#vehicle battery market demand
Explore tagged Tumblr posts
Text
South Africa Vehicle Battery Market :Industry Growth, Size, Trends and Forecast Analysis Report to 2025
Fairfield Market Research, a leading market intelligence firm, has unveiled a comprehensive report highlighting a positive growth trajectory for the vehicle battery market. With the increasing adoption of e-mobility and the nation's commitment to zero-emission transportation in the coming decade, vehicle battery sales are projected to exceed US$43 billion by the end of 2030. The market is expected to witness a steady CAGR of 4.6%, driven by advancements in battery technology.
For More Industry Insights Read: https://www.fairfieldmarketresearch.com/report/vehicle-battery-market
According to the report, lithium-ion batteries, renowned for their longer lifespan, higher energy density, and enhanced safety features, are poised to experience an impressive 15% sales growth throughout the forecast period. These batteries will remain the most sought-after type, playing a vital role in the electrification of vehicles.
Forecasts for the auto industry indicate a strong possibility of electric vehicles outnumbering conventional vehicles in the next few decades, propelled by the growing global sustainable mobility movement. This transition towards electric vehicles will contribute to the buoyancy of vehicle battery sales. The role of governmental and non-governmental entities will be crucial as they announce substantial investments and initiatives to promote electric vehicles, boost battery technologies, and accelerate the development of EV charging infrastructure. The advancements in battery technology hold the promise of enhancing performance, extending battery lifespan, and improving safety, further supporting the surge in electric vehicle sales.
While North American and European nations lead in demand generation for electric vehicles due to their regulatory support, South Africa is projected to benefit from a transformation in its regulatory framework, favoring electric vehicles. This shift will contribute to the country's growth in the vehicle battery market.
China, known as the world's largest manufacturing hub, experienced the impact of the COVID-19 pandemic, including a significant decline in auto sales in 2020. However, the Chinese market quickly rebounded as the crisis subsided. Currently, China houses over 45% of the world's total battery manufacturing brands and continues to lead the vehicle battery landscape in the Asia Pacific region. Additionally, high-potential markets in the region, including Japan and South Korea, are expected to capture a substantial share of the market.
The report also provides a detailed analysis of key competitors in the global vehicle battery market. Prominent market players such as BYD Company Limited, Johnson Controls International PLC, Panasonic Corporation, SAMSUNG SDI Co., Ltd., LG Chem Ltd., and Contemporary Amperex Technology Co., Limited have been profiled in the report. These leading battery manufacturers are anticipated to collaborate with researchers to drive research and development efforts, focusing on innovative battery technologies. Notably, researchers and start-ups are expected to prioritize the development of high-density vehicle batteries, with a focus on achieving faster charging capabilities and increased storage capacity.
For More Information Visit: https://www.fairfieldmarketresearch.com/
#south africa vehicle battery market#south africa vehicle battery#fairfield market research#automotive industry#automotive battery#car battery#battery industry#vehicle battery market forecast#vehicle battery market research#vehicle battery market analysis#vehicle battery market growth#vehicle battery market demand#vehicle battery market trends#vehicle battery market share#vehicle battery market size#vehicle battery market#south africa vehicle battery market size
0 notes
Text
What is the Average EV Range in 2024?
As we move into 2024, electric vehicles (EVs) are no longer just for early adopters. They’re becoming a common sight on the roads, thanks to advancements in battery technology that have boosted their range. The average EV today can go anywhere between 300 to 400 kilometers (186 to 248 miles) on a single charge, with some premium models going well beyond that.
High-Range EVs in India
In India, we’re seeing some exciting developments in the EV space, with both upcoming and current models pushing the limits of range:
BYD eMAX 7: Set to launch in October 2024, it’s expected to offer a range of around 500 kilometers.
Mercedes-Benz EQS: This luxury option tops the charts with an impressive 770 kilometers of range.
Tata Avinya: Coming in 2026, it's expected to provide about 500 kilometers of range, catering to the demand for long-range EVs.
Hyundai Ioniq 6: Expected to offer a range of up to 614 kilometers, showing Hyundai’s commitment to electric mobility.
With these impressive ranges, managing charging stations becomes more important. That’s where tools like Tecell’s charging management software come in handy. Tecell makes it easy to manage charging stations, providing access to EV drivers with flexible pricing models. Whether you’re a small business or a large enterprise, Tecell’s software can scale to your needs. Plus, their free tier makes it accessible to smaller companies, and the roaming feature offers cost-effective options for EV drivers and charge point operators alike.
#2024 EVs#Aerodynamics#automotive industry#battery life#battery technology#charging infrastructure#charging stations#Clean Energy#consumer demand#Eco-Friendly#electric mobility#electric power#electric vehicles#emissions#energy density#energy management#energy storage#Environmental Impact#EV adoption#EV efficiency#EV Market#EV range#EV trends#fast-charging#Ford Mustang Mach-E#future of mobility#government policies#green technology#innovation#lightweight materials
1 note
·
View note
Text
Lithium and Copper: The Metals That Will Shape the Future
🔋🌍 Lithium and copper are set to revolutionize the economy as the demand for electric vehicles and renewable energy soars! 🌱✨ With innovations in battery tech and sustainable materials, the future looks bright for clean energy.
