético#Infrarrojos#IoT#Privacidad#Programación#Protección cibernética#Protección de datos#Pruebas de penetración#Radiofrecuencia#Redes inalámbricas#Seguridad Digital#Seguridad en redes#Seguridad informática#Tarjetas NFC#Tarjetas RFID#Tecnología#Vulnerabilidades
0 notes
Text
Sketch
#divus crewel#twst divus#twisted wonderland#twst#skecth#george paradise kiss outfit(?(?(?(#pero mira que definición papaaa me quedo chiquita#la foto fue sacada con un nokia 5200 de 2006#Sam se la paso por infrarrojo#cocoart
160 notes
·
View notes
Text
La luz infrarroja
Especialmente en su forma de terapia con luz infrarroja (o fototerapia), tiene varios beneficios para la salud. Sus efectos dependen principalmente de la longitud de onda, que puede penetrar la piel y alcanzar tejidos más profundos. Algunos de los principales beneficios incluyen:
1. Mejora la circulación sanguínea: La luz infrarroja penetra en los vasos sanguíneos y capilares, lo que ayuda a mejorar el flujo sanguíneo, optimizando la entrega de oxígeno y nutrientes a las células y favoreciendo la eliminación de desechos metabólicos. Esto puede ayudar a reducir la inflamación y acelerar la recuperación muscular.
2. Alivio del dolor muscular y articular: Se ha demostrado que la terapia de luz infrarroja puede aliviar dolores musculares, articulares y rigidez asociada con afecciones como la artritis. La luz actúa de manera antiinflamatoria y ayuda a reducir la tensión en los músculos y las articulaciones.
3. Aceleración de la curación de heridas: La luz infrarroja promueve la regeneración celular, lo que puede acelerar la cicatrización de heridas y quemaduras, mejorando la producción de colágeno y ayudando a reparar los tejidos dañados.
4. Reducción del estrés y la ansiedad: La exposición a la luz infrarroja tiene efectos relajantes sobre el sistema nervioso, lo que puede reducir el estrés y promover una sensación general de bienestar. Esto es beneficioso en el manejo de la ansiedad y otros trastornos relacionados.
5. Mejor calidad del sueño: La luz infrarroja puede influir positivamente en los ritmos circadianos, ayudando a mejorar la calidad del sueño. En la terapia de luz, esta se usa para regular la producción de melatonina, una hormona crucial para un sueño reparador.
6. Alivio de trastornos cutáneos: Se ha utilizado para tratar afecciones de la piel como el acné, psoriasis y eczema. La luz infrarroja puede reducir la inflamación y promover la curación de la piel.
7. Efectos sobre la salud mental: Algunos estudios sugieren que la exposición a la luz infrarroja puede influir en la producción de neurotransmisores, mejorando el estado de ánimo y favoreciendo la salud mental en general.
Es importante mencionar que la terapia de luz infrarroja debe ser aplicada de manera controlada y adecuada para evitar efectos adversos, especialmente cuando se usa de forma directa sobre la piel o en sesiones prolongadas.
2 notes
·
View notes
Text
El telescopio James Webb descubre cúmulos de estrellas jóvenes en el "arco de las Gemas Cósmicas"
Las galaxias jóvenes del Universo temprano pasaron por fases cruciales de formación estelar, emitiendo grandes cantidades de radiación ionizante. Sin embargo, estudiar directamente sus contenidos estelares ha sido un reto debido a sus distancias cosmológicas. Gracias al Telescopio Espacial Webb, un equipo internacional de astrónomos ha detectado cinco cúmulos estelares masivos jóvenes en el arco…
View On WordPress
#Angela Adamo#cúmulos estelares jóvenes#cúmulos globulares#emisión ultravioleta#Eros Vanzella#formación de estrellas masivas#formación estelar#gas ionizado#Gemas Cósmicas#infrarrojo cercano#Larry Bradley#Lentes Gravitacionales#NIRSpec#observación astronómica#reionización del Universo#RELICS#semillas de agujeros negros#SPT0615-JD1#Telescopio Espacial Webb#Universo temprano
0 notes
Text
Chivito de Drácula: nuevo disco protoplanetario descubierto con Pan-STARRS
Al analizar las imágenes obtenidas con el Telescopio de rastreo panorámico y el sistema de respuesta rápida (Pan-STARRS), los astrónomos han descubierto por casualidad un nuevo disco protoplanetario ubicado a unos 800 años luz de distancia. El hallazgo se informó en un artículo publicado el 1 de febrero en el servidor de preimpresión arXiv. Un disco protoplanetario es un disco de gas y polvo…
View On WordPress
0 notes
Text
Gran Jaguar (Tikal) en el Infrarrojo.
#tikal#gran jaguar#ir#infrared#infrarrojo#paisaje#paisaje infrarrojo#infrared landscape#guatemala#goku abreu#gokuabreu
0 notes
Photo
Análisis #infrarrojo, #sobrevuelo mediante Drone(detección de hotspots) #drones #fotovoltaico #dji #termica #mavic #matrice (en Tenerife, Canary Islands, Spain) https://www.instagram.com/p/Co8BZVADwc6/?igshid=NGJjMDIxMWI=
0 notes
Photo
Castelló de la Plana Infrared #creativeir #infraredpic #creativeinfrared_europe #infrarrojo #ir #infrared #quimgranell (en Castellón de la Plana/Castelló de la Plana) https://www.instagram.com/p/CnlrPFZrzXT/?igshid=NGJjMDIxMWI=
0 notes
Photo
#termometro #digital #infrarrojo #penetracion #bolsillo https://www.instagram.com/p/Cljq51Zu62s/?igshid=NGJjMDIxMWI=
0 notes
Text
SUPERSOLES
Las primeras estrellas del universo
Autor: Lic. Mariano Ribas, Planetario de la Ciudad de Buenos Aires Galileo Galilei. Revista Si Muove n°26 - Primavera 2023
01: Ilustración de una de las extraordinarias estrellas de la antiquísima Población III.
Se encendieron cuando el cosmos aún gateaba, cuando todo era oscuridad. Eran enormes, supermasivas y extremadamente calientes y luminosas. Esas primeras estrellas vivieron pocos millones de años y luego explotaron como ninguna otra cosa haya vuelto a explotar. Gracias a su metamorfosis físico-química, cambiaron para siempre la historia del universo. Hoy, unos 13.600 millones de años más tarde, la astronomía, en una suerte de arqueología cósmica, arriesga modelos, juega con complejas simulaciones por computadora y busca pistas y radiaciones "fósiles" que puedan ayudarnos a delinear su perfil. Estamos comenzando a escribir la historia de aquellos arcaicos supersoles.
Al principio, todo era oscuridad. Luego del Big Bang, el universo en expansión era un pequeño, denso y muy caliente mar de espacio, energía y partículas elementales. No había estrellas, ni galaxias, ni planetas. Los primeros 200 millones de años del cosmos corresponden a lo que los astrónomos llaman las Eras Oscuras. En aquel cosmos primitivo, la gravedad fue organizando y agrupando la materia en estructuras cada vez más grandes, tanto la materia normal (o bariónica) como la materia oscura, que era y es abrumadoramente mayoritaria.
