Tumgik
#vehicle battery market demand
blogaarti · 1 year
Text
South Africa Vehicle Battery Market :Industry Growth, Size, Trends and Forecast Analysis Report to 2025
Fairfield Market Research, a leading market intelligence firm, has unveiled a comprehensive report highlighting a positive growth trajectory for the vehicle battery market. With the increasing adoption of e-mobility and the nation's commitment to zero-emission transportation in the coming decade, vehicle battery sales are projected to exceed US$43 billion by the end of 2030. The market is expected to witness a steady CAGR of 4.6%, driven by advancements in battery technology.
For More Industry Insights Read: https://www.fairfieldmarketresearch.com/report/vehicle-battery-market
According to the report, lithium-ion batteries, renowned for their longer lifespan, higher energy density, and enhanced safety features, are poised to experience an impressive 15% sales growth throughout the forecast period. These batteries will remain the most sought-after type, playing a vital role in the electrification of vehicles. 
Forecasts for the auto industry indicate a strong possibility of electric vehicles outnumbering conventional vehicles in the next few decades, propelled by the growing global sustainable mobility movement. This transition towards electric vehicles will contribute to the buoyancy of vehicle battery sales. The role of governmental and non-governmental entities will be crucial as they announce substantial investments and initiatives to promote electric vehicles, boost battery technologies, and accelerate the development of EV charging infrastructure. The advancements in battery technology hold the promise of enhancing performance, extending battery lifespan, and improving safety, further supporting the surge in electric vehicle sales. 
While North American and European nations lead in demand generation for electric vehicles due to their regulatory support, South Africa is projected to benefit from a transformation in its regulatory framework, favoring electric vehicles. This shift will contribute to the country's growth in the vehicle battery market. 
China, known as the world's largest manufacturing hub, experienced the impact of the COVID-19 pandemic, including a significant decline in auto sales in 2020. However, the Chinese market quickly rebounded as the crisis subsided. Currently, China houses over 45% of the world's total battery manufacturing brands and continues to lead the vehicle battery landscape in the Asia Pacific region. Additionally, high-potential markets in the region, including Japan and South Korea, are expected to capture a substantial share of the market. 
The report also provides a detailed analysis of key competitors in the global vehicle battery market. Prominent market players such as BYD Company Limited, Johnson Controls International PLC, Panasonic Corporation, SAMSUNG SDI Co., Ltd., LG Chem Ltd., and Contemporary Amperex Technology Co., Limited have been profiled in the report. These leading battery manufacturers are anticipated to collaborate with researchers to drive research and development efforts, focusing on innovative battery technologies. Notably, researchers and start-ups are expected to prioritize the development of high-density vehicle batteries, with a focus on achieving faster charging capabilities and increased storage capacity.
For More Information Visit: https://www.fairfieldmarketresearch.com/
0 notes
Text
Global Battery Market: Projected Development During 2024-2032
The global battery market is anticipated to grow at a compound annual growth rate of 15.79% from the forecast period of 2024 to 2032. Read our Press Release
According to Triton’s research report, the Global Battery Market report is sectioned by Battery Type (Secondary Battery, Primary Battery), Technology (Lead-Acid, Lithium-Ion, Nickel-Cadmium, Nickel Metal Hydride, Nickel-Zinc (NiZn), Flow, Sodium-Sulfur (NaS), Zinc-Manganese Dioxide, Small Sealed Lead-Acid, Other Technologies), End-Use (Automotive Batteries, Industrial Batteries, Portable Batteries, Power Tools Batteries, SLI Batteries, Other End-Uses), and Regional (North America, Europe, Asia-Pacific, Latin America, Middle East and Africa)
The report highlights the Market Summary, Industry Outlook, Impact Analysis, Porter’s Five Forces Analysis, Market Attractiveness Index, Regulatory Framework, Key Buying Impact Analysis, Supply Chain Analysis, Key Market Strategies, Market Drivers, Challenge, Opportunities, Analyst Perspective, Competitive Landscape, Research Methodology, and Scope. It also provides Global Market Size Forecasts & Analysis (2024-2032).
According to Triton Market Research, the global battery market is anticipated to grow at a compound annual growth rate of 15.79% from 2024 to 2032.
Tumblr media
A battery is a device that converts stored chemical energy into electrical energy as needed. It comprises electrochemical cells, each containing electrodes and an electrolyte. Batteries are crucial in various sectors, including consumer electronics, automotive, energy storage, and industrial applications. 
Several factors are creating lucrative opportunities for the battery market globally, including a growing focus on second-life battery applications, demand for larger battery packs, and development in battery technologies. As electric vehicle batteries approach the end of their primary lifespan, there is a growing effort to explore their potential for second-life applications. These batteries could be repurposed for less demanding uses, such as backup power or grid balancing services. Additionally, ongoing research aims to refine the repurposing process and extend the batteries’ overall longevity.
However, the battery market’s expansion is limited owing to issues pertaining to battery recycling, raw material cost fluctuations, and safety concerns. 
The Asia-Pacific is set to become the fastest-growing region in the battery market. In both advanced and emerging economies across the region, the adoption of electric vehicles is steadily gaining momentum. China stands out as a global leader in electric vehicle sales, while countries like India are actively upgrading their public transportation networks to accommodate electric vehicles. This rising demand for electric vehicles serves as a primary catalyst driving the growth of the battery market in the region.