In the coming years, certain metals are poised to fundamentally change the global economy—foremost among them are lithium and copper. These two raw materials are becoming increasingly indispensable for the energy and transportation industries as the world shifts towards renewable energy and electric vehicles. Lithium: The Fuel of the Energy Transition Lithium plays a central role in the…
#battery technology innovations#climate change solutions#copper demand forecast#eco-friendly materials#electric vehicle batteries#electrification of transportation#energy efficiency technologies#energy transition strategies#environmental impact of mining#future of electrification#innovations in renewable energy#Lithium market trends#Make money online#market analysis of lithium#metals for clean energy#nickel applications in batteries#Online business#Passive income#perovskite solar cells#renewable energy investment#renewable energy sources#sustainable metals#sustainable resource management
0 notes
Text
Global Battery Market: Projected Development During 2024-2032
The global battery market is anticipated to grow at a compound annual growth rate of 15.79% from the forecast period of 2024 to 2032. Read our Press Release
According to Triton’s research report, the Global Battery Market report is sectioned by Battery Type (Secondary Battery, Primary Battery), Technology (Lead-Acid, Lithium-Ion, Nickel-Cadmium, Nickel Metal Hydride, Nickel-Zinc (NiZn), Flow, Sodium-Sulfur (NaS), Zinc-Manganese Dioxide, Small Sealed Lead-Acid, Other Technologies), End-Use (Automotive Batteries, Industrial Batteries, Portable Batteries, Power Tools Batteries, SLI Batteries, Other End-Uses), and Regional (North America, Europe, Asia-Pacific, Latin America, Middle East and Africa)
The report highlights the Market Summary, Industry Outlook, Impact Analysis, Porter’s Five Forces Analysis, Market Attractiveness Index, Regulatory Framework, Key Buying Impact Analysis, Supply Chain Analysis, Key Market Strategies, Market Drivers, Challenge, Opportunities, Analyst Perspective, Competitive Landscape, Research Methodology, and Scope. It also provides Global Market Size Forecasts & Analysis (2024-2032).
According to Triton Market Research, the global battery market is anticipated to grow at a compound annual growth rate of 15.79% from 2024 to 2032.
A battery is a device that converts stored chemical energy into electrical energy as needed. It comprises electrochemical cells, each containing electrodes and an electrolyte. Batteries are crucial in various sectors, including consumer electronics, automotive, energy storage, and industrial applications.
Several factors are creating lucrative opportunities for the battery market globally, including a growing focus on second-life battery applications, demand for larger battery packs, and development in battery technologies. As electric vehicle batteries approach the end of their primary lifespan, there is a growing effort to explore their potential for second-life applications. These batteries could be repurposed for less demanding uses, such as backup power or grid balancing services. Additionally, ongoing research aims to refine the repurposing process and extend the batteries’ overall longevity.
However, the battery market’s expansion is limited owing to issues pertaining to battery recycling, raw material cost fluctuations, and safety concerns.
The Asia-Pacific is set to become the fastest-growing region in the battery market. In both advanced and emerging economies across the region, the adoption of electric vehicles is steadily gaining momentum. China stands out as a global leader in electric vehicle sales, while countries like India are actively upgrading their public transportation networks to accommodate electric vehicles. This rising demand for electric vehicles serves as a primary catalyst driving the growth of the battery market in the region.
The major companies in the battery market consist of Johnson Controls Inc, GS Yuasa International Ltd, Samsung SDI Co Ltd, Exide Technologies, Panasonic Corporation, Enersys, BYD Company Limited, A123 Systems LLC, Saft Groupe SA, and C&D Technologies Inc.
The threat of new entrants in the global battery market is assessed as low. While demand for batteries is robust, the barriers to entry are considerable. New players face significant initial costs, compliance with environmental regulations, and adherence to government policies. Establishing a manufacturing facility entails substantial upfront and ongoing expenses, posing a challenge to newcomers. Moreover, establishing a brand presence in a highly competitive market and matching the quality and product range of established firms is daunting. As a result, the overall threat posed by new entrants in the global market is expected to remain subdued throughout the forecast period.
#Battery Market#Energy#Power#battery technologies#battery recycling#demand for electric vehicles#triton market research#market research reports
0 notes
Text
What is the Average EV Range in 2024?
Electric vehicles (EVs) have seen remarkable advancements over the past few years, making them more viable for everyday use. As of 2024, the average EV range has become a critical factor for consumers considering the shift from traditional combustion engines to electric power. In 2024, the average EV range is approximately 300 miles (483 kilometers) on a single charge. This is a significant…
View On WordPress
#2024 EVs#Aerodynamics#automotive industry#battery life#battery technology#charging infrastructure#charging stations#Clean Energy#consumer demand#Eco-Friendly#electric mobility#electric power#electric vehicles#emissions#energy density#energy management#energy storage#Environmental Impact#EV adoption#EV efficiency#EV Market#EV range#EV trends#fast-charging#Ford Mustang Mach-E#future of mobility#government policies#green technology#innovation#lightweight materials
1 note
·
View note
Text
Green energy is in its heyday.
Renewable energy sources now account for 22% of the nation’s electricity, and solar has skyrocketed eight times over in the last decade. This spring in California, wind, water, and solar power energy sources exceeded expectations, accounting for an average of 61.5 percent of the state's electricity demand across 52 days.
But green energy has a lithium problem. Lithium batteries control more than 90% of the global grid battery storage market.
That’s not just cell phones, laptops, electric toothbrushes, and tools. Scooters, e-bikes, hybrids, and electric vehicles all rely on rechargeable lithium batteries to get going.