Poco a poco, a la par del progresivo crecimiento y enfriamiento generalizados, colosales nubes de hidrógeno, salpicadas de helio e ínfimas piscas de litio (y ningún otro elemento, porque no los había), fueron colapsando y ganando densidad y temperatura. Según los modelos actuales, se gestaron “mini-halos” de gas y materia oscura de alrededor de 1 millón de masas solares, en cuyo interior se formaron nódulos más densos. Eran los “embriones” de las primeras estrellas, soles primitivos que se encendieron gracias a la fusión termonuclear (de hidrógeno en helio) en sus núcleos; y que, a su vez y de a millones, darían cuerpo y luz a las primeras galaxias.
Universo diferente, estrellas diferentes
Tras ese necesario vistazo, breve y simplificado, al muy temprano y primitivo escenario cósmico, vamos directamente al punto de este artículo: según todos los modelos científicos vigentes, las primeras estrellas del universo eran muy diferentes a las actuales, tanto en escala como en composición química. Y eso fue así, justamente, porque las condiciones generales del cosmos eran bien distintas.
Tanto en el universo contemporáneo como en el de los últimos miles de millones de años, las nebulosas (que siempre fueron las “fábricas” de estrellas) están salpicadas de elementos pesados, como carbono, oxígeno, nitrógeno, calcio, hierro, y hasta granos de polvo. Elementos que las enfrían y facilitan la múltiple fragmentación de sus nódulos internos, sus partes más densas. Por el contrario, en los primeros cientos de millones de años, las nebulosas carecían de elementos pesados. Eran puro hidrógeno y helio. Y fue justamente esa pobreza química la que permitió que los nódulos protoestelares alcanzaran temperaturas relativamente altas (unos 500°C). Eso, a su vez, los hacía más resistentes a la fragmentación. De ese modo, los nódulos podían colapsar completos y dar origen a estrellas mucho más grandes y masivas que las modernas. ¿Cuán masivas?
La respuesta es sorprendente.
Estudios previos y actuales: ¿quién da más?
02: El Telescopio Espacial James Webb es un instrumento fundamental para la búsqueda y el estudio de las primeras estrellas y galaxias del universo. Está equipado con un espejo primario segmentado, bañado en oro, de 6,5 metros de diámetro, y observa el cosmos en el rango del infrarrojo cercano y medio.
Durante los últimos veinte años, el escenario teórico que acabamos de plantear se consolidó gracias a una multiplicidad de estudios, observaciones y modelos. Los astrónomos han ido afinando, pacientemente, el perfil de aquellos primeros y monumentales soles.
Si hacemos un rápido repaso cronológico, no podemos dejar de mencionar los aportes que, en 2005 y de modo independiente hicieron dos equipos de científicos: uno, de las Universidades de Yale y Harvard, en Estados Unidos; y el otro, del Instituto Max Planck de Astrofísica, en Alemania. Mediante sofisticadas simulaciones por computadora, estos detectives del pasado cosmológico recrearon las condiciones de gestación estelar en el universo primitivo. En ambos casos, llegaron a conclusiones similares: los nódulos primigenios habrían formado estrellas de cientos de masas solares; incluso, de más de 1000. Tengamos en cuenta que las estrellas más masivas de nuestra galaxia (como Eta Carinae A, WR42e, WR93, Arches-F9 o la llamada Pistol Star) tienen entre 100 y 150 masas solares.
Investigaciones posteriores, realizadas durante la pasada década (como el programa EDGES, encabezado por científicos del Instituto de Tecnología de Massachusetts, EE.UU., que utilizó un radiotelescopio en Australia en 2018) ajustaron algunas tuercas. Pero coincidieron en lo esencial: esas primitivas criaturas estelares habrían sido mucho más grandes y masivas que las actuales.
Mil masas solares no es poco. Pero un flamante estudio sugiere que, al menos en ciertos casos, las primeras estrellas pudieron haber ido mucho más allá. El trabajo en cuestión fue publicado a fines de enero, y sus autores principales son los astrofísicos japoneses Masaki Kiyuna, Takashi Hosokawa y Sunmyon Chon, del Departamento de Física de la Universidad de Kyoto. Mediante simulaciones con supercomputadoras de una resolución sin precedentes, estos investigadores no solo demostraron que para “construir” estrellas supermasivas se requiere un medio denso, relativamente caliente y carente de elementos pesados; sino que también el proceso de colapso gravitatorio debe afectar a masas muy elevadas, en volúmenes pequeños y en tiempos muy breves. Las simulaciones de Kiyuna, Hosokawa y Chon se basan en el fenómeno astrofísico de “acreción fría”, en el que también intervienen colisiones de flujos de materia sobre los discos protoestelares, ondas de choque y mecanismos que remueven el calor del material durante el abrupto colapso gravitatorio¹.
Y ahora sí, la asombrosa y prometida conclusión: según este minucioso trabajo científico, es probable que, bajo las condiciones imperantes en aquellos primerísimos tiempos del cosmos, el repentino e imparable colapso de inmensos nódulos de gas haya encendido estrellas de decenas de miles de masas solares; incluso, hasta 100 mil.
03: Gráfico a escala que muestra la relación de tamaño entre diferentes tipos de estrellas, incluido el Sol, y una de las colosales estrellas de la Población III que existieron en los primeros cientos de millones de años del universo.
Poblaciones I, II y III
Partiendo de la clasificación inicial realizada por el gran astrónomo alemán Walter Baade (1893-1960) durante la Segunda Guerra Mundial, los astrónomos de hoy en día hablan de tres tipos de poblaciones estelares a lo largo de la historia del universo. En su momento, Baade observó y analizó espectroscópicamente estrellas individuales de la vecina galaxia de Andrómeda (dicho sea de paso, fue el primero en resolverlas visualmente, con el auxilio del telescopio reflector de 2,5 m de diámetro del Observatorio de Monte Wilson, California, EE.UU.). Y así notó que podía dividirlas en dos grandes grupos: las azules, más jóvenes, calientes y luminosas; y las rojizas, más viejas y frías. La Población I y II, respectivamente. Mas tarde, los astrónomos se dieron cuenta de que esta clasificación tenía mucho que ver con la construcción de elementos químicos más pesados a lo largo de la historia de la Vía Láctea. Las estrellas de Población II, mucho más antiguas, estaban menos enriquecidas con elementos más pesados que el helio (carbono, oxígeno, hierro, por ejemplo). Las de Población I, en cambio, se habían gestado en nubes de gas mucho más “contaminadas” de elementos pesados, provenientes de estrellas ya extintas. Sin embargo, había algo que no terminaba de cerrar: a pesar de contener cantidades exiguas de oxígeno, calcio o hierro, las estrellas de Población II sí los tenían. Y esos elementos no podían haber nacido luego del Big Bang. Por lo tanto, debió existir una generación de estrellas aún más antiguas y primitivas, formadas solo a partir del hidrógeno y helio iniciales. Ya en la década de 1980, los astrónomos (entre ellos, el británico Bernard Carr), bautizaron a esas estrellas, arcaicas y fundacionales, como la Población III, y las modelaron teóricamente como colosales bolas de hidrógeno y helio crudos, esculpidas por la gravedad en los primeros cientos de millones de años del universo. Objetos de miles de millones de km de diámetro y cientos o miles de masas solares. Ni más ni menos que los supersoles de los que habla este artículo.