The major companies in the battery market consist of Johnson Controls Inc, GS Yuasa International Ltd, Samsung SDI Co Ltd, Exide Technologies, Panasonic Corporation, Enersys, BYD Company Limited, A123 Systems LLC, Saft Groupe SA, and C&D Technologies Inc. 
The threat of new entrants in the global battery market is assessed as low. While demand for batteries is robust, the barriers to entry are considerable. New players face significant initial costs, compliance with environmental regulations, and adherence to government policies. Establishing a manufacturing facility entails substantial upfront and ongoing expenses, posing a challenge to newcomers. Moreover, establishing a brand presence in a highly competitive market and matching the quality and product range of established firms is daunting. As a result, the overall threat posed by new entrants in the global market is expected to remain subdued throughout the forecast period.
0 notes
techdriveplay · 3 months
Text
What is the Average EV Range in 2024?
Electric vehicles (EVs) have seen remarkable advancements over the past few years, making them more viable for everyday use. As of 2024, the average EV range has become a critical factor for consumers considering the shift from traditional combustion engines to electric power. In 2024, the average EV range is approximately 300 miles (483 kilometers) on a single charge. This is a significant…
Tumblr media
View On WordPress
1 note · View note
reasonsforhope · 4 months
Text
Green energy is in its heyday. 
Renewable energy sources now account for 22% of the nation’s electricity, and solar has skyrocketed eight times over in the last decade. This spring in California, wind, water, and solar power energy sources exceeded expectations, accounting for an average of 61.5 percent of the state's electricity demand across 52 days. 
But green energy has a lithium problem. Lithium batteries control more than 90% of the global grid battery storage market. 
That’s not just cell phones, laptops, electric toothbrushes, and tools. Scooters, e-bikes, hybrids, and electric vehicles all rely on rechargeable lithium batteries to get going. 
Fortunately, this past week, Natron Energy launched its first-ever commercial-scale production of sodium-ion batteries in the U.S. 
“Sodium-ion batteries offer a unique alternative to lithium-ion, with higher power, faster recharge, longer lifecycle and a completely safe and stable chemistry,” said Colin Wessells — Natron Founder and Co-CEO — at the kick-off event in Michigan. 
The new sodium-ion batteries charge and discharge at rates 10 times faster than lithium-ion, with an estimated lifespan of 50,000 cycles.
Wessells said that using sodium as a primary mineral alternative eliminates industry-wide issues of worker negligence, geopolitical disruption, and the “questionable environmental impacts” inextricably linked to lithium mining. 
“The electrification of our economy is dependent on the development and production of new, innovative energy storage solutions,” Wessells said. 
Why are sodium batteries a better alternative to lithium?
The birth and death cycle of lithium is shadowed in environmental destruction. The process of extracting lithium pollutes the water, air, and soil, and when it’s eventually discarded, the flammable batteries are prone to bursting into flames and burning out in landfills. 
There’s also a human cost. Lithium-ion materials like cobalt and nickel are not only harder to source and procure, but their supply chains are also overwhelmingly attributed to hazardous working conditions and child labor law violations. 
Sodium, on the other hand, is estimated to be 1,000 times more abundant in the earth’s crust than lithium. 
“Unlike lithium, sodium can be produced from an abundant material: salt,” engineer Casey Crownhart wrote ​​in the MIT Technology Review. “Because the raw ingredients are cheap and widely available, there’s potential for sodium-ion batteries to be significantly less expensive than their lithium-ion counterparts if more companies start making more of them.”
What will these batteries be used for?
Right now, Natron has its focus set on AI models and data storage centers, which consume hefty amounts of energy. In 2023, the MIT Technology Review reported that one AI model can emit more than 626,00 pounds of carbon dioxide equivalent. 
“We expect our battery solutions will be used to power the explosive growth in data centers used for Artificial Intelligence,” said Wendell Brooks, co-CEO of Natron. 
“With the start of commercial-scale production here in Michigan, we are well-positioned to capitalize on the growing demand for efficient, safe, and reliable battery energy storage.”
The fast-charging energy alternative also has limitless potential on a consumer level, and Natron is eying telecommunications and EV fast-charging once it begins servicing AI data storage centers in June. 
On a larger scale, sodium-ion batteries could radically change the manufacturing and production sectors — from housing energy to lower electricity costs in warehouses, to charging backup stations and powering electric vehicles, trucks, forklifts, and so on. 
“I founded Natron because we saw climate change as the defining problem of our time,” Wessells said. “We believe batteries have a role to play.”
-via GoodGoodGood, May 3, 2024
--
Note: I wanted to make sure this was legit (scientifically and in general), and I'm happy to report that it really is! x, x, x, x
3K notes · View notes
rahulcmi · 1 year
Text
Global Lithium Hydroxide Market Is Estimated To Witness High Growth Owing To Increasing Demand for Lithium-Ion Batteries
Tumblr media
The global Lithium Hydroxide Market is estimated to be valued at USD 1389.6 million in 2022 and is expected to exhibit a CAGR of 6.8% over the forecast period 2022-2032, as highlighted in a new report published by Coherent Market Insights.