Fortunately, this past week, Natron Energy launched its first-ever commercial-scale production of sodium-ion batteries in the U.S.
“Sodium-ion batteries offer a unique alternative to lithium-ion, with higher power, faster recharge, longer lifecycle and a completely safe and stable chemistry,” said Colin Wessells — Natron Founder and Co-CEO — at the kick-off event in Michigan.
The new sodium-ion batteries charge and discharge at rates 10 times faster than lithium-ion, with an estimated lifespan of 50,000 cycles.
Wessells said that using sodium as a primary mineral alternative eliminates industry-wide issues of worker negligence, geopolitical disruption, and the “questionable environmental impacts” inextricably linked to lithium mining.
“The electrification of our economy is dependent on the development and production of new, innovative energy storage solutions,” Wessells said.
Why are sodium batteries a better alternative to lithium?
The birth and death cycle of lithium is shadowed in environmental destruction. The process of extracting lithium pollutes the water, air, and soil, and when it’s eventually discarded, the flammable batteries are prone to bursting into flames and burning out in landfills.
There’s also a human cost. Lithium-ion materials like cobalt and nickel are not only harder to source and procure, but their supply chains are also overwhelmingly attributed to hazardous working conditions and child labor law violations.
Sodium, on the other hand, is estimated to be 1,000 times more abundant in the earth’s crust than lithium.
“Unlike lithium, sodium can be produced from an abundant material: salt,” engineer Casey Crownhart wrote in the MIT Technology Review. “Because the raw ingredients are cheap and widely available, there’s potential for sodium-ion batteries to be significantly less expensive than their lithium-ion counterparts if more companies start making more of them.”
What will these batteries be used for?
Right now, Natron has its focus set on AI models and data storage centers, which consume hefty amounts of energy. In 2023, the MIT Technology Review reported that one AI model can emit more than 626,00 pounds of carbon dioxide equivalent.
“We expect our battery solutions will be used to power the explosive growth in data centers used for Artificial Intelligence,” said Wendell Brooks, co-CEO of Natron.
“With the start of commercial-scale production here in Michigan, we are well-positioned to capitalize on the growing demand for efficient, safe, and reliable battery energy storage.”
The fast-charging energy alternative also has limitless potential on a consumer level, and Natron is eying telecommunications and EV fast-charging once it begins servicing AI data storage centers in June.
On a larger scale, sodium-ion batteries could radically change the manufacturing and production sectors — from housing energy to lower electricity costs in warehouses, to charging backup stations and powering electric vehicles, trucks, forklifts, and so on.
“I founded Natron because we saw climate change as the defining problem of our time,” Wessells said. “We believe batteries have a role to play.”
-via GoodGoodGood, May 3, 2024
--
Note: I wanted to make sure this was legit (scientifically and in general), and I'm happy to report that it really is! x, x, x, x
#batteries#lithium#lithium ion batteries#lithium battery#sodium#clean energy#energy storage#electrochemistry#lithium mining#pollution#human rights#displacement#forced labor#child labor#mining#good news#hope
3K notes
·
View notes
Text
Global Lithium Hydroxide Market Is Estimated To Witness High Growth Owing To Increasing Demand for Lithium-Ion Batteries
The global Lithium Hydroxide Market is estimated to be valued at USD 1389.6 million in 2022 and is expected to exhibit a CAGR of 6.8% over the forecast period 2022-2032, as highlighted in a new report published by Coherent Market Insights.
A) Market Overview:
Lithium hydroxide is a white crystalline compound used primarily as a key raw material in the production of lithium-ion batteries. These batteries are extensively used in the automotive industry, consumer electronics, energy storage systems, and various other applications. The increasing demand for electric vehicles and portable electronic devices is driving the growth of the global lithium hydroxide market.
B) Market Dynamics:
The two key drivers of the Lithium Hydroxide Market are the growing demand for electric vehicles and the rapid expansion of the consumer electronics industry. With the increasing concern for environmental sustainability and the government initiatives to promote electric vehicles, the demand for lithium-ion batteries is expected to surge. Moreover, the rising adoption of smartphones and other portable electronic devices is fueling the demand for lithium hydroxide.
C) Segment Analysis:
The Lithium Hydroxide Market Segmentation can be based on application. The dominating segment in this market is the lithium-ion batteries segment. Lithium hydroxide is a critical component in the production of lithium-ion batteries, which are extensively used in electric vehicles, smartphones, laptops, and other portable devices. The growing popularity of electric vehicles and the increasing consumer demand for advanced electronic devices are driving the growth of this segment.
D) PEST Analysis:
- Political: The political stability and government regulations play a crucial role in the growth of the lithium hydroxide market. Government incentives and initiatives to promote the adoption of electric vehicles and renewable energy sources are driving the demand for lithium hydroxide.
- Economic: The economic growth of emerging economies and increasing disposable incomes are contributing to the growth of the consumer electronics industry, thereby boosting the demand for lithium hydroxide.
- Social: The increasing awareness of environmental sustainability and the need for clean energy solutions are driving the demand for lithium-ion batteries, thereby driving the growth of the lithium hydroxide market.
- Technological: Technological advancements in lithium-ion battery technology, such as improved energy density and longer battery life, are fueling the demand for lithium hydroxide.