Monstruos luminosos y explosivos
Debido a sus descomunales masas, justamente, aquellos primitivos soles gigantes habrían sido decenas o cientos de millones de veces más luminosos que cualquier estrella común del universo actual (como el Sol, por ejemplo). Y qué decir de sus temperaturas superficiales, que según estos mismos modelos teóricos ardían a más de 100.000°C (contra los 5500°C del Sol; o los 20.000°C o 30.000°C de estrellas modernas fuera de serie, como las espléndidas y azuladas Spica, en la constelación de Virgo; Regulus, en Leo; o Rigel, en Orión). A punto tal, que su pico de emisión no estaba en el rango visible, sino en lo profundo de la luz ultravioleta (de menor longitud de onda, mayor frecuencia y mucha mayor energía). Con semejante perfil, esas superestrellas debieron haber calentado y ionizado todo el gas de sus alrededores, esa misma materia prima que les diera origen.
Semejante furia astrofísica iba de la mano de una brutal y muy veloz fusión termonuclear en sus núcleos todopoderosos. Y aquí se abre otra cuestión tan apasionante como decisiva para la posterior evolución del cosmos. Gracias a la fusión termonuclear en sus corazones, las primeras estrellas del universo reciclaron su hidrógeno y helio originales; y en etapas sucesivas, cada vez más calientes, breves y violentas, forjaron elementos más y más complejos: carbono, oxígeno, magnesio, nitrógeno, silicio e, incluso, hierro. Finalmente, tras brillar durante unos pocos millones de años, explotaron como hipernovas, estallidos cientos de veces más energéticos y luminosos que cualquier supernova contemporánea.
04: Esta imagen infrarroja, obtenida por el Telescopio Espacial Spitzer en 2005, muestra un suave resplandor de fondo, posiblemente asociado a radiación emitida, en tiempos muy remotos, por las primeras estrellas.
Población III: revolución y legado cósmico
Ya es hora de etiquetarlas: técnicamente hablando, los astrónomos dicen que las primeras estrellas formaron la Población III, y que sus descendientes, aquellas que vivieron en los siguientes miles de millones de años, corresponden a la Población II y a la Población I. Estas últimas, por ejemplo, incluyen al Sol y todas las estrellas que vemos en el cielo nocturno (ver apartado).
La aparición y desarrollo de las primeras estrellas no solo dio por finalizadas las Eras Oscuras, sino que dio inicio a una nueva y revolucionaria etapa en la historia del universo. Por un lado, la intensa luz ultravioleta derramada por estos monstruos calentó y ionizó las masas de gas interestelar, que en las Eras Oscuras habían permanecido esencialmente en estado calmo y neutro. Es decir: en lugar de dejar los átomos de hidrógeno intactos, con sus electrones ligados a sus núcleos, la radiación ultravioleta les arrancó los electrones a los núcleos de hidrógeno. Por un lado, desde aquel lejano momento, el gas que flota en el universo está mayormente ionizado. Pero lo más jugoso es algo que dejamos picando en el párrafo anterior: a fuerza de la fusión termonuclear del hidrógeno y del helio, las estrellas de Población III forjaron elementos químicos más complejos, que no existían en el amanecer del cosmos. Y cuando explotaron como hipernovas, desparramaron esos nuevos elementos a cientos de años luz a la redonda, nutriendo y enriqueciendo el medio interestelar y las, hasta entonces, nebulosas vírgenes, de puro hidrógeno y helio.
De esa manera, las posteriores generaciones de estrellas, si bien ya no tan masivas, calientes ni luminosas (por las mismas limitaciones cósmicas que imponían las nuevas condiciones físico-químicas), se hicieron cada vez más ricas químicamente. Las nuevas recetas estelares ya incluían también carbono, oxígeno, hierro y tantos otros preciosos elementos que permitirían la gestación de planetas. Y en épocas mucho más recientes, al menos en este pequeño rincón del universo, la vida. Ni más ni menos. Un tema que, desde luego, merece todo un artículo aparte. El legado de los supersoles fue verdaderamente trascendental.
05: Imagen artística que representa las primeras estrellas supermasivas aparecidas en el universo tan solo 200 millones de años después del Big Bang.
Huellas en el cosmos: antecedentes
Desde hace décadas, los astrónomos barren el cielo con toda clase de instrumentos para encontrar las posibles huellas de aquellas estrellas prodigiosas. No solo desde la superficie, sino también con sofisticados observatorios espaciales. Durante los años ’90, por ejemplo, el satélite COBE (Cosmic Backgroud Explorer), de la NASA, destinado principalmente a estudiar la famosa radiación de fondo cósmico de microondas (una suerte de “fósil” de los primeros tiempos del universo), detectó un muy débil “fondo infrarrojo”, tentativamente atribuido a la emisión de estrellas extremadamente lejanas/antiguas.
Ya a comienzos de este siglo, el observatorio espacial WMAP (Wilkinson Microwave Anisotropy Probe), sucesor del COBE, detectó curiosos patrones de polarización en la radiación de fondo cósmico de microondas, que fueron asociados a la ionización a gran escala generada por las primeras estrellas. También por entonces, el observatorio espacial Swift (también de la NASA) detectó un tremendo estallido de rayos gamma, aparentemente originado hace unos 12.800 millones de años. El brutal fogonazo cósmico bien pudo ser la señal de una hipernova de Población III.
Otra pista particularmente interesante surgió en 2005, cuando un equipo encabezado por Alexander Kashlinsky apuntó durante 10 horas el Telescopio Espacial Spitzer (NASA) hacia un rincón de la constelación boreal de Draco. El resultado fue una recordada imagen infrarroja, cargada de estrellas de la Vía Láctea y montones de galaxias de fondo (imagen 04). Pero lo verdaderamente interesante no eran las estrellas, ni las galaxias, sino el suave resplandor de fondo que bañaba la imagen. Mediante técnicas digitales de procesado, Kashlinsky y sus colegas le quitaron a la imagen original todas las estrellas y galaxias, y dejaron solo los manchones infrarrojos de fondo. Y fue entonces cuando arriesgaron una asombrosa explicación: “Creemos que esa es la luz colectiva de millones de los primeros objetos que se formaron en el universo (…), astros que desaparecieron hace eones, pero cuya luz sigue viajando por el cosmos”, decía el científico en la revista Nature. Si así fuera, es verdaderamente impresionante: luz estelar que viajó desde la infancia del universo, durante más de 13.000 millones de años, acompañando su expansión y “estirándose” y debilitándose a la par, pasando de ser furiosa luz ultravioleta, a ese actual y etéreo resplandor infrarrojo. Una suerte de fósiles electromagnéticos que permean el cosmos y hablan en nombre de incontables soles extintos.
En clara sintonía con aquel “fogonazo” detectado por el Swift, en 2009, y con la ayuda de un enorme globo que se elevó hasta la alta atmósfera, el programa ARCADE (Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission) de la NASA registró breves y débiles pulsos de ondas de radio, cuyo posterior análisis sugirió que podían ser los “ecos” de una o más hipernovas extremadamente lejanas/antiguas. La lista de sugerentes indicios podría extenderse mucho más. De hecho, durante la pasada década los astrónomos sumaron pistas muy similares que, tomadas en su conjunto, apuntan en la misma dirección: todas serían posibles evidencias de la presencia de estrellas extremadamente masivas y luminosas que vivieron y murieron en los primeros cientos de millones de años del cosmos.