A) Market Overview:
Lithium hydroxide is a white crystalline compound used primarily as a key raw material in the production of lithium-ion batteries. These batteries are extensively used in the automotive industry, consumer electronics, energy storage systems, and various other applications. The increasing demand for electric vehicles and portable electronic devices is driving the growth of the global lithium hydroxide market.
B) Market Dynamics:
The two key drivers of the Lithium Hydroxide Market are the growing demand for electric vehicles and the rapid expansion of the consumer electronics industry. With the increasing concern for environmental sustainability and the government initiatives to promote electric vehicles, the demand for lithium-ion batteries is expected to surge. Moreover, the rising adoption of smartphones and other portable electronic devices is fueling the demand for lithium hydroxide.
C) Segment Analysis:
The Lithium Hydroxide Market Segmentation can be based on application. The dominating segment in this market is the lithium-ion batteries segment. Lithium hydroxide is a critical component in the production of lithium-ion batteries, which are extensively used in electric vehicles, smartphones, laptops, and other portable devices. The growing popularity of electric vehicles and the increasing consumer demand for advanced electronic devices are driving the growth of this segment.
D) PEST Analysis:
- Political: The political stability and government regulations play a crucial role in the growth of the lithium hydroxide market. Government incentives and initiatives to promote the adoption of electric vehicles and renewable energy sources are driving the demand for lithium hydroxide.
- Economic: The economic growth of emerging economies and increasing disposable incomes are contributing to the growth of the consumer electronics industry, thereby boosting the demand for lithium hydroxide.
- Social: The increasing awareness of environmental sustainability and the need for clean energy solutions are driving the demand for lithium-ion batteries, thereby driving the growth of the lithium hydroxide market.
- Technological: Technological advancements in lithium-ion battery technology, such as improved energy density and longer battery life, are fueling the demand for lithium hydroxide.
E) Key Takeaways:
- The global Lithium Hydroxide Market is expected to witness high growth, exhibiting a CAGR of 6.8% over the forecast period, due to increasing demand for lithium-ion batteries in the automotive and consumer electronics industries.
- The Asia-Pacific region is expected to be the fastest-growing and dominating region in the lithium hydroxide market, driven by the rapid adoption of electric vehicles and the presence of major battery manufacturers in countries like China and Japan.
- Key players operating in the global Lithium Hydroxide Market include FMC Corporation, Sociedad Quimica Minera (SQM), Jiangxi Ganfeng Lithium, Albemarle Lithium, Shandong Ruifu Lithium, Jiangxi Dongpeng New Materials Co. Ltd., Sichuan Brivo Lithium Materials Co. Ltd., Leverton Lithium, Rockwood, and Tianqi Lithium.
In conclusion, the global Lithium Hydroxide Market is poised for significant growth in the coming years due to the increasing demand for lithium-ion batteries in various industries. The market is driven by the growing popularity of electric vehicles and portable electronic devices, along with government initiatives promoting clean energy solutions. The Asia-Pacific region is expected to be the fastest-growing region, driven by the expanding automotive and consumer electronics industries. Key players in the market are focusing on expanding their production capacities to cater to the rising demand.
0 notes
seat-safety-switch · 1 month
Text
Bicycles kick a lot of ass these days. When I was a kid, a bicycle would only go as fast as you could pedal. Maybe, if you were really a huge asshole, you could take the bus to the big city and buy one of those mini-moped kits from a motorcycle shop. Then you could break playground-zone speed limits with enough two-stroke burble and pop to arouse every police officer within thirty miles.
Nowadays, you can slap some Chinese-made wonder magic on your Norco and do three or four horsepower without even knowing how to solder. In fact, it's much better if you don't know anything about electronics, because that level of knowledge will prevent you from extracting the maximum value out of your investment of "some vape batteries" and "a motor I found on Amazon whose name YouTube can't consistently pronounce." Electrical engineers are just too damn afraid of fire to go really fast.
Sure, you have to show fealty to the all-knowing microcontroller inside the magic motor box. Pinky-swear to it that you live in the hypothetical lawless wonderland that would allow you to have this much wheel-bending, mind-melting torque on a public pedestrian pathway. Honestly, it's its own fault if it believes a shifty character such as yourself. Not that the local cops are going to pull over Bob Tongsheng on his way to deposit your money in his bank, either. It's this kind of primitive hot-rodding that once made this country great: neglecting the existence or worth of anyone and everything outside of your vehicle in lieu of Go Fast.
Sure, this sort of thing will only last for awhile. Pathways are already filling up with lots of zingy e-mopeds and e-deathscoots, ridden by perfectly normal people. Your 1500-watt stealth bomber build is going to get pulled on by a pensioner within a year or two, as the market begins to demand enough cargo room (and rollover protection!) to do a once-a-month Costco run with the entire fam in tow. Inevitably, the cops are going to have to crack down on the whole deal, too.
For a glorious, shining moment, you too can dig a rusty mountain bike out of a creek and have it doing 50 miles an hour by watching a YouTube video. That's something previous generations simply could not have imagined. Which is their loss, really. If they had gotten off their asses earlier and figured out the lithium-ion battery, we could all be driving $100 50-horsepower ebikes right now instead of having to pay Big Battery for the "latest and greatest" in burning your garage down.
