#energy storage
Explore tagged Tumblr posts
reasonsforhope · 8 months ago
Text
Green energy is in its heyday. 
Renewable energy sources now account for 22% of the nation’s electricity, and solar has skyrocketed eight times over in the last decade. This spring in California, wind, water, and solar power energy sources exceeded expectations, accounting for an average of 61.5 percent of the state's electricity demand across 52 days. 
But green energy has a lithium problem. Lithium batteries control more than 90% of the global grid battery storage market. 
That’s not just cell phones, laptops, electric toothbrushes, and tools. Scooters, e-bikes, hybrids, and electric vehicles all rely on rechargeable lithium batteries to get going. 
Fortunately, this past week, Natron Energy launched its first-ever commercial-scale production of sodium-ion batteries in the U.S. 
“Sodium-ion batteries offer a unique alternative to lithium-ion, with higher power, faster recharge, longer lifecycle and a completely safe and stable chemistry,” said Colin Wessells — Natron Founder and Co-CEO — at the kick-off event in Michigan. 
The new sodium-ion batteries charge and discharge at rates 10 times faster than lithium-ion, with an estimated lifespan of 50,000 cycles.
Wessells said that using sodium as a primary mineral alternative eliminates industry-wide issues of worker negligence, geopolitical disruption, and the “questionable environmental impacts” inextricably linked to lithium mining. 
“The electrification of our economy is dependent on the development and production of new, innovative energy storage solutions,” Wessells said. 
Why are sodium batteries a better alternative to lithium?
The birth and death cycle of lithium is shadowed in environmental destruction. The process of extracting lithium pollutes the water, air, and soil, and when it’s eventually discarded, the flammable batteries are prone to bursting into flames and burning out in landfills. 
There’s also a human cost. Lithium-ion materials like cobalt and nickel are not only harder to source and procure, but their supply chains are also overwhelmingly attributed to hazardous working conditions and child labor law violations. 
Sodium, on the other hand, is estimated to be 1,000 times more abundant in the earth’s crust than lithium. 
“Unlike lithium, sodium can be produced from an abundant material: salt,” engineer Casey Crownhart wrote ​​in the MIT Technology Review. “Because the raw ingredients are cheap and widely available, there’s potential for sodium-ion batteries to be significantly less expensive than their lithium-ion counterparts if more companies start making more of them.”
What will these batteries be used for?
Right now, Natron has its focus set on AI models and data storage centers, which consume hefty amounts of energy. In 2023, the MIT Technology Review reported that one AI model can emit more than 626,00 pounds of carbon dioxide equivalent. 
“We expect our battery solutions will be used to power the explosive growth in data centers used for Artificial Intelligence,” said Wendell Brooks, co-CEO of Natron. 
“With the start of commercial-scale production here in Michigan, we are well-positioned to capitalize on the growing demand for efficient, safe, and reliable battery energy storage.”
The fast-charging energy alternative also has limitless potential on a consumer level, and Natron is eying telecommunications and EV fast-charging once it begins servicing AI data storage centers in June. 
On a larger scale, sodium-ion batteries could radically change the manufacturing and production sectors — from housing energy to lower electricity costs in warehouses, to charging backup stations and powering electric vehicles, trucks, forklifts, and so on. 
“I founded Natron because we saw climate change as the defining problem of our time,” Wessells said. “We believe batteries have a role to play.”
-via GoodGoodGood, May 3, 2024
--
Note: I wanted to make sure this was legit (scientifically and in general), and I'm happy to report that it really is! x, x, x, x
3K notes · View notes
dandelionsresilience · 7 months ago
Text
Good News - June 8-14
Like these weekly compilations? Tip me at $Kaybarr1735! And if you tip me and give me a way to contact you, at the end of the month I'll send you a link to all of the articles I found but didn't use each week!
1. Rare foal born on estate for first time in 100 years
Tumblr media
“The Food Museum at Abbot's Hall in Stowmarket, Suffolk, is home to a small number of Suffolk Punch horses - a breed considered critically endangered by the Rare Breeds Survival Trust. A female foal was born on Saturday and has been named Abbots Juno to honour the last horse born at the museum in 1924. [...] Juno is just one of 12 fillies born so far this year in the country and she could potentially help produce more of the breed in the future.”
2. The cement that could turn your house into a giant battery
Tumblr media
“[Scientists] at Massachusetts Institute of Technology (MIT) have found a way of creating an energy storage device known as a supercapacitor from three basic, cheap materials – water, cement and a soot-like substance called carbon black. [... Supercapacitators] can charge much more quickly than a lithium ion battery and don't suffer from the same levels of degradation in performance. [... Future applications of this concrete might include] roads that store solar energy and then release it to recharge electric cars wirelessly as they drive along a road [... and] energy-storing foundations of houses.”