06: El observatorio espacial de microondas WMAP (Wilkinson Microwave Anisotropy Probe) ha sido otra herramienta fundamental para detectar pistas sobre la existencia de las inmensas y extremadamente calientes y luminosas estrellas de la Población III.
Búsquedas con el Telescopio Espacial James Webb
Más allá de perfiles teóricos, sólidas simulaciones por computadoras y una muy buena cantidad de sugerentes indicios, ¿tenemos evidencias directas de aquellos arcaicos prodigios estelares? Oficialmente, aún no. Pero estamos cerca de lograrlo, fundamentalmente, gracias al flamante y prometedor Telescopio Espacial James Webb (JWST) de la NASA. A la luz de sus primeros e impresionantes imágenes y datos (que diferentes especialistas han abordado, incluso, en charlas especiales en la sala del Planetario), hay muy buenas razones para hacernos ilusiones. Gracias a su espejo primario de 6,5 metros de diámetro, sus múltiples sensores y espectroscopios, y su altísima sensibilidad en el rango del infrarrojo cercano y medio, el JWST es una máquina perfecta para escudriñar el universo más distante/primitivo. Eso incluye, por supuesto, las galaxias de hace más de 13 mil millones de años, donde anidaban las estrellas de Población III.
El JWST podría observar sin problemas las hipernovas en los límites del universo observable. Y mediante el análisis espectral de ese cataclismos, se podría perfilar mucho mejor los supersoles que los precedieron.
Otras pistas podrían surgir de la búsqueda y detección de helio ionizado (o helio II) en galaxias extremadamente antiguas. Los astrónomos sospechan que la brutal radiación de las estrellas de Población III debería haber “arrancado” electrones a sus átomos de helio, un fenómeno que emitiría patrones de luz específicos. Sobre este punto también tenemos novedades, y tienen que ver con el JWST. En febrero pasado se conocieron resultados muy preliminares de un estudio espectroscópico de más de 2 mil galaxias, realizado por el astrónomo Xin Wang (Academia China de Ciencias, en Pekín) y sus colegas. Entre los datos filtrados, aparece una galaxia que ya existía apenas 620 millones de años después del Big Bang, con claras señales de helio II. Es muy probable que pronto tengamos novedades.
¿Supersoles en los arrabales galácticos?
Dicho todo lo anterior, parecería completamente absurdo buscar aquellos supersoles en el universo actual. Sin embargo, hay quienes piensan que, no tan lejos, podríamos dar con criaturas bastante similares. ¿Dónde? La respuesta, una vez más, proviene de las simulaciones por computadora. Un estudio publicado en enero de este año por un grupo internacional de científicos², sugiere que en las zonas más externas de las más grandes galaxias modernas podrían existir reservorios de hidrógeno y helio esencialmente vírgenes. Regiones muy aisladas del resto del cuerpo galáctico, donde inmensas nubes de gas no “contaminado” de elementos pesados podrían gestar estrellas colosales, de características muy similares a las de la Población III original. Nuevamente, el JWST tendría la capacidad necesaria para encontrarlas, al menos, en galaxias situadas a decenas o cientos de millones de años luz.
Una asombrosa posibilidad
Para el final dejamos lo más extremo: bajo circunstancias tan extremas como fortuitas, el JWST podría lograr una imagen directa y puntual de alguna de las estrellas de la Población III. En principio, esto parece imposible dado que, incluso bajo la penetrante mirada infrarroja de este telescopio, galaxias enteras en los confines del espacio (y del tiempo) apenas lucen como vagas manchitas de unos pocos píxeles. ¿Cómo pretender, entonces, resolver una estrella, por más monumental que haya sido? La respuesta tiene que ver con el conocido fenómeno astrofísico de lentes gravitacionales.
En 2018, el astrónomo Rogier Windhorst (Universidad de Arizona, EE.UU.) y sus colegas, propusieron que la brutal fuerza de gravedad de los más grandes cúmulos de galaxias, podría torcer, concentrar y amplificas la luz estrellas individuales en galaxias ubicadas mucho más “atrás”, pero exactamente en la misma línea visual. Con esa ayudita de la naturaleza, la luz alguna vez emitida por los supersoles “podría sufrir una casi infinita magnificación, y así saltar a la vista (una imagen individual)”, dice Windhorst. No es casual que, sobre esa base y ahora mismo, este científico lidere un plan de búsqueda con el JWST: “Estoy muy confiado de que en uno o dos años veremos una… Ya tenemos algunos objetos candidatos”.
Sencillamente, fascinante. Quizás muy pronto, y desde la otra punta del espacio y del tiempo, aquellos super- soles que vivieron y brillaron durante el amanecer del universo, nos revelen el secreto último de su gloria, su tragedia y su revolucionario legado.
Notas ¹ Todo ha sido dicho de modo simplificado. Quienes quieran profundizar, pueden buscar el trabajo original en internet: First emergence of cold accretion and supermassive star formation in the early universe / Kiyuna, Hosokawa, Chon ² A needle in a haystack? Catching Pop III stars in the Epoch of Reionization: I. Pop III star forming environments / Venditti, Graziani, Schneider, Pentericci, Di Cesare, Maio, Omukai.
#space#astronomy#astronomía#scientific article#artículo científico#astrophysics#astrofísica#tani's log#divulgación científica#ciencia#si muove#si muove revista
16 notes
·
View notes
Text
Estas fotos puede que sean falsas, o no. Igual son fotos de infrarrojos en HDR.
En cualquier caso son unas fotos preciosas del eclipse .
11 notes
·
View notes
Text
Andrómeda en infrarrojo
10 notes
·
View notes
Text
transmisión inalámbrica
El espectro electromagnético:
El espectro electromagnético es el rango completo de todas las frecuencias de radiación electromagnética. Esta radiación se propaga en forma de ondas y puede ser clasificada según su longitud de onda o frecuencia. Aquí te dejo un desglose de las principales regiones del espectro electromagnético, de menor a mayor frecuencia:
1. Ondas de radio
Longitud de onda: Desde unos pocos centímetros hasta miles de metros.
Uso: Comunicación (radio, televisión, telefonía móvil), astronomía.
2. Microondas
Longitud de onda: Desde aproximadamente 1 mm hasta 1 metro.
Uso: Cocción de alimentos (hornos microondas), comunicaciones (satélites), radar.
3. Infrarrojo
Longitud de onda: Desde 700 nm hasta 1 mm.
Uso: Calentamiento, control remoto, termografía.
4. Luz visible
Longitud de onda: Desde aproximadamente 400 nm (violeta) hasta 700 nm (rojo).
Uso: Visión humana, iluminación, fotografía.
5. Ultravioleta (UV)
Longitud de onda: Desde 10 nm hasta 400 nm.
Uso: Esterilización, detección de sustancias, bronceado.
6. Rayos X
Longitud de onda: Desde 0.01 nm hasta 10 nm.
Uso: Imágenes médicas, análisis de materiales.
7. Rayos gamma
Longitud de onda: Menor a 0.01 nm.
Uso: Tratamiento del cáncer, investigación nuclear.
Propiedades del espectro electromagnético:
Velocidad de la luz: Todas las radiaciones electromagnéticas viajan a la velocidad de la luz en el vacío (aproximadamente 299,792 km/s).
Interacción con la materia: Cada tipo de radiación interactúa de manera diferente con la materia, lo que determina sus aplicaciones y efectos.