243 notes · View notes
mindblowingscience · 3 months
Text
As the electric vehicle market booms, the demand for lithium—the mineral required for lithium-ion batteries—has also soared. Global lithium production has more than tripled in the last decade. But current methods of extracting lithium from rock ores or brines are slow and come with high energy demands and environmental costs. They also require sources of lithium which are incredibly concentrated to begin with and are only found in a few countries. Now, researchers at the University of Chicago Pritzker School of Molecular Engineering (PME) have optimized a new method for extracting lithium from more dilute—and widespread—sources of the mineral, including seawater, groundwater, and "flowback water" left behind from fracking and offshore oil drilling.
Continue Reading.
96 notes · View notes
Text
Tumblr media Tumblr media Tumblr media Tumblr media
 Isuzu D-Max EV Concept, 2024. A prototype for a fully electric version of the D-Max pick-up was revealed at the 45th Bangkok International Motor Show. With a lithium-ion battery capacity of 66.9kWh and a maximum output of 130kW, the electric D-Max delivers instant torque and a maximum speed of 130km/h (81mph).  The company plans to launch the D-Max BEV in select mainland European markets in 2025, with further expansion to the UK, Australia, Thailand, and other countries based on market demand and the development of Electric Vehicle (EV) charging infrastructure.
63 notes · View notes
Tumblr media
New method optimizes lithium extraction from seawater and groundwater
As the electric vehicle market booms, the demand for lithium—the mineral required for lithium-ion batteries—has also soared. Global lithium production has more than tripled in the last decade. But current methods of extracting lithium from rock ores or brines are slow and come with high energy demands and environmental costs. They also require sources of lithium which are incredibly concentrated to begin with and are only found in a few countries. Now, researchers at the University of Chicago Pritzker School of Molecular Engineering (PME) have optimized a new method for extracting lithium from more dilute—and widespread—sources of the mineral, including seawater, groundwater, and "flowback water" left behind from fracking and offshore oil drilling.
Read more.
13 notes · View notes
mariacallous · 4 months
Text
On May 14, Washington slapped new tariffs on China in what looks at first glance like the latest round of a familiar trade spat. The White House imposed duties of 25 to 50 percent on a range of industrial, medical, and clean tech goods—including semiconductors, solar cells, batteries, steel, aluminum, graphite, magnets, syringes, and ship-to-shore cranes. Strikingly, the latest measures also include a whopping 100 percent tariff on electric vehicles, effectively shutting the U.S. market to Chinese-made EVs.
Seen from Washington, these measures also look like a political move as U.S. President Joe Biden courts blue-collar voters in industrial swing states such as Michigan and Pennsylvania ahead of the November presidential election. It’s unlikely, however, that Beijing shares this benign interpretation. Seen from China, the tariffs look like a serious escalation of the U.S.-China contest and are probably raising alarm bells. Here’s why.
1. Washington is playing the long game. Stories of how China has become the world leader in EV manufacturing and is flooding the world with cheap vehicles have flourished over recent months. At the global level, there certainly is something to this analysis. Chinese exports of EVs jumped by a whopping 80 percent last year, propelling China to the top of the global ranking of car exporters. Yet this does not apply to the United States, where China supplied just 2 percent of EVs sold last year. (U.S. consumers appear to have a distinct preference for South Korean, Japanese, and European EV imports.) In other words, a 100 percent tariff on a few thousand cars will not hit Chinese firms hard.
A closer look at the list of targeted sectors suggests that batteries, not cars, will be the real pain point for China. The U.S. market is important for Chinese battery firms, which supply around 70 percent of the lithium-ion batteries used in the United States. For China’s battery sector, this means that the impact of the latest U.S. tariffs will likely be huge: The usual rule of thumb is that a 1 percentage point increase in tariffs entails a 2 percent drop in trade. With tariffs rising from 7.5 percent to 25 percent, the rule suggests that Chinese battery firms’ U.S. sales could drop by around one-third—or by $5 billion when one includes the entire battery supply chain. With Chinese battery-makers already seeing their profits plummet amid softening global demand, this is certainly bad news for Beijing.
Crucially, batteries are also an area where the U.S. government is investing huge amounts of public funds, in particular through the Inflation Reduction Act, which seeks to boost U.S. domestic production of clean tech goods. Seen in this light, the latest U.S. tariffs are preemptive measures to protect a nascent clean tech industry and make sure that there is domestic demand for future U.S. production. This suggests that the United States is playing the long game here, with little chance the tariffs will be lifted anytime soon. On the contrary—the U.S. clean tech market could well be closed to Chinese firms from here on out.
2. The White House is trying to force Europe to come on board and impose similar tariffs on China. Biden is probably seeking to score electoral brownie points with a 100 percent tariff on EVs, making former President Donald Trump’s proposal for 60 percent on U.S. imports from China look almost feeble. (Not to be outdone, Trump just announced that he would apply a 200 percent tariff on Chinese-branded cars made in Mexico.) Yet the reality is that Biden’s tariffs will not prove game-changing in the short term: Their implementation will be phased in over two years, and supply chain adjustments typically take time. In short, the measures are unlikely to fuel a U.S. industrial boom in time for the November elections.