E) Key Takeaways:
- The global Lithium Hydroxide Market is expected to witness high growth, exhibiting a CAGR of 6.8% over the forecast period, due to increasing demand for lithium-ion batteries in the automotive and consumer electronics industries.
- The Asia-Pacific region is expected to be the fastest-growing and dominating region in the lithium hydroxide market, driven by the rapid adoption of electric vehicles and the presence of major battery manufacturers in countries like China and Japan.
- Key players operating in the global Lithium Hydroxide Market include FMC Corporation, Sociedad Quimica Minera (SQM), Jiangxi Ganfeng Lithium, Albemarle Lithium, Shandong Ruifu Lithium, Jiangxi Dongpeng New Materials Co. Ltd., Sichuan Brivo Lithium Materials Co. Ltd., Leverton Lithium, Rockwood, and Tianqi Lithium.
In conclusion, the global Lithium Hydroxide Market is poised for significant growth in the coming years due to the increasing demand for lithium-ion batteries in various industries. The market is driven by the growing popularity of electric vehicles and portable electronic devices, along with government initiatives promoting clean energy solutions. The Asia-Pacific region is expected to be the fastest-growing region, driven by the expanding automotive and consumer electronics industries. Key players in the market are focusing on expanding their production capacities to cater to the rising demand.
#Lithium Hydroxide Market#Lithium Hydroxide Market Insights#Coherent Market Insights#Lithium Hydroxide Market Growth#Electric Vehicle#Lithium Hydroxide Market Demand#Battery Energy Storage Systems#renewable energy#carbon emissions
0 notes
Text
Bicycles kick a lot of ass these days. When I was a kid, a bicycle would only go as fast as you could pedal. Maybe, if you were really a huge asshole, you could take the bus to the big city and buy one of those mini-moped kits from a motorcycle shop. Then you could break playground-zone speed limits with enough two-stroke burble and pop to arouse every police officer within thirty miles.
Nowadays, you can slap some Chinese-made wonder magic on your Norco and do three or four horsepower without even knowing how to solder. In fact, it's much better if you don't know anything about electronics, because that level of knowledge will prevent you from extracting the maximum value out of your investment of "some vape batteries" and "a motor I found on Amazon whose name YouTube can't consistently pronounce." Electrical engineers are just too damn afraid of fire to go really fast.
Sure, you have to show fealty to the all-knowing microcontroller inside the magic motor box. Pinky-swear to it that you live in the hypothetical lawless wonderland that would allow you to have this much wheel-bending, mind-melting torque on a public pedestrian pathway. Honestly, it's its own fault if it believes a shifty character such as yourself. Not that the local cops are going to pull over Bob Tongsheng on his way to deposit your money in his bank, either. It's this kind of primitive hot-rodding that once made this country great: neglecting the existence or worth of anyone and everything outside of your vehicle in lieu of Go Fast.
Sure, this sort of thing will only last for awhile. Pathways are already filling up with lots of zingy e-mopeds and e-deathscoots, ridden by perfectly normal people. Your 1500-watt stealth bomber build is going to get pulled on by a pensioner within a year or two, as the market begins to demand enough cargo room (and rollover protection!) to do a once-a-month Costco run with the entire fam in tow. Inevitably, the cops are going to have to crack down on the whole deal, too.
For a glorious, shining moment, you too can dig a rusty mountain bike out of a creek and have it doing 50 miles an hour by watching a YouTube video. That's something previous generations simply could not have imagined. Which is their loss, really. If they had gotten off their asses earlier and figured out the lithium-ion battery, we could all be driving $100 50-horsepower ebikes right now instead of having to pay Big Battery for the "latest and greatest" in burning your garage down.
248 notes
·
View notes
Text
As the electric vehicle market booms, the demand for lithium—the mineral required for lithium-ion batteries—has also soared. Global lithium production has more than tripled in the last decade. But current methods of extracting lithium from rock ores or brines are slow and come with high energy demands and environmental costs. They also require sources of lithium which are incredibly concentrated to begin with and are only found in a few countries. Now, researchers at the University of Chicago Pritzker School of Molecular Engineering (PME) have optimized a new method for extracting lithium from more dilute—and widespread—sources of the mineral, including seawater, groundwater, and "flowback water" left behind from fracking and offshore oil drilling.
Continue Reading.
97 notes
·
View notes
Text
Isuzu D-Max EV Concept, 2024. A prototype for a fully electric version of the D-Max pick-up was revealed at the 45th Bangkok International Motor Show. With a lithium-ion battery capacity of 66.9kWh and a maximum output of 130kW, the electric D-Max delivers instant torque and a maximum speed of 130km/h (81mph). The company plans to launch the D-Max BEV in select mainland European markets in 2025, with further expansion to the UK, Australia, Thailand, and other countries based on market demand and the development of Electric Vehicle (EV) charging infrastructure.
#Isuzu#Isuzu D-Max#Isuzu D-Max EV Concept#concept#prototype#2024#BEV#electric pick-up#45th Bangkok International Motor Show
63 notes
·
View notes
Text
New method optimizes lithium extraction from seawater and groundwater
As the electric vehicle market booms, the demand for lithium—the mineral required for lithium-ion batteries—has also soared. Global lithium production has more than tripled in the last decade. But current methods of extracting lithium from rock ores or brines are slow and come with high energy demands and environmental costs. They also require sources of lithium which are incredibly concentrated to begin with and are only found in a few countries. Now, researchers at the University of Chicago Pritzker School of Molecular Engineering (PME) have optimized a new method for extracting lithium from more dilute—and widespread—sources of the mineral, including seawater, groundwater, and "flowback water" left behind from fracking and offshore oil drilling.