Importancia del espectro electromagnético:
El espectro electromagnético es fundamental en diversas áreas de la ciencia y la tecnología, incluyendo las telecomunicaciones, la medicina, la astronomía y la climatología. Comprenderlo permite aprovechar sus propiedades para desarrollar tecnologías y aplicaciones que mejoran nuestra vida cotidiana.
Rappaport, T. S. (2014). Wireless Communications: Principles and Practice (2nd ed.). Prentice Hall.
Aspectos físicos pueden afectar la comunicación inalámbrica
1. Interferencia
Interferencia de Otras Señales: Otras transmisiones de radio, microondas y dispositivos electrónicos pueden interferir con la señal deseada.
Interferencia Electromagnética (EMI): Dispositivos como motores eléctricos, luces fluorescentes y otros aparatos electrónicos pueden generar ruido que afecta la comunicación.
2. Atmósfera
Condiciones Meteorológicas: Lluvias, nieve, niebla y otros fenómenos pueden atenuar las señales, especialmente en frecuencias más altas como las microondas.
Humedad: Puede afectar la propagación de ondas, especialmente en el caso de frecuencias de radio y microondas.
3. Obstáculos Físicos
Edificios y Estructuras: Paredes, techos y otros obstáculos pueden bloquear o debilitar las señales, especialmente en entornos urbanos.
Terreno: Montañas, colinas y otros elementos del terreno pueden dificultar la línea de vista necesaria para una buena transmisión.
4. Pérdida de Propagación
Pérdida por Reflexión: Cuando las ondas se reflejan en superficies, pueden interferir con la señal original.
Pérdida por Difracción: Las ondas pueden doblarse alrededor de obstáculos, lo que puede causar desfasajes en la señal.
Pérdida por Absorción: Materiales como el concreto y el metal pueden absorber parte de la señal, reduciendo su intensidad.
5. Distancia
Atenuación de la Señal: A medida que la distancia entre el transmisor y el receptor aumenta, la señal puede debilitarse, lo que afecta la calidad de la comunicación.
Efecto de la Frecuencia: Las frecuencias más altas tienden a tener un rango más corto y son más susceptibles a obstáculos.
6. Multipath
Multipath Propagation: Las señales pueden reflejarse en diferentes superficies y llegar al receptor en momentos ligeramente diferentes, causando interferencia constructiva o destructiva.
7. Efectos de Polarización
Polarización de la Señal: La orientación de la antena y la polarización de la señal (horizontal, vertical o circular) pueden afectar la calidad de la comunicación. Una desalineación en la polarización puede llevar a pérdidas de señal.
8. Ruido de Fondo
Ruido Térmico: La energía térmica en el entorno puede introducir ruido, afectando la señal y la calidad de la comunicación.
Ruido de Interferencia: Cualquier tipo de ruido electrónico en el entorno puede degradar la calidad de la señal.
9. Efectos de la Altitud
Variaciones en la Presión Atmosférica: A grandes altitudes, la presión y la densidad del aire cambian, lo que puede afectar la propagación de las ondas de radio.
Goldsmith, A. (2005). Wireless Communication. Cambridge University Press.
ventajas de utilizar sistemas inalámbricos en la comunicación entre ordenadores
1. Flexibilidad y Movilidad
Sin Ataduras: Los dispositivos pueden moverse libremente sin estar conectados por cables, lo que facilita la comunicación en entornos dinámicos.
Acceso Móvil: Los usuarios pueden conectarse a la red desde cualquier lugar dentro del rango de cobertura.
2. Facilidad de Instalación
Menos Cableado: La instalación de redes inalámbricas requiere menos cableado, lo que reduce el tiempo y el costo de la instalación.
Despliegue Rápido: Se pueden implementar rápidamente en lugares donde sería complicado o costoso instalar cableado.
3. Escalabilidad
Fácil Expansión: Es sencillo añadir más dispositivos a una red inalámbrica sin necesidad de reconfigurar o agregar cableado adicional.
Adaptación a Cambios: Se pueden modificar o expandir las redes sin grandes inversiones en infraestructura.
4. Reducción de Costos
Menos Materiales: Menor necesidad de cables y conectores puede traducirse en ahorros significativos en materiales y mano de obra.
Mantenimiento Simplificado: Menos cables implican menos puntos de fallo y, en consecuencia, un mantenimiento más sencillo.
5. Conectividad en Zonas de Difícil Acceso
Áreas Remotas: Los sistemas inalámbricos permiten la conexión en lugares donde el cableado no es práctico, como zonas rurales o terrenos difíciles.
Desastres Naturales: En situaciones de emergencia, las redes inalámbricas pueden ser más fáciles de establecer rápidamente.
6. Integración de Dispositivos Múltiples
Interconexión: Permiten conectar diferentes tipos de dispositivos (ordenadores, smartphones, impresoras) de manera eficiente.
IoT: Facilitan la comunicación con dispositivos del Internet de las Cosas (IoT), que suelen ser inalámbricos.
7. Actualizaciones y Mantenimiento
Actualizaciones Simples: Las actualizaciones de software y seguridad se pueden realizar de forma remota, sin necesidad de acceder físicamente a cada dispositivo.
Compatibilidad: Muchos dispositivos modernos están diseñados para trabajar de manera óptima en entornos inalámbricos.
8. Reducción del Desorden Físico
Ambientes Limpios: La ausencia de cables reduce el desorden y mejora la estética de los espacios de trabajo.
Mayor Espacio Utilizable: Libera espacio físico en escritorios y áreas de trabajo.
9. Interacción Social y Colaboración
Trabajo Colaborativo: Facilita la colaboración en tiempo real, ya que los usuarios pueden interactuar y compartir información sin restricciones físicas.
Uso Compartido de Recursos: Permite que varios usuarios accedan y compartan recursos como impresoras o archivos fácilmente.
Goldsmith, A. (2005). Wireless Communication. Cambridge University Press.
Desventajas de utilizar sistemas inalámbricos en la comunicación entre ordenadores
1. Interferencia y Congestión
Interferencia Electromagnética: Otros dispositivos, como microondas y teléfonos inalámbricos, pueden causar interferencias que afectan la calidad de la señal.
Congestión de Canales: En áreas densamente pobladas, muchas redes inalámbricas pueden operar en las mismas frecuencias, lo que puede causar congestión y disminución del rendimiento.
2. Limitaciones de Alcance
Distancia: La cobertura de una red inalámbrica puede ser limitada; a medida que te alejas del punto de acceso, la señal se debilita.
Obstáculos: Paredes, muebles y otros obstáculos pueden interferir con la propagación de la señal, reduciendo el alcance efectivo.
3. Seguridad
Vulnerabilidades: Las redes inalámbricas son más susceptibles a ataques de seguridad, como el acceso no autorizado y la interceptación de datos.
Criptografía: Aunque se pueden implementar medidas de seguridad, como WPA3, siempre existe el riesgo de que las vulnerabilidades sean explotadas.
4. Rendimiento Variable
Velocidades Inconsistentes: La velocidad de la conexión puede variar según la distancia al punto de acceso y la interferencia, lo que puede afectar el rendimiento en aplicaciones críticas.
Latencia: La comunicación inalámbrica puede tener mayor latencia en comparación con conexiones por cable, lo que puede ser un problema en aplicaciones sensibles al tiempo, como juegos en línea o videoconferencias.