What will happen before the election, though, is the conclusion in June or July of the European Union’s ongoing anti-subsidy investigation into China’s EV makers. Rumors abound of a possible tariff of 20 to 30 percent on Chinese EVs. Such a prospect is probably unnerving for Beijing; the EU is the biggest export market for China’s EVs, absorbing around 40 percent of Chinese shipments. The United States hopes that its 100 percent tariff on EVs will compel the EU to not only follow Washington’s example in imposing a tariff on Chinese EVs but perhaps also consider a higher one. This bold strategy could well work. Europe is unlikely to enjoy having its arm twisted by Washington, but the bloc will also worry that Chinese EV makers could double down on their push to dominate the EU market now that they have lost access to the U.S. one.
Chinese EVs look set to be a key topic when G-7 leaders meet for their annual summit in June. The United States will probably try to cajole Germany, which has long been dovish vis à vis China, into supporting sharply higher tariffs. German Chancellor Olaf Scholz has pointed to the fact that European auto manufacturers “sell a great many vehicles that are produced in Europe to China”—hinting at German fears that China could retaliate against EVs and internal combustion engine cars imported from the EU.
3. The tariffs are a serious escalation from Washington’s previous de-risking strategy. In recent years, U.S. de-risking has focused on reducing the United States’ reliance on China for crucial goods and curbing Beijing’s access to dual-use technology in a bid to avoid fueling the country’s military advances. To implement this strategy, Washington has so far relied on two main tools from its economic statecraft kit: financial sanctions (for instance, on firms linked to the People’s Liberation Army) and export controls (notably on semiconductors, which are dual-use goods found in most military equipment).
Washington is slowly realizing that these two tools are imperfect. China’s massive sanctions-proofing efforts mean that sanctions do not always deal a blow to Chinese firms, which may no longer be using the U.S. dollar (China now settles around half of its cross-border trade in renminbi) or Western financial channels such as SWIFT, the global payments system. Washington also understands that export controls on clean tech would not curb China’s ambitions in the field, as Chinese firms already have all the tech they need. This leaves only one option for U.S. economic statecraft: tariffs that leverage one of the country’s greatest economic assets—access to its market.
This is why the latest U.S. tariffs are likely raising red flags in Beijing. The United States is now severing access to its market in clean tech and other areas that China sees as crucial for its plans to become the world’s future economic superpower. If the EU plays ball, this approach would expose a central flaw in Beijing’s industrial strategy: What if the world’s two biggest markets—the United States and the EU—become no-go areas for Chinese firms dependent on exporting their vast production, leaving them with piles of unused goods? Few other markets are available for Chinese clean tech exports—outside Europe, North America, and East Asia, most countries lack the infrastructure for large-scale EV adoption, for example. This prospect may well keep Beijing’s planners up at night, with no easy solution in sight.
The question now is whether and how Beijing will react. Serious retaliation is unlikely, since the United States exports far less to China than vice versa. Given its current economic woes, China also has little interest in further weakening its economy—for example, by imposing export bans on critical raw materials, rare earths, or other crucial goods for Western economies.
As the latest skirmish in the battle for economic dominance between Washington and Beijing, the new U.S. tariffs raise a number of bigger questions: Will Washington succeed in its efforts to create a domestic ecosystem for clean tech? Will the United States and Europe manage to cooperate—or go their own ways in their economic relations with China? Will the United States continue to curb Chinese access to the U.S. market for the purposes of de-risking—and if so, in which sectors? There is probably only one certainty in the U.S.-China economic war: The conflict will continue well after the November elections, whatever their outcome.
12 notes · View notes
reasoningdaily · 1 year
Text
Tumblr media
Children still mining cobalt for gadget batteries in Congo
A CBS News investigation of child labor in cobalt mines in the Democratic Republic of Congo has revealed that tens of thousands of children are growing up without a childhood today – two years after a damning Amnesty report about human rights abuses in the cobalt trade was published. The Amnesty report first revealed that cobalt mined by children was ending up in products from prominent tech companies including Apple, Microsoft, Tesla and Samsung. 
There's such sensitivity around cobalt mining in the DRC that a CBS News team traveling there recently was stopped every few hundred feet while moving along dirt roads and seeing children digging for cobalt. From as young as 4 years old, children can pick cobalt out of a pile, and even those too young to work spend much of the day breathing in toxic fumes.
What's life like for kids mining cobalt for our gadgets?
So, what exactly is cobalt, and what are the health risks for those who work in the DRC's cobalt mining industry?
What is cobalt?
Cobalt – a naturally occurring element –  is a critical component in lithium-ion, rechargeable batteries. In recent years, the growing global market for portable electronic devices and rechargeable batteries has fueled demand for its extraction, Amnesty said in its 2016 report. In fact, many top electronic and electric vehicle companies need cobalt to help power their products.
The element is found in other products as well.
"Cobalt-containing products include corrosion and heat-resistant alloys, hard metal (cobalt-tungsten-carbide alloy), magnets, grinding and cutting tools, pigments, paints, colored glass, surgical implants, catalysts, batteries, and cobalt-coated metal (from electroplating)," says the U.S. Centers for Disease Control and Prevention.
