#Amniota
Explore tagged Tumblr posts
Text
Anthracodromeus longipes was an early reptile* that lived in what is now Ohio, USA, during the late Carbonifeorus about 307-305 million years ago.
(*or possibly a very reptile-like stem-amniote)
Around 20cm in total length (~8"), it had a rather lizard-like shape with a long body and a short tail. The digits on all four of its limbs were highly elongated with hooked claws, which appears to have been an adaptation for climbing.
It inhabited a coal forest dominated by lycopsid trees and seed ferns, and as one of the earliest known tetrapods to develop climbing behavior it would have had some ecological advantages over its relatives, being better able to escape from predators and access new food sources.
———
NixIllustration.com | Tumblr | Patreon
References:
Carroll, R. L., and Baird, D. "Carboniferous stem-reptiles of the family Romeriidae." Bulletin of The Museum of Comparative Zoology 143 (1972): 321–363. https://archive.org/details/biostor-696/mode/2up
Mann, Arjan, et al. "Digit and ungual morphology suggest adaptations for scansoriality in the late Carboniferous eureptile Anthracodromeus longipes." Frontiers in Earth Science 9 (2021): 675337. https://doi.org/10.3389/feart.2021.675337
Simões, Tiago R., et al. "Successive climate crises in the deep past drove the early evolution and radiation of reptiles." Science Advances 8.33 (2022): eabq1898. https://doi.org/10.1126/sciadv.abq1898
Wikipedia contributors. “Anthracodromeus” Wikipedia, 09 Jun. 2024, https://en.wikipedia.org/wiki/Anthracodromeus
126 notes
·
View notes
Video
Munchique Wood-Wren by Jay Packer Via Flickr: Endemic to the western Andes of Colombia, this highly sought-after wood-wren is found at higher elevations than the similar Gray-breasted Wood-Wren. Montezuma Road, Tatamá National Park, Colombia
#Animalia#Amniota#Aves#Reptilia#Vertebrata#Archosauromorpha#Chordata#Diapsida#Tetrapoda#Munchique Wood-Wren#Colombia#Troglodytidae (Wrens)#Passeriformes#South America#Animals#Birds#Henicorhina negreti#flickr
12 notes
·
View notes
Text
A Prologue to Amniotes
Part IV - The egg came first
Late Mississippian. It has been 40 million years since tetrapods first walked on land. Every generation since then, they have remained bound to the waters for at least one moment in their life cycle.
Despite their adaptations for walking on land, early tetrapod reproduction wasn't much different from that of their fish predecessors. Spawning, or external fertilization of an egg mass, with eggs covered in a gelatinous membrane laid in a body of water, prevending the permeable eggs from dessicating.
But things are now changing. While the mid-Carboniferous rainforests still provide safe, moist environments, reptiliomorphs have already begun adventuring further inland. As swamps left room to humid crevices to lay eggs in, creatures like Casineria also began to develop internal fertilization, refusing to leave their reproduction at the mercy of the elements.
Casineria kiddi, an early amniote relative by ДиБгд (CC-BY-SA 4.0)
Adventuring into even drier environments, ancestors of amniotes still had to solve two crucial problems. While a harder shell could prevent the egg from dessicating, it would doom the embryo to suffocation, by preventing it to get rid of carbon dioxide. Furthermore, the small size of the eggs - also constrained by gas exchange - limited the full development of the embryo before hatching.
To solve both of these issues, the outer layers of the eggs would have to be reshaped. The outer gelatinous layer was replaced by a fibrous membrane for protection, and later by the three layers known as extraembryonic membranes: the amnion, chorion and allantois. The innermost amnion would surround and protect the embryo, while the outer chorion and sac-like allantois take care of gas exchange and waste removal.
In the safety of the amniotic egg, the embryo was able to hatch considerably more developed than before. Skipping the larval stage, amniote youngs would hatch as miniatures of the adults, making them able to face the challenges of the Carboniferous world from the day of their birth.
Structure of the amniotic egg, by Lumen Learning (CC-BY)
As the Pennsylvanian began and climate started to dry out, later developments would perfect the ability of early amniotes to survive in drier, fully terrestrial environments. A thicker, less permeable skin will develop, incorporating keratin and preventing dessication. Cutaneous respiration, requiring the skin to be moist at all times, will give way to costal respiration, harnessing the power of the ribcage to expand and contract the lungs. Cutting their last ties with the water, amniotes had finally conquered the land.