Read more.
13 notes
·
View notes
Text
On May 14, Washington slapped new tariffs on China in what looks at first glance like the latest round of a familiar trade spat. The White House imposed duties of 25 to 50 percent on a range of industrial, medical, and clean tech goods—including semiconductors, solar cells, batteries, steel, aluminum, graphite, magnets, syringes, and ship-to-shore cranes. Strikingly, the latest measures also include a whopping 100 percent tariff on electric vehicles, effectively shutting the U.S. market to Chinese-made EVs.
Seen from Washington, these measures also look like a political move as U.S. President Joe Biden courts blue-collar voters in industrial swing states such as Michigan and Pennsylvania ahead of the November presidential election. It’s unlikely, however, that Beijing shares this benign interpretation. Seen from China, the tariffs look like a serious escalation of the U.S.-China contest and are probably raising alarm bells. Here’s why.
1. Washington is playing the long game. Stories of how China has become the world leader in EV manufacturing and is flooding the world with cheap vehicles have flourished over recent months. At the global level, there certainly is something to this analysis. Chinese exports of EVs jumped by a whopping 80 percent last year, propelling China to the top of the global ranking of car exporters. Yet this does not apply to the United States, where China supplied just 2 percent of EVs sold last year. (U.S. consumers appear to have a distinct preference for South Korean, Japanese, and European EV imports.) In other words, a 100 percent tariff on a few thousand cars will not hit Chinese firms hard.
A closer look at the list of targeted sectors suggests that batteries, not cars, will be the real pain point for China. The U.S. market is important for Chinese battery firms, which supply around 70 percent of the lithium-ion batteries used in the United States. For China’s battery sector, this means that the impact of the latest U.S. tariffs will likely be huge: The usual rule of thumb is that a 1 percentage point increase in tariffs entails a 2 percent drop in trade. With tariffs rising from 7.5 percent to 25 percent, the rule suggests that Chinese battery firms’ U.S. sales could drop by around one-third—or by $5 billion when one includes the entire battery supply chain. With Chinese battery-makers already seeing their profits plummet amid softening global demand, this is certainly bad news for Beijing.
Crucially, batteries are also an area where the U.S. government is investing huge amounts of public funds, in particular through the Inflation Reduction Act, which seeks to boost U.S. domestic production of clean tech goods. Seen in this light, the latest U.S. tariffs are preemptive measures to protect a nascent clean tech industry and make sure that there is domestic demand for future U.S. production. This suggests that the United States is playing the long game here, with little chance the tariffs will be lifted anytime soon. On the contrary—the U.S. clean tech market could well be closed to Chinese firms from here on out.
2. The White House is trying to force Europe to come on board and impose similar tariffs on China. Biden is probably seeking to score electoral brownie points with a 100 percent tariff on EVs, making former President Donald Trump’s proposal for 60 percent on U.S. imports from China look almost feeble. (Not to be outdone, Trump just announced that he would apply a 200 percent tariff on Chinese-branded cars made in Mexico.) Yet the reality is that Biden’s tariffs will not prove game-changing in the short term: Their implementation will be phased in over two years, and supply chain adjustments typically take time. In short, the measures are unlikely to fuel a U.S. industrial boom in time for the November elections.
What will happen before the election, though, is the conclusion in June or July of the European Union’s ongoing anti-subsidy investigation into China’s EV makers. Rumors abound of a possible tariff of 20 to 30 percent on Chinese EVs. Such a prospect is probably unnerving for Beijing; the EU is the biggest export market for China’s EVs, absorbing around 40 percent of Chinese shipments. The United States hopes that its 100 percent tariff on EVs will compel the EU to not only follow Washington’s example in imposing a tariff on Chinese EVs but perhaps also consider a higher one. This bold strategy could well work. Europe is unlikely to enjoy having its arm twisted by Washington, but the bloc will also worry that Chinese EV makers could double down on their push to dominate the EU market now that they have lost access to the U.S. one.
Chinese EVs look set to be a key topic when G-7 leaders meet for their annual summit in June. The United States will probably try to cajole Germany, which has long been dovish vis à vis China, into supporting sharply higher tariffs. German Chancellor Olaf Scholz has pointed to the fact that European auto manufacturers “sell a great many vehicles that are produced in Europe to China”—hinting at German fears that China could retaliate against EVs and internal combustion engine cars imported from the EU.
3. The tariffs are a serious escalation from Washington’s previous de-risking strategy. In recent years, U.S. de-risking has focused on reducing the United States’ reliance on China for crucial goods and curbing Beijing’s access to dual-use technology in a bid to avoid fueling the country’s military advances. To implement this strategy, Washington has so far relied on two main tools from its economic statecraft kit: financial sanctions (for instance, on firms linked to the People’s Liberation Army) and export controls (notably on semiconductors, which are dual-use goods found in most military equipment).
Washington is slowly realizing that these two tools are imperfect. China’s massive sanctions-proofing efforts mean that sanctions do not always deal a blow to Chinese firms, which may no longer be using the U.S. dollar (China now settles around half of its cross-border trade in renminbi) or Western financial channels such as SWIFT, the global payments system. Washington also understands that export controls on clean tech would not curb China’s ambitions in the field, as Chinese firms already have all the tech they need. This leaves only one option for U.S. economic statecraft: tariffs that leverage one of the country’s greatest economic assets—access to its market.