More than half of the world's supply of cobalt comes from the DRC, and 20 percent of that is mined by hand, according to Darton Commodities Ltd., a London-based research company that specializes in cobalt.  
Tumblr media
Health risks of chronic exposure 
According to the CDC, "chronic exposure to cobalt-containing hard metal (dust or fume) can result in a serious lung disease called 'hard metal lung disease'" – a kind of pneumoconiosis, meaning a lung disease caused by inhaling dust particles. Inhalation of cobalt particles can cause respiratory sensitization, asthma, decreased pulmonary function and shortness of breath, the CDC says.
The health agency says skin contact is also a significant health concern "because dermal exposures to hard metal and cobalt salts can result in significant systemic uptake." 
"Sustained exposures can cause skin sensitization, which may result in eruptions of contact dermatitis," a red, itchy skin rash, the CDC says.
Despite the health risks, researchers with Amnesty International found that most cobalt miners in Congo lack basic protective equipment like face masks, work clothing and gloves. Many of the miners the organization spoke with for its 2016 report – 90 people in total who work, or worked, in the mines – complained of frequent coughing or lung problems. Cobalt mining's dangerous impact on workers and the environment
Some women complained about the physical nature of the work, with one describing hauling 110-pound sacks of cobalt ore. "We all have problems with our lungs, and pain all over our bodies," the woman said, according to Amnesty.
Moreover, miners said unsupported mining tunnels frequently give way, and that accidents are common.  
Miners know their work is dangerous, Todd C. Frankel wrote late last month in The Washington Post. 
"But what's less understood are the environmental health risks posed by the extensive mining," he reported. "Southern Congo holds not only vast deposits of cobalt and copper but also uranium. Scientists have recorded alarming radioactivity levels in some mining regions. Mining waste often pollutes rivers and drinking water. The dust from the pulverized rock is known to cause breathing problems. The mining industry's toxic fallout is only now being studied by researchers, mostly in Lubumbashi, the country's mining capital."
Tumblr media
"These job are really desired"
Despite the dangers and risks of working as miners in the cobalt industry, at least of the some miners in the Congo "love their jobs," according to Frankel.
"When I talked to the miners there, none of them want to lose their jobs or give up their jobs. They love their jobs," Frankel said Tuesday, speaking on CBSN. "In a country like Congo, mining is one of the few decently paying jobs to be had there, and so they want to hold onto these jobs."
They also want fair treatment, decent pay, and some safety, "and they would love for their kids to not work in the mines," he said.
"It's a poverty problem," Frankel said. "These parents I talked to – they don't want their kids working in these mines. The problem is that their school fees – schools cost money, and you know, food costs money, and they sort of need their kids to work in there."
Poverty also drives children into the mines instead of school – an estimated 40,000 of them work in brutal conditions starting at very young ages.
The thousands of miners who work in tunnels searching for cobalt in the country "do it because they live in one of the poorest countries in the world, and cobalt is valuable," Frankel wrote in the Washington Post article.
"Not doing enough" 
CBS News spoke with some of the companies that use cobalt in their lithium-ion batteries. All of the companies acknowledged problems with the supply chain, but said they require suppliers to follow responsible sourcing guidelines. Apple, an industry leader in the fight for responsible sourcing, said walking away from the DRC "would do nothing to improve conditions for the people or the environment."
Read company responses here
Amnesty said in November, however, that "major electronics and electric vehicle companies are still not doing enough to stop human rights abuses entering their cobalt supply chains." 
"As demand for rechargeable batteries grows, companies have a responsibility to prove that they are not profiting from the misery of miners working in terrible conditions in the DRC," the organization said. "The energy solutions of the future must not be built on human rights abuses."
An estimated two-thirds of children in the region of the DRC that CBS News visited recently are not in school. They're working in mines instead. 
CBS News' Debora Patta spoke with an 11-year-old boy, Ziki Swaze, who has no idea how to read or write but is an expert in washing cobalt. Every evening, he returns home with a dollar or two to provide for his family.
"I have to go and work there," he told Patta, "because my grandma has a bad leg and she can't."
He said he dreams of going to school, but has always had to work instead.
"I feel very bad because I can see my friends going to school, and I am struggling," he said.
Amnesty says "it is widely recognized internationally that the involvement of children in mining constitutes one of the worst forms of child labour, which governments are required to prohibit and eliminate."
49 notes · View notes
rjzimmerman · 2 months
Text
Excerpt from this story from EcoWatch:
Sunrun, a solar company, and Baltimore Gas and Electric Company (BGE), the largest utility provider in Maryland, have launched a pilot program for a bidirectional power plant fueled by solar energy and EV technology.
The pilot, which involves three households, allows users to draw energy from a Ford F-150 Lightning electric truck when paired with the Ford Charge Station Pro and Home Integration System sold by Sunrun. This setup lets the household utilize energy from the EV during peak energy demand, Smart Energy International reported.
The pilot program is the first vehicle-to-home power plant in the U.S. and was funded with grants from the U.S. Department of Energy.