On one fateful day, not long after the amniote body plan was perfected, one of the most decisive splits in vertebrate history would occur. A divergence of the amniotes into two major lineages, alternating domination of land, sea and sky for the next 320 million years. But sauropsids like Hylonomus would at first stay in the shadows. The stage of the Late Pennsylvanian would be left to their rivals and cousins, as forerunners like Archaeothyris paved the way for their own lineage: the synapsids.
Archaeothyris, one of the first known synapsids, by ArthurWeasley (CC BY-SA 3.0)
15 notes
·
View notes
Text
found a decapitated wild rabbit in a neighbor’s yard, pics under the cut
#chordata#sarcopterygii#tetrapoda#amniota#synapsida#mammalia#theria#eutheria#boreoeutheria#euarchontoglires#glires#lagomorpha#leporidae#ok that’s enough clades#won’t bother with all those in the future just having fun with them#oh also#animal death#that guy is super dead
0 notes
Text
New day, tree time!
guys i just found out about this site that does a daily guessing game, it’s phylogenetic wordle- so fun!!!
30K notes
·
View notes
Note
Birds are class Aves.
Sure, under Linnaean taxonomy. But, well,
A) Linnaeus was a eugenecist so his scientific opinions are suspect and his morality is awful
B) he didn't know about evolution
C) he didn't know about prehistoric life
so his classification system? Sucks ass. It doesn't work anymore. It no longer reflects the diversity of life.
Instead, scientists - almost across the board, now - use Clades, or evolutionary relationships. No rankings, no hierarchies, just clades. It allows us to properly place prehistoric life, it removes our reliance on traits (which are almost always arbitrary) in classifying organisms, and allows us to communicate the history of life just by talking about their relationships.
So, for your own edification, here's the full classification of birds as we currently know it, from biggest to smallest:
Biota/Earth-Based Life
Archaeans
Proteoarchaeota
Asgardians (Eukaryomorphans)
Eukaryota (note: Proteobacteria were added to an asgardian Eukaryote to form mitochondria)
Amorphea
Obazoa
Opisthokonts
Holozoa
Filozoa
Choanozoa
Metazoa (Animals)
ParaHoxozoa (Hox genes show up)
Planulozoa
Bilateria (all bilateran animals)
Nephrozoa
Deuterostomia (Deuterostomes)
Chordata (Chordates)
Olfactores
Vertebrata (Vertebrates)
Gnathostomata (Jawed Vertebrates)
Eugnathostomata
Osteichthyes (Bony Vertebrates)
Sarcopterygii (Lobe-Finned Fish)
Rhipidistia
Tetrapodomorpha
Eotetrapodiformes
Elpistostegalia
Stegocephalia
Tetrapoda (Tetrapods)
Reptiliomorpha
Amniota (animals that lay amniotic eggs, or evolved from ones that did)
Sauropsida/Reptilia (reptiles sensu lato)
Eureptilia
Diapsida
Neodiapsida
Sauria (reptiles sensu stricto)
Archelosauria
Archosauromorpha
Crocopoda
Archosauriformes
Eucrocopoda
Crurotarsi
Archosauria
Avemetatarsalia (Bird-line Archosaurs, birds sensu lato)
Ornithodira (Appearance of feathers, warm bloodedness)
Dinosauromorpha
Dinosauriformes
Dracohors
Dinosauria (fully upright posture; All Dinosaurs)
Saurischia (bird like bones & lungs)
Eusaurischia
Theropoda (permanently bipedal group)
Neotheropoda
Averostra
Tetanurae
Orionides
Avetheropoda
Coelurosauria
Tyrannoraptora
Maniraptoromorpha
Neocoelurosauria
Maniraptoriformes (feathered wings on arms)
Maniraptora
Pennaraptora
Paraves (fully sized winges, probable flighted ancestor)
Avialae
Avebrevicauda
Pygostylia (bird tails)
Ornithothoraces
Euornithes (wing configuration like modern birds)
Ornithuromorpha
Ornithurae
Neornithes (modern birds, with fully modern bird beaks)
idk if this was a gotcha, trying to be helpful, or genuine confusion, but here you go.
all of this, ftr, is on wikipedia, and you could have looked it up yourself.