This is why the latest U.S. tariffs are likely raising red flags in Beijing. The United States is now severing access to its market in clean tech and other areas that China sees as crucial for its plans to become the world’s future economic superpower. If the EU plays ball, this approach would expose a central flaw in Beijing’s industrial strategy: What if the world’s two biggest markets—the United States and the EU—become no-go areas for Chinese firms dependent on exporting their vast production, leaving them with piles of unused goods? Few other markets are available for Chinese clean tech exports—outside Europe, North America, and East Asia, most countries lack the infrastructure for large-scale EV adoption, for example. This prospect may well keep Beijing’s planners up at night, with no easy solution in sight.
The question now is whether and how Beijing will react. Serious retaliation is unlikely, since the United States exports far less to China than vice versa. Given its current economic woes, China also has little interest in further weakening its economy—for example, by imposing export bans on critical raw materials, rare earths, or other crucial goods for Western economies.
As the latest skirmish in the battle for economic dominance between Washington and Beijing, the new U.S. tariffs raise a number of bigger questions: Will Washington succeed in its efforts to create a domestic ecosystem for clean tech? Will the United States and Europe manage to cooperate—or go their own ways in their economic relations with China? Will the United States continue to curb Chinese access to the U.S. market for the purposes of de-risking—and if so, in which sectors? There is probably only one certainty in the U.S.-China economic war: The conflict will continue well after the November elections, whatever their outcome.
12 notes
·
View notes
Text
Children still mining cobalt for gadget batteries in Congo
A CBS News investigation of child labor in cobalt mines in the Democratic Republic of Congo has revealed that tens of thousands of children are growing up without a childhood today – two years after a damning Amnesty report about human rights abuses in the cobalt trade was published. The Amnesty report first revealed that cobalt mined by children was ending up in products from prominent tech companies including Apple, Microsoft, Tesla and Samsung.
There's such sensitivity around cobalt mining in the DRC that a CBS News team traveling there recently was stopped every few hundred feet while moving along dirt roads and seeing children digging for cobalt. From as young as 4 years old, children can pick cobalt out of a pile, and even those too young to work spend much of the day breathing in toxic fumes.
What's life like for kids mining cobalt for our gadgets?
So, what exactly is cobalt, and what are the health risks for those who work in the DRC's cobalt mining industry?
What is cobalt?
Cobalt – a naturally occurring element – is a critical component in lithium-ion, rechargeable batteries. In recent years, the growing global market for portable electronic devices and rechargeable batteries has fueled demand for its extraction, Amnesty said in its 2016 report. In fact, many top electronic and electric vehicle companies need cobalt to help power their products.
The element is found in other products as well.
"Cobalt-containing products include corrosion and heat-resistant alloys, hard metal (cobalt-tungsten-carbide alloy), magnets, grinding and cutting tools, pigments, paints, colored glass, surgical implants, catalysts, batteries, and cobalt-coated metal (from electroplating)," says the U.S. Centers for Disease Control and Prevention.
More than half of the world's supply of cobalt comes from the DRC, and 20 percent of that is mined by hand, according to Darton Commodities Ltd., a London-based research company that specializes in cobalt.
Health risks of chronic exposure
According to the CDC, "chronic exposure to cobalt-containing hard metal (dust or fume) can result in a serious lung disease called 'hard metal lung disease'" – a kind of pneumoconiosis, meaning a lung disease caused by inhaling dust particles. Inhalation of cobalt particles can cause respiratory sensitization, asthma, decreased pulmonary function and shortness of breath, the CDC says.
The health agency says skin contact is also a significant health concern "because dermal exposures to hard metal and cobalt salts can result in significant systemic uptake."
"Sustained exposures can cause skin sensitization, which may result in eruptions of contact dermatitis," a red, itchy skin rash, the CDC says.
Despite the health risks, researchers with Amnesty International found that most cobalt miners in Congo lack basic protective equipment like face masks, work clothing and gloves. Many of the miners the organization spoke with for its 2016 report – 90 people in total who work, or worked, in the mines – complained of frequent coughing or lung problems. Cobalt mining's dangerous impact on workers and the environment
Some women complained about the physical nature of the work, with one describing hauling 110-pound sacks of cobalt ore. "We all have problems with our lungs, and pain all over our bodies," the woman said, according to Amnesty.
Moreover, miners said unsupported mining tunnels frequently give way, and that accidents are common.
Miners know their work is dangerous, Todd C. Frankel wrote late last month in The Washington Post.
"But what's less understood are the environmental health risks posed by the extensive mining," he reported. "Southern Congo holds not only vast deposits of cobalt and copper but also uranium. Scientists have recorded alarming radioactivity levels in some mining regions. Mining waste often pollutes rivers and drinking water. The dust from the pulverized rock is known to cause breathing problems. The mining industry's toxic fallout is only now being studied by researchers, mostly in Lubumbashi, the country's mining capital."
"These job are really desired"
Despite the dangers and risks of working as miners in the cobalt industry, at least of the some miners in the Congo "love their jobs," according to Frankel.
"When I talked to the miners there, none of them want to lose their jobs or give up their jobs. They love their jobs," Frankel said Tuesday, speaking on CBSN. "In a country like Congo, mining is one of the few decently paying jobs to be had there, and so they want to hold onto these jobs."