“This program is a significant proof of concept — no other market player has done this — and the goal is to expand these programs all around the country,” Sunrun CEO Mary Powell said in a press release. “This exciting partnership lays the foundation for the power grid of the future where electric vehicle owners can contribute to grid resiliency and utility price stability for everyone. The summer heat can be especially stressful on our power grid, which is why proving the use of stored energy in electric vehicles for capacity is so important.”
The process works by sending energy from the EV batteries to the homes, allowing the vehicle batteries to operate as energy storage. This can complement solar energy sources as well as reduce demand on Maryland’s power grids during peak times. The bidirectional power provided through the charging station can power homes for up to 10 days in the event of an outage, Sunrun said.
For the pilot program, the trucks share energy from 5 p.m. to 9 p.m. on weekdays from June 1 to September 30. The pilot is offering an estimated $800 to participants.
Currently, there are only a limited number of EV models that offer the bidirectional charging feature, including the Nissan Leaf, the 2024 Ioniq 5 and Ioniq 6 models from Hyundai, Kia’s EV6, EV9 and Niro EV, and the Ford F-150 Lightning, Cars.com reported.
More vehicles are expected to introduce bidirectional charging in the coming years, including all GM and Tesla EV models, CNET reported.
Sunrun and BGE are planning to expand the program after monitoring the pilot and will offer incentives for F-150 Lightning owners to join, helping increase grid resilience. The program could also help contribute toward Maryland’s goal to reach net-zero emissions by 2045 and achieve 100% clean electricity by 2035.
3 notes · View notes
youtube
GM fires thousands as sales in China fall a staggering 55%
P.S. In 2017, GM and the other legacy automakers received a perfectly clear warning that electric car battery technologies were sufficiently advanced for Chinese automakers to produce cheap and affordable EVs in large volumes and start exporting them. What was the response of the legacy automakers - they hired corrupt journalists and "experts" who tried to tell the public how it was "impossible" to produce affordable mass market EVs..., released some poorly designed, overpriced and low volume compliance EVs, and continued to invest huge resources in manufacturing obsolete ICE vehicles...as if nothing had happened in the car market...
To the real experts, the collapse of GM car sales in China comes as no surprise…There is no demand for ICE vehicles in that market...
Other unintended consequences: China's electric car manufacturers will help defeat Russia, unwillingly, because electric cars significantly reduce the need to import oil... but as we all know, Putler finances his war by exporting oil, gas, coal and other resources...! Until Russia is cut off from its sources of war financing, the Western "strategy" is in fact complete bullshit
2 notes · View notes
apcseo · 2 months
Text
Mahindra & Mahindra’s EV Unit Seeks Investment Opportunities in India to Accelerate Growth
Tumblr media
Mahindra & Mahindra, a prominent sports utility vehicle manufacturer, is reportedly in advanced discussions with British International Investment (BII) and other global investors to secure a substantial investment of up to ₹5,000 crore for its electric vehicles (EV) subsidiary. This new funding round is expected to value the EV unit at a higher valuation than the previous round, reflecting the growing interest in the Indian electric vehicle market. The investment aims to support Mahindra’s ambitious plans for expansion and the development of sustainable mobility solutions.
India’s electric vehicle market has been witnessing significant growth in recent years, driven by increasing environmental concerns, government initiatives, and evolving consumer preferences. As a result, established automakers like Mahindra & Mahindra are actively seeking investment opportunities in India to capitalise on this emerging market and accelerate their growth in the EV segment.
India has set an ambitious target to transition to electric mobility, aiming for 30% electric vehicle penetration in the country by 2030. The government has implemented various policies and incentives to encourage the adoption of electric vehicles, including subsidies, tax benefits, and the establishment of charging infrastructure. These measures have created a favourable environment for investors and manufacturers to participate in the Indian electric vehicle ecosystem.
To align with India’s electric mobility vision, Mahindra & Mahindra’s EV unit has outlined an aggressive expansion strategy. The company intends to launch five new electric vehicle models between April and October 2025, demonstrating its commitment to providing sustainable transportation solutions to Indian consumers.
By incorporating electric SUVs into its product portfolio, Mahindra aims to capture a significant market share in the fast-growing electric SUV segment. It anticipates that e-SUVs will account for 20-30% of its overall SUV sales, with sales volumes projected to reach around 200,000 units. This focus on electric SUVs aligns with the evolving preferences of Indian consumers, who seek both sustainability and performance in their vehicles.
Investment opportunities in the Indian electric vehicle market hold immense potential for both domestic and international investors. The sector offers an attractive landscape for investment due to the following factors:
Growth Potential: With the Indian government’s strong commitment to electric mobility, the EV market is poised for substantial growth. Increasing consumer demand, supportive policies, and infrastructure development create a favourable investment climate.
Technological Advancements: Investment in electric vehicles drives innovation in battery technology, charging infrastructure, and connected features. These advancements contribute to the overall development of the sector and create opportunities for investors to benefit from emerging technologies.
Environmental Considerations: Electric vehicles play a crucial role in reducing greenhouse gas emissions and combating air pollution. Investing in electric mobility aligns with global sustainability goals, making it an appealing choice for socially responsible investors.
Job Creation and Economic Growth: The growth of the electric vehicle industry stimulates employment opportunities across the value chain, including manufacturing, R&D, charging infrastructure, and support services. This fosters economic development and contributes to the overall growth of the Indian economy.