676 notes
·
View notes
Text
Alright here's the very first batch of alien animals we have, first 7 classes out of 120. Starting off with Superphylum Near Bilateral
(AN1) Clade: Nephrozoa
A clade of animals that possess a distinct oral and anal end during the first stage of development.
(AN1 A) Clade Bilatera
A clade of animals that are symmetrical on either side of the sagittal plane and retain their oral and anal ends throughout most of their lifetime.
Superphylum Near Bilateral
A taxa of animals possessing a solidified nerve structure or adjacent notochord-analogous structure in the initial stage of development; occupying terrestrial or the upper stratification of the aquatic biosphere.
(AN1 A1) Clade Quasichordata
A clade of near bilaterans that possess a dorsal fibrous nerve column functionally similar to a notochord at some point in their life cycle.
PHYLUM ENDOSPINAL CHORDATA
Phylum contains a notochord at some point in the life cycle, with an internal dense skeleton made typically of bone or cartilage. Gametangia positioned posterior to abdominal tagma. Dermal protection by mucus membrane or keratin.
(AN1 A1-a) Clade Amniota
Clade using amniotic fluid to support, protect, and provide nutrients to embryos.
(AN1 A1-ai) Clade Reptilia (Includes Mammalian Reptiles and Non-Mammalian Reptiles)
Clade of amniotes that possess an outer dermal layer of scale plates, a mineralized skeleton of bone, defense structures of keratin, and a coccyx that extends into a posterior tail.
Class Mammalian Reptiles
Class of reptiles that maintain heat through endothermy, give live birth to young, possess mammary glands, and typically dual integumentation.
Class Non-Mammalian Reptiles
Class of reptiles that maintain heat through exothermy, develop young through eggs, possess yolk inside eggs, and typically have single integumentation.
(AN1 A1-aii) Clade Membrana (Includes Membranous Dermates)
Clade of amniotes that possess an outer dermal layer of mucosal membrane, an internal skeleton of cartilage, and an internal circulation structure consisting of a hemocoel.
Class Membranous Dermates
Class of membranes that develop only an outer mucus membrane for protection and do not use shells or rocks to protect themselves.
(AN1 A1-aiii) Clade Pescada (Includes Cartilage Fish and Bone Fish)
Clade of amniotes that possess an outer dermal layer of keratin scales and a passive respiration through gills.
Class Cartilage Fish
Class of pescada that have an internal skeleton of cartilage and do not have fixed jaws.
Class Bone Fish
Class of pescada that have an internal skeleton of bone and have fixed jaws.
(AN1 A1-b) Clade Cephalopoda (Includes Cephalopodal)
Clade using a mucosal sac to house embryos and transfer from a polyp to a medusoid stage.
Class Cephalopodal
Class using a mucus membrane, a ringed oral and anal end, and six dense muscled tentacles for movement.
(AN1 A1-c) Clade Oothecae (Includes Exoskeletal Endoskeletal)
Clade using ootheca ovoviviparity which detaches before maturity.
Class Exoskeletal Endoskeletal
Class utilizing both an internal mineralized skeleton in tandem with a dense plated mineralized exoskeleton.
#art#digital art#artists on tumblr#worldbuilding#jomgol#spec bio#spec evo#speculative biology#speculative evolution#xenobiology#speculative zoology#speculative worldbuilding
13 notes
·
View notes
Text
50 metazooa win (53 games)
one of the funnier trees/series of guesses
[ID: The metazooa, a cladistics puzzle tree, guessed in 6. Starting with parakett under amniota, then mouse under euarchontoglires. Under homininae is human then gorilla. And finally under pan is chimpanzee then the answer, bonobo. END]
like. they did some monty hall shit to me
Pan (genus)
The genus Pan consists of two extant species: the chimpanzee and the bonobo. Taxonomically, these two ape species are collectively termed panins.
good on me for specificity? completionism?
8 notes
·
View notes
Text
Introduction
Hi! You can call me void, my pronouns are they/them. I wanted to make a short intro to tell you what this blog is about.