They also want fair treatment, decent pay, and some safety, "and they would love for their kids to not work in the mines," he said.
"It's a poverty problem," Frankel said. "These parents I talked to – they don't want their kids working in these mines. The problem is that their school fees – schools cost money, and you know, food costs money, and they sort of need their kids to work in there."
Poverty also drives children into the mines instead of school – an estimated 40,000 of them work in brutal conditions starting at very young ages.
The thousands of miners who work in tunnels searching for cobalt in the country "do it because they live in one of the poorest countries in the world, and cobalt is valuable," Frankel wrote in the Washington Post article.
"Not doing enough"
CBS News spoke with some of the companies that use cobalt in their lithium-ion batteries. All of the companies acknowledged problems with the supply chain, but said they require suppliers to follow responsible sourcing guidelines. Apple, an industry leader in the fight for responsible sourcing, said walking away from the DRC "would do nothing to improve conditions for the people or the environment."
Read company responses here
Amnesty said in November, however, that "major electronics and electric vehicle companies are still not doing enough to stop human rights abuses entering their cobalt supply chains."
"As demand for rechargeable batteries grows, companies have a responsibility to prove that they are not profiting from the misery of miners working in terrible conditions in the DRC," the organization said. "The energy solutions of the future must not be built on human rights abuses."
An estimated two-thirds of children in the region of the DRC that CBS News visited recently are not in school. They're working in mines instead.
CBS News' Debora Patta spoke with an 11-year-old boy, Ziki Swaze, who has no idea how to read or write but is an expert in washing cobalt. Every evening, he returns home with a dollar or two to provide for his family.
"I have to go and work there," he told Patta, "because my grandma has a bad leg and she can't."
He said he dreams of going to school, but has always had to work instead.
"I feel very bad because I can see my friends going to school, and I am struggling," he said.
Amnesty says "it is widely recognized internationally that the involvement of children in mining constitutes one of the worst forms of child labour, which governments are required to prohibit and eliminate."
#cobalt#PD Congo#PDR Congo#cobalt mining by children#amnesty university#The toll of the cobalt mining industry on health and the environment#Congo Economic Theft#minerals#rare earth minerals#tesla#iphones#cellphone batteries#ev batteries#lithium batteries#child labour#forced child labor#poverty#systemic racism
50 notes
·
View notes
Text
Germany's ongoing deindustrialisation is no accident; key Green intellectuals have demanded precisely this for decades, and now the Greens are in government and they are getting what they want.
eugyppius
Oct 30, 2024
Volkswagen is mired in deep crisis. This flagship of the German automobile industry and symbol of our postwar economic miracle is awash in debt, battered by unrelentingly high labour and energy prices. The metalworkers’ union IG Metall have driven wages at Volkswagen to imprudent extremes, and the company has poured mountains of good money after bad in its grasping effort to develop serviceable and marketable electric vehicles.
VW have no choice if they are to survive our looming and entirely self-imposed ban on internal combustion engines. Alas, VW’s battery-powered cars compete poorly with foreign models from companies like Tesla and BYD, because electric vehicles are entirely different products that employ entirely different technologies, and there’s no reason that a leading producer of petrol-powered cars should also happen to be a leading producer of electric cars. Demanding, via political fiat, that your automobile industry begin producing a totally different product in the course of the next decade, is not all that different from abolishing your automobile industry.
This week, VW announced plans to cut tens of thousands of jobs and to close three factories. That is a very big deal, because they have never closed a single German factory before. I try to avoid economic topics, but this story is so much bigger than economics. As Daniel Gräber wrote in Cicero last month, “the VW crisis has become a symbol for the decline of our entire country.”
3 notes
·
View notes
Text
Excerpt from this story from EcoWatch:
Sunrun, a solar company, and Baltimore Gas and Electric Company (BGE), the largest utility provider in Maryland, have launched a pilot program for a bidirectional power plant fueled by solar energy and EV technology.
The pilot, which involves three households, allows users to draw energy from a Ford F-150 Lightning electric truck when paired with the Ford Charge Station Pro and Home Integration System sold by Sunrun. This setup lets the household utilize energy from the EV during peak energy demand, Smart Energy International reported.
The pilot program is the first vehicle-to-home power plant in the U.S. and was funded with grants from the U.S. Department of Energy.
“This program is a significant proof of concept — no other market player has done this — and the goal is to expand these programs all around the country,” Sunrun CEO Mary Powell said in a press release. “This exciting partnership lays the foundation for the power grid of the future where electric vehicle owners can contribute to grid resiliency and utility price stability for everyone. The summer heat can be especially stressful on our power grid, which is why proving the use of stored energy in electric vehicles for capacity is so important.”
The process works by sending energy from the EV batteries to the homes, allowing the vehicle batteries to operate as energy storage. This can complement solar energy sources as well as reduce demand on Maryland’s power grids during peak times. The bidirectional power provided through the charging station can power homes for up to 10 days in the event of an outage, Sunrun said.
For the pilot program, the trucks share energy from 5 p.m. to 9 p.m. on weekdays from June 1 to September 30. The pilot is offering an estimated $800 to participants.
Currently, there are only a limited number of EV models that offer the bidirectional charging feature, including the Nissan Leaf, the 2024 Ioniq 5 and Ioniq 6 models from Hyundai, Kia’s EV6, EV9 and Niro EV, and the Ford F-150 Lightning, Cars.com reported.