5. Costo de Equipos
Hardware Especializado: A menudo, se requiere equipo adicional, como puntos de acceso y repetidores, para asegurar una buena cobertura, lo que puede incrementar los costos.
Mantenimiento y Actualizaciones: Los dispositivos inalámbricos pueden necesitar actualizaciones frecuentes para mantener la seguridad y el rendimiento.
6. Dependencia de la Energía
Baterías: Los dispositivos móviles dependen de baterías, lo que puede limitar su uso si no hay acceso a fuentes de energía.
Gestión de Energía: La necesidad de gestionar la energía puede ser un inconveniente en entornos donde los dispositivos están constantemente activos.
7. Problemas de Conexión
Conexiones Intermitentes: Los dispositivos pueden perder la conexión de manera intermitente, lo que afecta la estabilidad de la comunicación.
Dificultades de Configuración: Configurar redes inalámbricas puede ser más complicado que configurar redes por cable, especialmente para usuarios no técnicos.
8. Menor Capacidad de Ancho de Banda
Limitaciones de Capacidad: Las conexiones inalámbricas a menudo tienen un ancho de banda inferior al de las conexiones por cable, lo que puede afectar el rendimiento en redes con alta demanda.
Zhang, J., & Zhao, H. (2020). A survey on wireless communication systems: Challenges and opportunities. IEEE Communications Surveys & Tutorials, 22(3), 1820-1853. https://doi.org/10.1109/COMST.2020.2980242
Factores generan problemas en la radiación de las señales inalámbrica
Obstáculos Físicos
Edificios y Estructuras: Paredes, techos y muebles pueden bloquear o atenuar las señales, especialmente las de frecuencias más altas.
Terreno: Colinas, montañas y otros elementos geográficos pueden interferir con la propagación de las señales.
2. Interferencia Electromagnética
Dispositivos Electrónicos: Aparatos como microondas, teléfonos inalámbricos y otros dispositivos pueden causar interferencias en las señales de radio.
Redes Vecinas: Otras redes inalámbricas en la misma frecuencia pueden causar congestión y reducir la calidad de la señal.
3. Condiciones Atmosféricas
Lluvia y Nieve: La precipitación puede atenuar las señales, especialmente en frecuencias más altas como las microondas.
Humedad y Neblina: La alta humedad puede afectar la propagación de las ondas, generando pérdida de señal.
4. Distancia
Atenuación de la Señal: A medida que la distancia entre el transmisor y el receptor aumenta, la señal se debilita.
Obstrucciones: La distancia combinada con obstáculos puede reducir aún más la calidad de la señal.
5. Multipath Propagation
Reflexiones: Las señales pueden reflejarse en superficies, causando que diferentes versiones de la misma señal lleguen al receptor en momentos distintos, lo que puede resultar en interferencia.
6. Calidad del Equipamiento
Antenas Defectuosas: Antenas de baja calidad o mal orientadas pueden afectar la transmisión y recepción de señales.
Hardware Anticuado: Equipos de red obsoletos pueden no manejar adecuadamente las demandas de la comunicación moderna.
7. Ruido de Fondo
Ruido Térmico: La energía térmica en el entorno puede introducir ruido que afecta la calidad de la señal.
Ruido de Interferencia: Dispositivos en la misma frecuencia pueden generar ruido que degrade la comunicación.
8. Configuración de la Red
Configuración Incorrecta: Parámetros de red mal configurados pueden resultar en problemas de señal.
Frecuencia y Canal: Elegir un canal muy congestionado o inadecuado puede causar interferencias.
9. Problemas de Polarización
Desalineación de Polarización: La polarización de la señal (horizontal, vertical o circular) debe coincidir entre el transmisor y el receptor; de lo contrario, se puede perder calidad.
10. Movilidad de los Dispositivos
Movilidad: Los dispositivos móviles pueden cambiar de posición y experimentar cambios en la calidad de la señal debido a la variación en la línea de vista y los obstáculos.
Chen, L., & Wang, Y. (2019). Advanced technologies in wireless transmission systems. In Proceedings of the IEEE International Conference on Communications (ICC), 2019 (pp. 1-6). IEEE. https://doi.org/10.1109/ICC.2019.8761500
Tipos de redes inalámbricas
Redes de Área Personal (PAN)
Alcance: Muy corto, generalmente hasta 10 metros.
Ejemplo: Conexiones entre dispositivos personales como teléfonos, tabletas y computadoras a través de Bluetooth.
Uso: Transferencia de datos entre dispositivos cercanos, control de dispositivos inteligentes.
2. Redes de Área Local (WLAN)
Alcance: Generalmente de 100 a 300 metros.
Ejemplo: Redes Wi-Fi en hogares y oficinas.
Uso: Conexión de múltiples dispositivos a Internet y a recursos compartidos como impresoras.
3. Redes de Área Metropolitana (WMAN)
Alcance: Desde unos pocos kilómetros hasta decenas de kilómetros.
Ejemplo: Conexiones inalámbricas en áreas urbanas, como WiMAX.
Uso: Proporcionar conectividad a Internet en ciudades o áreas densamente pobladas.
4. Redes de Área Amplia (WWAN)
Alcance: Amplio, puede cubrir áreas muy grandes (hasta cientos de kilómetros).
Ejemplo: Redes celulares (3G, 4G, 5G).
Uso: Proporcionar conectividad a dispositivos móviles y acceso a Internet en áreas rurales y urbanas.
5. Redes Mesh (Malla)
Alcance: Variable, dependiendo de la cantidad de nodos interconectados.
Ejemplo: Redes que utilizan múltiples puntos de acceso que se comunican entre sí para extender la cobertura.
Uso: Ideal para áreas grandes donde se necesita una cobertura uniforme, como en campus o áreas rurales.
6. Redes de Sensores Inalámbricos
Alcance: Generalmente limitado a distancias cortas entre sensores.
Ejemplo: Redes que utilizan dispositivos pequeños para recoger datos ambientales (temperatura, humedad, etc.).
Uso: Monitoreo ambiental, automatización del hogar, aplicaciones de IoT (Internet de las Cosas).
7. Redes Ad-Hoc
Alcance: Variable, generalmente limitado a distancias cortas.
Ejemplo: Redes temporales formadas por dispositivos que se conectan entre sí directamente sin un punto de acceso central.
Uso: Compartición rápida de archivos o recursos en situaciones temporales, como en eventos o reuniones.
8. Redes de Comunicación Satelital
Alcance: Global, cubriendo áreas muy extensas.
Ejemplo: Conexiones a Internet a través de satélites.
Uso: Proporcionar acceso a Internet en áreas remotas donde las infraestructuras terrestres no están disponibles.
Federal Communications Commission. (2020). Technology transitions: Wireless communications and broadband (Report No. FCC-20-78). Retrieved from https://www.fcc.gov/technology-transitions
Tecnologías que existen para redes inalámbricas
Wi-Fi (IEEE 802.11)
Descripción: Conjunto de estándares para redes de área local inalámbrica (WLAN).
Versiones: Incluye múltiples generaciones, como 802.11a/b/g/n/ac/ax (Wi-Fi 6).
Uso: Conexiones a Internet en hogares, oficinas y espacios públicos.
2. Bluetooth
Descripción: Tecnología de comunicación inalámbrica de corto alcance para conectar dispositivos.