If you don't know, metazooa is a game where you have to guess the animal of the day, by going through a tree where each guess tells you the closest common groups between the animals (eg: Laurasiatheria, Amniota). I decided to make this blog, somewhat inspired by the art everyday accounts i've seen on here, where I will draw the animal of the day hopefully everyday if I can. I will also share my score of the day, using the format m[total amount of guesses]/[amount of mistakes] (eg: m6/2). The posts will likely be made towards the end of the day (GMT) as to avoid spoiling the answer for anyone.
I hope anyone who finds this blog and follows along enjoys the journey, and that you have a good rest of your day/night.
-Void
3 notes
·
View notes
Text
HTTYD: Dragon Taxonomy
Kingdom: Animalia
Phylum: Chordata
Clade: Amniota
Clade: Synapsida
Clade: Therapsida
Clade: Dercomaiia
Clade: Draconomorpha
Class: Dracontes
Superorders: 2
Orders: 8
Families: 26
Superorder
Order
Family
Gronckle
Hotburple
Quaken
Goregutter
Red Death
Bewilderbeast
Cavern Crasher
Family
Eruptodon
Sentinel
/
Order
Family
Mudraker
Thunderclaw
Family
Snow Wraith
Snifflehunch
Windgnasher
Family
Snafflefang
Shovelhelm
Moldruffle
/
Order
Family
Hideous Zippleback
Scauldron
Family
Hobgobbler
Submaripper
Family
Buffalord
/
Order
Family
Night Fury
Light Fury
Sand Wraith
Woolly Howl
Family
Stormcutter
/
Order
Family
Thunderdrum
Shellfire
Family
Singetail
Smothering Smokebreath
Changewing
Snaptrapper
/
Order
Family
Flightmare
Sweet Death
Shockjaw
Firewyrm
Thunderpede
Flame Whipper
Family
Shadow Wing
Family
Sandbuster
Slitherwing
Family
Grapple Grounder
Grim Gnasher
Family
Egg Biter
Deadly Nadder
Scuttleclaw
Family
Dramillion
Family
Rumblehorn
Triple Stryke
Deathgripper
/
Superorder
Order
Family
Razorwhip
Windstriker
Death Song
Slithersong
Family
Devilish Dervish
Thornridge
Threadtail
Family
Monstrous Nightmare
Armorwing
Boneknapper
Night/Cave/Fire Terror
Prickleboggle
Terrible Terror
Family
Typhoomerang
Silver Phantom
Timberjack
/
Order
Family
Sword Stealer
Shivertooth
Windwalker
Groncicle
Hackatoo
Seashocker
Family
Hobblegrunt
Skrill
Whispering Death
Screaming Death
Family
Raincutter
Sliquifier
Tide Glider
Speed Stinger
5 notes
·
View notes
Text
Te leemos las noticias aquí Las tortugas de cuello oculto Apalone spinifera y Staurotypus triporcatus, cuyo genoma ha sido ensamblado. / Nicole Valenzuela Un equipo internacional de científicos han ensamblado los genomas de dos especies de tortugas de cuello oculto inéditos hasta ahora. Los resultados contribuirán al desarrollo de estrategias más efectivas de conservación de estos animales y al estudio de la evolución del genoma y la organización cromosómica en los vertebrados. Un estudio liderado por las investigadoras Aurora Ruiz-Herrera (UAB) y Nicole Valenzuela de la Universidad Estatal de Iowa (EE UU), con la participación del Instituto de Biología Evolutiva (CSIC-UPF) y del Earlham College, destaca la importancia del papel de la cromatina —la estructura tridimensional en la que el material genético se pliega y empaqueta dentro del núcleo de la célula— en la regulación de la función los genes y su impacto en la evolución y especiación. Las investigadoras han ensamblado de novo (sin un modelo de referencia previo) el genoma completo de dos especies de tortugas criptodiras, comúnmente denominadas tortugas de cuello corto, combinando tecnologías de secuenciación y expresión de genes. Se trata de dos linajes en los que los cromosomas sexuales han evolucionado de forma independiente: uno con cromosomas XX/XY (el tipo que tenemos los humanos y otros mamíferos) y el otro con cromosomas ZZ/ZW (presente en aves y mariposas). Además, han identificado una nueva conformación tridimensional de la cromatina en ambos linajes: más allá de los eventos de fusión y fisión en los genomas lineales, han detectado un patrón de plegamiento cromosómico que permite interacciones entre los centrómeros y los telómeros. Los hallazgos aportan nuevas claves sobre la estructura 3D de la cromatina en amniotas, grupo filogenético