More vehicles are expected to introduce bidirectional charging in the coming years, including all GM and Tesla EV models, CNET reported.
Sunrun and BGE are planning to expand the program after monitoring the pilot and will offer incentives for F-150 Lightning owners to join, helping increase grid resilience. The program could also help contribute toward Maryland’s goal to reach net-zero emissions by 2045 and achieve 100% clean electricity by 2035.
3 notes
·
View notes
Text
What Industries Is Injection Molding(Moulding) Applicable To?
Injection moulding is a common manufacturing process by injecting molten plastic material into a mould so that it can be formed into the desired product shape upon cooling.
Injection moulding process has the advantages of low cost, high production efficiency and stable product quality to make it widely used in various industries. In this vast injection moulding market, there are three industries are particularly eye-catching, which are extensively used for production and manufacturing due to their specific needs and product characteristics.
1.Household Appliance Manufacturing Industry
As an indispensable part of people's daily life, the market demand for household appliances is stable and continuously growing. The injection moulding process plays a pivotal role in the manufacturing of household appliances, from the outer shell to the internal components, injection moulding technology provides key support. Most of the exterior and structural components of home appliances, such as TV remote controls, refrigerators, TV sets, air-conditioning panels, and washing machine shells, are manufactured by injection molding process.
2.Automotive Components Industry & Transportation Sector
With the booming development of the automotive industry, the auto components and parts market has ushered in unprecedented development opportunities. Components and parts such as automotive dashboards, door interior panels, bumpers, and lamp housings as well as a wide range of pipework and connections are made through the injection moulding process. These parts require not only high precision and good mechanical properties, but also need to meet the strict appearance requirements, which injection moulding process is precisely by virtue of its unique advantages, in this field to occupy a place. In addition, with the rise of new energy vehicles, injection moulded parts play an important role in the manufacturing of key components such as battery packs and motor housings.
3.Medical Device Industry
With the increasing emphasis on health, the market demand for medical devices continues to grow. In medical device manufacturing, the injection moulding process is used to produce disposable medical devices such as syringes, infusion tubes and surgical instruments. These products require strict quality control and hygiene standards, and injection moulding process ensures product safety and effectiveness.
In addition, the injection moulding process is also widely used in the electrical and electronic industry, consumer electronics, packaging industry, toy manufacturing, construction materials, industrial parts, furniture and household furnishings and agriculture, among many others.
4.Electrical & Electronic Industry
In the manufacturing process of electronic products, many components such as housings, cases, sockets, connectors, cables, switches and holders for electronic circuit boards need to be manufactured by injection moulding process. Injection moulding process can achieve precise control of product appearance, size and structure, to meet the requirements of electronic products for appearance quality, functionality and reliability.
5.Consumer Electronics Industry
In the electronics industry, injection moulded parts are equally widely used. From mobile phone housings, computer components including keyboards and mice to remote controls and battery cases, the injection moulding process offers a wide variety of appearance and structure options for electronic products. These components not only need to have good mechanical properties and appearance, but also need to have excellent electrical insulation properties to ensure the stable operation of electronic products. Injection moulding technology occupies an important position in the manufacture of electronic products due to its advantages of high precision and low cost.
6.Construction Sector
In the construction field, injection moulded parts also have a wide range of applications, the drainage systems, door and window frames, pvc pipes, valves, wire troughs, insulation materials and other construction materials and accessories are mostly manufactured by injection moulding process. These components are not only high-strength and corrosion-resistant, but also weather-resistant and easy to install, meeting the construction industry's requirements for material performance and ease of use and improve construction efficiency and aesthetics. The application of injection moulding technology in the construction field not only improves the performance and quality of construction materials, but also promotes the sustainable development of the construction industry.
7.Packaging Industry
The packaging and container industry is also one of the key application areas for injection moulding processes. Plastic bottles, food boxes, cosmetic bottles, plastic bags and other packaging containers are mostly manufactured by injection moulding process to meet food safety and aesthetic requirements. These containers need to be well-sealed, drop-resistant, retain freshness and recyclable to ensure that the products are safe and environmentally friendly. Injection moulding processes can offer flexible design and manufacturing options to adapt to different packaging needs and provide strong support for the development of the packaging industry.
These areas above are just a few examples of the application areas of the injection moulding process. In the toy industry, injection moulded parts are used to manufacture a variety of plastic toys; In the textile and clothing industry, injection moulded parts are used to manufacture accessories such as zips and buttons; In the agricultural sector, injection moulded parts are used to manufacture agricultural tools and equipment such as sprayers and watering cans; Even in the aerospace sector, injection moulded parts are also used to manufacture parts for aircraft and spacecraft. It can be said that injection moulded parts have penetrated into almost every corner of our life.
In summary, injection moulded parts play an important role in several industries by virtue of their high precision, low cost and wide applicability. The application of injection moulding process in these areas not only improves production efficiency, but also meets the needs of product diversification and individualisation. With the continuous progress of science and technology and the continuous improvement of people's requirements on product quality, injection moulding technology will continue to be widely used and developed in various fields.
#design#autos#business#prototyping#prototype#prototype machining#rapid prototyping#cnc machining#precision machining#machining parts#injection molding#plastic injection molding#injection moulding machine#injection moulding#plastic injection#injection molded#injection molding parts#injection molded parts
2 notes
·
View notes