Alcance: Generalmente hasta 10 metros.
Uso: Transferencia de datos entre dispositivos personales, como teléfonos, auriculares y computadoras.
3. Zigbee
Descripción: Tecnología diseñada para aplicaciones de bajo consumo y bajo ancho de banda.
Alcance: Hasta 100 metros en espacios abiertos.
Uso: Automatización del hogar, redes de sensores y dispositivos IoT (Internet de las Cosas).
4. Z-Wave
Descripción: Similar a Zigbee, pero enfocado en la domótica.
Alcance: Alrededor de 30 metros, con posibilidad de crear redes en malla.
Uso: Control de dispositivos inteligentes en el hogar, como luces, cerraduras y termostatos.
5. WiMAX (IEEE 802.16)
Descripción: Tecnología para redes de área metropolitana (WMAN) que ofrece acceso a Internet de alta velocidad.
Alcance: Puede cubrir áreas de hasta 50 km.
Uso: Proporcionar conectividad en áreas urbanas y rurales.
6. LTE (Long Term Evolution) y 5G
Descripción: Tecnologías de redes celulares para comunicación inalámbrica de datos.
Alcance: Varía según la implementación, pero puede cubrir grandes áreas.
Uso: Acceso a Internet móvil de alta velocidad, aplicaciones de streaming y conectividad en dispositivos IoT.
7. LoRaWAN (Long Range Wide Area Network)
Descripción: Protocolo de red para comunicaciones de largo alcance y bajo consumo de energía.
Alcance: Hasta 15 km en áreas rurales.
Uso: Aplicaciones de IoT, como monitoreo ambiental y gestión de ciudades inteligentes.
8. Infrared (IR)
Descripción: Tecnología que utiliza radiación infrarroja para la comunicación a corta distancia.
Alcance: Muy limitado, generalmente unos pocos metros.
Uso: Control remoto de dispositivos, transferencias de datos entre dispositivos compatibles.
9. Satellite Communication
Descripción: Uso de satélites para la transmisión de datos a gran escala.
Alcance: Global.
Uso: Proporcionar acceso a Internet en áreas remotas donde las infraestructuras terrestres no están disponibles.
10. Near Field Communication (NFC)
Descripción: Tecnología de comunicación de corto alcance que permite la transferencia de datos entre dispositivos.
Alcance: Muy corto, generalmente hasta 10 cm.
Uso: Pagos móviles, intercambio de información entre dispositivos y autenticación.
Kumar, S. (2018). Analysis and design of wireless communication systems (Master's thesis, University of California). Retrieved from https://www.uc.edu/thesis/kumar
Características que se deben considerar para adquirir una antena
1. Tipo de Antena
Direccional vs. Omnidireccional: Las antenas direccionales concentran la señal en una dirección específica, mientras que las omnidireccionales transmiten y reciben en todas las direcciones. La elección dependerá de la cobertura deseada.
2. Frecuencia de Operación
Rango de Frecuencias: Asegúrate de que la antena sea compatible con las frecuencias que deseas utilizar. Las antenas están diseñadas para operar en rangos específicos (por ejemplo, 2.4 GHz, 5 GHz).
3. Ganancia
Medida de Eficiencia: La ganancia se mide en decibelios (dBi). Una mayor ganancia indica que la antena es más eficiente en la transmisión y recepción de señales. Las antenas con alta ganancia son ideales para largas distancias.
4. Patrón de Radiación
Cobertura: El patrón de radiación describe cómo la antena distribuye la señal en el espacio. Esto es crucial para determinar la cobertura y el alcance.
5. Impedancia
Compatibilidad: La impedancia de la antena (comúnmente 50 ohmios o 75 ohmios) debe coincidir con la del equipo con el que se va a usar (como el transmisor o receptor) para evitar pérdidas de señal.
6. Material y Construcción
Durabilidad: Considera el material de la antena y su resistencia a condiciones climáticas adversas. Antenas construidas con materiales resistentes a la corrosión son ideales para exteriores.
7. Tamaño y Forma
Espacio Disponible: El tamaño y la forma de la antena pueden afectar su instalación y su ubicación. Asegúrate de que se ajuste a tu espacio disponible y cumpla con tus requisitos estéticos.
8. Polarización
Orientación de la Señal: La polarización (horizontal, vertical o circular) de la antena debe coincidir con la de la señal que se va a recibir para maximizar la eficacia.
9. Pérdidas de Cables y Conectores
Calidad de los Cables: La calidad de los cables y conectores utilizados puede afectar la señal. Es importante considerar las pérdidas que pueden ocurrir en el cableado que conecta la antena al dispositivo.
10. Facilidad de Instalación
Requerimientos de Montaje: Verifica qué tipo de soportes o montajes se requieren para instalar la antena. Algunas antenas pueden requerir herramientas adicionales o instalaciones más complejas.
11. Costo
Presupuesto: Asegúrate de que el costo de la antena se ajuste a tu presupuesto, considerando que a menudo, una mayor calidad puede significar un mayor precio.
12. Opiniones y Reseñas
Investigación: Revisa opiniones y reseñas de otros usuarios para obtener información sobre el rendimiento de la antena en situaciones reales.
IEEE Communications Society. (2023). Wireless communications overview. Retrieved from https://www.comsoc.org/wireless-communications-overview
Consideraciones técnicas que deben considerar para adquirir un hardware WI-FI
1. Estándares Wi-Fi
Normativa (802.11): Asegúrate de que el hardware sea compatible con los estándares más recientes, como 802.11ac (Wi-Fi 5) o 802.11ax (Wi-Fi 6). Estos estándares ofrecen mejores velocidades y eficiencia en comparación con versiones anteriores.
2. Frecuencia de Operación
Bandas de Frecuencia: Busca hardware que opere en las bandas de 2.4 GHz y 5 GHz. La banda de 5 GHz ofrece mayor velocidad y menor interferencia, mientras que la de 2.4 GHz proporciona mejor alcance.
3. Velocidad de Transmisión
Capacidad de Ancho de Banda: Verifica las velocidades de transmisión teóricas (por ejemplo, Mbps o Gbps) que puede alcanzar el dispositivo. Considera tus necesidades de uso, como streaming, juegos o trabajo.
4. Número de Antenas
Múltiples Antenas: Los dispositivos con múltiples antenas (MIMO: Multiple Input Multiple Output) pueden manejar más datos simultáneamente y mejorar la cobertura y la calidad de la señal.
5. Tecnología MU-MIMO
Multiusuario: Asegúrate de que el hardware tenga soporte para MU-MIMO, que permite que el router comunique con varios dispositivos al mismo tiempo, mejorando la eficiencia de la red.
6. Seguridad
Protocolos de Seguridad: Verifica que el hardware soporte los protocolos de seguridad más actuales, como WPA3, para proteger tu red de accesos no autorizados.
7. Compatibilidad con Dispositivos
Dispositivos Conectados: Asegúrate de que el hardware sea compatible con tus dispositivos existentes, incluidos teléfonos, tablets y computadoras. Verifica las especificaciones de cada dispositivo.
8. Alcance y Cobertura
Rango Efectivo: Considera el alcance del hardware, especialmente si planeas usarlo en un área grande o con muchas obstrucciones. Puede ser útil optar por un router con tecnología de malla si necesitas cobertura en múltiples habitaciones.