al que pertenecen reptiles, aves y mamíferos. “Sugerimos que el patrón divergente encontrado en las tortugas se originó a partir de un estado existente en el ancestro de los amniotas que presentaba una configuración nuclear con asociaciones extensas entre sus cromosomas. Estas asociaciones se preservaron durante el reordenamiento del genoma lineal en tortugas y otros vertebrados”, afirma Valenzuela. Ruiz-Herrera de la UAB, destaca: “Los hallazgos amplían nuestro conocimiento sobre la evolución de los cromosomas sexuales y ofrecen una base sólida para futuras investigaciones sobre la evolución del genoma y la organización cromosómica en vertebrados”. Modelo clave para la investigación científica En el artículo, las investigadoras destacan que el estudio del genoma de las tortugas proporciona información crucial que podría transformar nuestra comprensión de la biología y la evolución. Su longevidad y resistencia a enfermedades las convierten en un modelo único para estudios científicos que abarcan desde la biomedicina hasta la conservación de especies. Descifrar su genoma es clave para identificar los genes responsables de estos rasgos, y podría permitir avanzar en la medicina humana, especialmente en áreas como el envejecimiento y la resistencia a enfermedades. Además, el genoma de las tortugas ofrece una ventana única a la evolución: estas especies de reptiles han existido durante más de 250 millones de años, es decir, han sobrevivido a eventos de extinción masiva y han sabido adaptarse a varios entornos. Estudiar su ADN ayuda a entender mejor los mecanismos de adaptación y supervivencia, claves para la conservación de las propias tortugas y también para otras especies en peligro. Los primeros ensamblajes de genomas de tortugas se publicaron hace más de una década. Desde entonces, se han reportado doce ensamblajes de genomas de quelonios, nueve de ellos con la secuencia de sus genes identificados. “Los nuevos ensamblajes generados se añaden ahora a esta lista y reflejan la importancia de los recursos genómicos de alta calidad para el avance de la biología evolutiva y del desarrollo”, concluye R...
View On WordPress
0 notes
Video
Green-and-black Fruiteater by Jay Packer Via Flickr: Reserva Ecológica Río Blanco, Colombia
#Animalia#Amniota#Aves#Cotingidae (Cotingas)#Vertebrata#Archosauromorpha#Chordata#Reptilia#Tetrapoda#Diapsida#Colombia#Green-and-black Fruiteater#Passeriformes#South America#Animals#Birds#Pipreola riefferii#flickr
7 notes
·
View notes
Text
nosso co ancestral em comum com os sapos viveu no fim do devoniano, inicio do carbonifero, ha 350 milhões de anos. fazemos parte do mesmo grupo, amniota.
Os amniotas são caracterizados por possuírem uma membrana amniótica que envolve o embrião, formando o saco amniótico. O líquido amniótico, presente na cavidade do âmnio, protege o embrião de choques mecânicos, desidratação e patógenos. Além disso, permite que o feto se movimente e se desenvolva muscularmente. junto com os anfíbios, fazemos parte de um grande grupo chamado tetrapoda, animais de quatro membros.
0 notes
Text
La Salamandra Gigante que Reescribe la Historia de los Tetrápodos
ENG version ITA version
Cuando abrimos libros de paleontología y viajamos atrás en el tiempo entre nuestros ancestros, encontramos que los tetrápodos, los primeros vertebrados de cuatro patas, a menudo se describen como animales estrechamente vinculados a los humedales ecuatoriales del período Carbonífero, que abarcó desde hace 358.9 hasta 298.9 millones de años. A medida que seguimos leyendo, descubrimos que durante el Carbonífero tardío, alrededor de hace 307 millones de años, los tetrápodos más arcaicos fueron rápidamente reemplazados por los ancestros de los amniotas modernos (vertebrados con huevos amnióticos, como reptiles, dinosaurios, aves y mamíferos) y los lisanfibios (anfibios modernos como ranas, salamandras y cecilias). Estas hipótesis se basan principalmente en fósiles encontrados en la región paleoequatorial de Pangea, conocida como Laurussia, que incluía América del Norte y Europa.