Mahindra & Mahindra’s pursuit of significant investment for its EV unit reflects the immense potential and investment opportunities in India’s electric vehicle market. As the demand for sustainable transportation solutions continues to rise, the sector offers a promising landscape for investors seeking long-term growth and environmental impact. With government support, technological advancements, and changing consumer preferences, investing in electric mobility can contribute to both economic development and a greener future for India.
This post was originally published on: Apppl Combine
2 notes · View notes
rahulcmi · 1 year
Text
Global Battery Management System Market Is Estimated To Witness High Growth Owing To Increasing Electric Vehicle Adoption
Tumblr media
The global Battery Management System (BMS) market is estimated to be valued at USD 6.19 billion in 2022 and is expected to exhibit a CAGR of 23.4% over the forecast period 2023-2030.
A) Market Overview:
Battery Management System (BMS) is a crucial component used in various industries, including automotive, consumer electronics, renewable energy, and power grids, to effectively manage and monitor the performance of batteries. BMS plays a significant role in ensuring the safe operation, extended lifespan, and optimum performance of batteries. It helps in balancing the charging and discharging cycles, protecting against overcharging or over-discharging, temperature monitoring, and fault diagnostics. The growing adoption of electric vehicles and the increasing demand for efficient energy storage systems are driving the growth of the global BMS market.
B) Market Dynamics:
The two key drivers influencing the growth of the global Battery Management System Market are the increasing adoption of electric vehicles and the rising demand for efficient energy storage systems.
1. Increasing Adoption of Electric Vehicles:
The rising focus on reducing carbon emissions and the growing government initiatives to promote electric vehicles are fueling the demand for battery management systems. BMS ensures the safe and efficient operation of batteries in electric vehicles, enabling longer battery life, improved performance, and better range. With the growing adoption of electric vehicles, the demand for BMS is expected to surge significantly.
2. Rising Demand for Efficient Energy Storage Systems:
The increasing need for reliable and efficient energy storage systems to meet the rising energy demand is propelling the growth of the Battery Management System Market. BMS plays a crucial role in managing and optimizing the performance of energy storage systems, ensuring the proper functioning of batteries and preventing any potential hazards. The growing deployment of renewable energy sources and the need for grid stability are driving the demand for BMS in the energy storage sector.
C) Segment Analysis:
In the global BMS market, the automotive segment dominates the market. Within the automotive segment, electric vehicles hold a significant share due to the increasing adoption of EVs worldwide. The automotive segment is expected to grow at a substantial rate during the forecast period, driven by the rising demand for electric vehicles and the implementation of stringent emission norms.
D) PEST Analysis:
Political: The government initiatives and regulations promoting the adoption of electric vehicles and renewable energy sources are driving the growth of the BMS market.
Economic: The decreasing prices of batteries and the increasing investments in the electric vehicle and renewable energy sectors are contributing to the market's growth.
Social: The growing awareness about environmental sustainability and the preference for cleaner and greener technologies are boosting the demand for battery management systems.
Technological: Advances in battery technologies, such as lithium-ion batteries, and the development of smart and connected BMS solutions are shaping the growth of the BMS market.
E) Key Takeaways:
The global Battery Management System Market is expected to witness high growth, exhibiting a CAGR of 23.4% over the forecast period, due to the increasing adoption of electric vehicles and the rising demand for efficient energy storage systems.
In terms of regional analysis, Asia Pacific is the fastest-growing and dominating region in the global BMS market. The region's rapid economic growth, increasing urbanization, and supportive government policies are driving the adoption of electric vehicles and renewable energy sources.
Key players operating in the global BMS market include Elithion, Inc., Johnson Matthey PLC, Analog Devices, Lithium Balance A/S, NXP Semiconductor N.V., Nuvation Engineering, Texas Instruments Inc., Leclanché SA, Eberspaecher Vecture Inc., and Infineon Technologies AG. These players are focusing on product innovation, partnerships, and collaborations to gain a competitive edge in the market.
0 notes
skylobster · 10 months
Text
I actually side with Toyota on this one, in spite of my passion for electric cars. Both our battery technology and our infrastructure need to be improved before we can go with a 100% electric automobile fleet. Meanwhile, I prefer plug-in hybrids as a bridge technology. Our plug-in charges at home, and handles most of our driving as an EV, carrying about 1/8 as much battery payload as a similar-sized full electric. And I don’t require major infrastructure changes in order to take a trouble-free vacation trip. And at least 75% of our miles are pure electric.
In terms of battery cost and resources used, 1 Tesla = 8 plug-in hybrids, for the same amount of lithium-ion batteries.
Or for fossil fuel consumption, 4 plug-in hybrids = 1 conventional automobile (assuming most of your electricity comes from non-fossil fuel sources)
Or for purchase cost, 1 Tesla = 1.5 - 2 plug-in hybrids. (Some other electric cars are quite a bit cheaper though)
NOTE: These are my own back of the envelope statistics. If you take repeated long trips, or your electricity comes largely from fossil fuels, a plug-in hybrid may not be much help. But the pure EV could look even worse by comparison.
7 notes · View notes