9. Facilidad de Configuración
Interfaz de Usuario: Busca hardware que ofrezca una configuración fácil y una interfaz de usuario intuitiva, preferiblemente con una aplicación móvil para facilitar la gestión.
10. Capacidad de Manejo de Dispositivos
Número de Conexiones: Asegúrate de que el hardware pueda manejar el número de dispositivos que planeas conectar. Algunos routers tienen límites en el número de conexiones simultáneas.
11. Funciones Adicionales
Calidad de Servicio (QoS): Algunos dispositivos permiten priorizar el tráfico para aplicaciones específicas, como juegos o streaming.
Control Parental y Seguridad Adicional: Verifica si el hardware ofrece características adicionales de seguridad y control parental.
12. Actualizaciones de Firmware
Mantenimiento y Seguridad: Asegúrate de que el hardware reciba actualizaciones de firmware regulares para mejorar la seguridad y el rendimiento.
13. Opiniones y Reseñas
Investigación: Antes de comprar, investiga opiniones y reseñas de otros usuarios sobre el hardware que estás considerando para conocer su rendimiento y fiabilidad en situaciones reales.
Stallings, W. (2017). Wireless Communications and Networks (2nd ed.). Pearson.
Satélites artificiales
Los satélites artificiales son objetos creados por el ser humano que se envían al espacio para orbitar la Tierra o otros cuerpos celestes. Estos satélites desempeñan una variedad de funciones y tienen un impacto significativo en la vida cotidiana. Aquí te presento una descripción de los satélites artificiales, sus tipos y sus aplicaciones.
Tipos de Satélites Artificiales
Satélites de Comunicación
Función: Transmiten señales de televisión, radio y datos a través de largas distancias.
Ejemplo: Satélites de telecomunicaciones como Intelsat o SES.
Satélites de Observación de la Tierra
Función: Monitorean el clima, los recursos naturales, y realizan estudios ambientales.
Ejemplo: Landsat, MODIS.
Satélites Meteorológicos
Función: Proporcionan datos sobre las condiciones climáticas y ayudan en la predicción del tiempo.
Ejemplo: GOES (Geostationary Operational Environmental Satellites).
Satélites de Navegación
Función: Proporcionan información de posicionamiento y navegación.
Ejemplo: GPS (Global Positioning System), GLONASS, Galileo.
Satélites de Investigación Científica
Función: Realizan experimentos y observaciones científicas en el espacio.
Ejemplo: Hubble Space Telescope, International Space Station (ISS).
Satélites de Reconocimiento y Vigilancia
Función: Utilizados para espionaje y reconocimiento militar.
Ejemplo: Satélites espías de diferentes países.
Satélites de Tecnología de Detección
Función: Detectan fenómenos como terremotos, incendios forestales o cambios en el medio ambiente.
Ejemplo: Satélites de monitoreo de desastres.
Componentes de un Satélite
Carga Útil (Payload): El equipo que realiza las funciones específicas del satélite (cámaras, instrumentos de comunicación, etc.).
Sistema de Potencia: Proporciona energía al satélite, generalmente a través de paneles solares.
Sistema de Control de Actitud: Permite que el satélite mantenga la orientación correcta en el espacio.
Sistema de Comunicación: Permite la transmisión de datos hacia y desde el satélite.
Aplicaciones de los Satélites Artificiales
Telecomunicaciones: Facilitan la comunicación global, incluyendo llamadas telefónicas, transmisión de televisión y acceso a Internet.
Monitoreo Ambiental: Ayudan en la gestión de recursos naturales, seguimiento de desastres y estudios de cambio climático.
Navegación: Proporcionan servicios de localización para vehículos, aviones y dispositivos móviles.
Investigación Científica: Permiten la observación del universo, la investigación sobre la atmósfera y el espacio.
Yang, Y., & Wu, J. (2021). The future of wireless communication technologies. Journal of Network and Computer Applications, 172, 102863.
Antenas de transmisión
Antenas Omnidireccionales
Descripción: Emiten señales en todas las direcciones horizontalmente.
Uso: Comúnmente utilizadas en redes Wi-Fi, radio FM y sistemas de comunicación móvil.
Antenas Direccionales
Descripción: Enfocan la señal en una dirección específica, lo que aumenta la ganancia y el alcance.
Ejemplo: Antenas Yagi, parabólicas y paneles direccionales.
Uso: Transmisión a largas distancias, como en enlaces de microondas y comunicación satelital.
Antenas Parabólicas
Descripción: Tienen forma de plato y son altamente direccionales, utilizando un reflector para concentrar las señales.
Uso: Común en comunicaciones satelitales y televisión por satélite.
Antenas Dipolo
Descripción: Consisten en dos elementos conductores que emiten ondas en un patrón en forma de figura ocho.
Uso: Utilizadas en aplicaciones de radio y como elementos básicos en muchas configuraciones de antenas.
Antenas de Panel
Descripción: Tienen forma plana y pueden ser direccionales o omnidireccionales.
Uso: Común en instalaciones de redes inalámbricas y sistemas de comunicación móviles.
Antenas de Bobina (Loop Antennas)
Descripción: Consisten en un bucle de cable y son usadas principalmente en aplicaciones de baja frecuencia.
Uso: Emisión y recepción en radio de onda larga y media.
Características Clave de las Antenas de Transmisión
Ganancia
Definición: Medida de la capacidad de la antena para concentrar la energía en una dirección específica, generalmente expresada en decibelios (dBi).
Importancia: Antenas con mayor ganancia pueden transmitir señales más lejos y con mayor claridad.
Patrón de Radiación
Definición: Representa la distribución de la intensidad de la señal emitida en el espacio.
Importancia: Determina cómo se propagará la señal y en qué direcciones.
Impedancia
Definición: Resistencia al flujo de corriente en la antena, comúnmente 50 ohmios o 75 ohmios.
Importancia: Debe coincidir con la impedancia del equipo de transmisión para maximizar la transferencia de energía.
Frecuencia de Operación
Definición: La gama de frecuencias en las que la antena puede operar eficazmente.
Importancia: Diferentes aplicaciones requieren diferentes frecuencias, por lo que es crucial elegir la antena adecuada.
Polarización
Definición: La orientación de las ondas electromagnéticas (horizontal, vertical o circular).
Importancia: La polarización de la antena debe coincidir con la de la señal que se desea transmitir para maximizar la eficacia.
Aplicaciones de las Antenas de Transmisión
Telecomunicaciones: Emisión de señales de telefonía móvil, radio y televisión.
Redes Inalámbricas: Facilitar conexiones en redes Wi-Fi y otros sistemas de comunicación.
Satélites: Transmisión de datos y señales desde y hacia satélites en órbita.
Investigación Científica: Experimentos que requieren transmisión de datos a larga distancia.
Conclusión
Las antenas de transmisión son componentes esenciales en cualquier sistema de comunicación inalámbrica. La elección del tipo y características de la antena adecuada puede tener un impacto significativo en la calidad y el alcance de la señal, asegurando así una comunicación eficiente y efectiva.
Gupta, A., & Singh, R. (2022). Future trends in wireless transmission technologies. In 2022 IEEE Global Communications Conference (GLOBECOM) (pp. 1-6). IEEE. https://doi.org/10.1109/GLOBECOM46805.2022.9930514
2 notes
·
View notes