Sin embargo, un descubrimiento inesperado en Namibia sugiere una distribución más global de este grupo de animales. Un equipo de investigación liderado por los doctores Claudia A. Marsicano y Jason D. Pardo encontró restos fósiles en el valle del río Ugab, en Damaraland, conservados en la piedra fangosa de un antiguo lago de agua dulce. Los restos han sido datados en 280 millones de años, justo al comienzo del período Pérmico, y provienen de depósitos de alta paleolatitud (aproximadamente 55° S), una región que formaba parte del supercontinente Gondwana. La datación y la ubicación única de este hallazgo demuestran que los tetrápodos ya estaban bien establecidos en las latitudes templadas-frías de Gondwana durante las etapas finales de la desglaciación del Carbonífero-Pérmico.
Al descubrir los restos, los investigadores inmediatamente se dieron cuenta de que este antiguo tetrápodo representaba una nueva especie, que ha sido nombrada Gaiasia jennyae. El nombre se refiere a la Formación Gai-As y honra a Jenny Clack (1947-2020), una científica cuyas descubrimientos fueron fundamentales en el estudio de los primeros tetrápodos. El animal vivió durante el período Pérmico, mucho antes de la aparición de los primeros dinosaurios. Las características de Gaiasia jennyae indican que era un prototetrápodo, una forma de transición entre los peces y los primeros tetrápodos terrestres. Los fósiles, que incluyen un esqueleto casi completo de un adulto de unos 3 metros de largo, son los más grandes jamás descubiertos para este tipo de vertebrado. El análisis de los fósiles reveló una cabeza ancha y plana, de casi 60 centímetros de largo, unida a un cuerpo de 2.5 metros. La estructura del cráneo, adornado con colmillos inusualmente grandes y curvados, sugiere que este animal también era un formidable depredador, probablemente un cazador de peces en las aguas pantanosas y lagos de la región. Gaiasia jennyae todavía presenta rasgos acuáticos, como branquias y extremidades subdesarrolladas, que le permitían vivir tanto en el agua como en la tierra.
El descubrimiento de esta especie en Namibia es particularmente significativo ya que desafía la hipótesis anterior de que los primeros tetrápodos gigantes estaban confinados al hemisferio norte durante la transición del Carbonífero-Pérmico. Esta nueva perspectiva sugiere que adaptaciones significativas en la radiación inicial de los tetrápodos ocurrieron fuera de las cuencas bien muestreadas de la Pangea paleoequatorial. La diversificación y las dinámicas de extinción de los tetrápodos durante el Paleozoico tardío podrían, por lo tanto, haber sido mucho más complejas y globalmente extendidas de lo que se pensaba anteriormente.
fuente
1 note
·
View note
Text
yes, I know wikipedia says "reptilia" is a subset of sauropsida, but that is hardly a consensus/universal agreement. Plus, this is a silly tumblr poll, and I enjoy silliness. (Including an option does not mean I endorse it). Some pros and cons are below. don't worry, I plan on doing this for other holdover linnean names folks can't let go of - fish, amphibian, bird, mammal, bug...
Pro to Reptiliomorpha: no way you're leaving anything out Con to Reptiliomorpha:
Pro to Amniota: "mammal-like reptile" stays Con to Amniota: it is absolute madness to consider mammals reptiles, that is such a deep divergence
Pro to Sauropsida: mammals are left out, as are all synapsids, but most things called reptiles stay in (as do birds) Con to Sauropsida: people will still call Dimetrodon a reptile and we will never know peace
Pro to Eureptilia: excluding parareptiles which are just weird enough that you could do it Con to Eureptilia: it's somewhat arbitrary and excludes a bunch of things we'd call reptiles today
Pro to Diapsida: being a diapsid is usually considered a major feature of reptiles, esp now we know turtles evolved from diapsids Con to Diapsida: it's somewhat arbitrary and excludes a bunch of things we'd call reptiles today
Pro to Sauria: crown group of living reptiles Con to Sauria: ichthyosaurs (maybe) & a bunch of other reptile like things are excluded
Pro to Lepidosauromorpha: birds aren't called reptiles Con to Lepidosauromorpha: crocodiles, turtles, pterosaurs, nonavian dinosaurs, and many more aren't reptiles
#reptiles#palaeoblr#taxonomy#animals#herpetofauna#I do this to sow chaos#and wait for my beta readers to get back on chapter one#and avoid doing my research#don't tell my advisor
133 notes
·
View notes