3. New road lights, fewer dead insects—insect-friendly lighting successfully tested
Tumblr media
“Tailored and shielded road lights make the light source almost invisible outside the illuminated area and significantly reduces the lethal attraction for flying insects in different environments. [...] The new LED luminaires deliver more focused light, reduce spill light, and are shielded above and to the side to minimize light pollution. [... In contrast,] dimming the conventional lights by a factor of 5 had no significant effect on insect attraction.”
4. When LGBTQ health is at stake, patient navigators are ready to help
Tumblr media
“[S]ome health care systems have begun to offer guides, or navigators, to get people the help they need. [... W]hether they're just looking for a new doctor or taking the first step toward getting gender-affirming care, "a lot of our patients really benefit from having someone like me who is there to make sure that they are getting connected with a person who is immediately going to provide a safe environment for them." [... A navigator] also connects people with LGBTQ community organizations, social groups and peer support groups.”
5. Tech company to help tackle invasive plant species
Tumblr media
“Himalayan balsam has very sugary nectar which tempts bees and other pollinators away from native plants, thereby preventing them from producing seed. It outcompetes native plant species for resources such as sunlight, space and nutrients. [...] The volunteer scheme is open to all GWT WilderGlos users who have a smartphone and can download the Crowdorsa app, where they can then earn up to 25p per square meter of Balsam removed.”
6. [Fish & Wildlife] Service Provides Over $14 Million to Benefit Local Communities, Clean Waterways and Recreational Boaters
Tumblr media
“The U.S. Fish and Wildlife Service is distributing more than $14 million in Clean Vessel Act grants to improve water quality and increase opportunities for fishing, shellfish harvests and safe swimming in the nation’s waterways. By helping recreational boaters properly dispose of sewage, this year’s grants will improve conditions for local communities, wildlife and recreational boaters in 18 states and Guam.”
7. Bornean clouded leopard family filmed in wild for first time ever
Tumblr media
“Camera traps in Tanjung Puting National Park in Indonesian Borneo have captured a Bornean clouded leopard mother and her two cubs wandering through a forest. It's the first time a family of these endangered leopards has been caught on camera in the wild, according [to] staff from the Orangutan Foundation who placed camera traps throughout the forest to learn more about the elusive species.”
8. Toy library helps parents save money 'and the planet'
Tumblr media
“Started in 2015 by Annie Berry, South Bristol's toy library aims to reduce waste and allow more children access to more - and sometimes expensive - toys. [...] Ms Berry partnered with the St Philips recycling centre on a pilot project to rescue items back from landfill, bringing more toys into the library. [...] [P]eople use it to support the environment, take out toys that they might not have the space for at home or be able to afford, and allow children to pick non-gender specific toys.”
9. Chicago Receives $3M Grant to Inventory Its Trees and Create Plan to Manage City’s Urban Forest
Tumblr media
“The Chicago Park District received a $1.48 million grant [“made available through the federal Inflation Reduction Act”] to complete a 100% inventory of its estimated 250,000 trees, develop an urban forestry management plan and plant 200 trees in disadvantaged areas with the highest need. As with the city, development of the management plan is expected to involve significant community input.”
10. Strong Public Support for Indigenous Co-Stewardship Plan for Bears Ears National Monument
Tumblr media
“[The NFW has a] plan to collaboratively steward Bears Ears National Monument to safeguard wildlife, protect cultural resources, and better manage outdoor recreation. The plan was the result of a two-year collaboration among the five Tribes of the Bears Ears Inter-Tribal Coalition and upholds Tribal sovereignty, incorporates Traditional Ecological Knowledge, and responsibly manages the monument for hunting, fishing, and other outdoor recreation while ensuring the continued health of the ecosystem.”
June 1-7 news here | (all credit for images and written material can be found at the source linked; I don’t claim credit for anything but curating.)
753 notes · View notes
Text
Solar and wind are quickly transforming the energy landscape -- but if we are to realize the full potential of these intermittent, renewable energy sources, we'll need safe, affordable batteries capable of storing it. As part of an effort to overcome the long-term energy-storage challenge, University of Wisconsin-Madison engineers have invented a water-soluble chemical additive that improves the performance of a type of electrochemical storage called a bromide aqueous flow battery. "Bromide-based aqueous flow batteries are a promising solution, but there are many messy electrochemical problems with them. That's why there's no real successful bromide-based products today," says Patrick Sullivan who graduated from UW-Madison with a PhD in chemistry in 2023. "Yet, our one additive can solve so many different problems."
Read more.
32 notes · View notes
wachinyeya · 6 months ago
Text
The technology involves assembling heat-absorbing bricks in an insulated container, where they can store heat generated by solar or wind power for later use at the temperatures required for industrial processes. The heat can then be released when needed by passing air through channels in the stacks of "firebricks," thus allowing cement, steel, glass, and paper factories to run on renewable energy even when wind and sunshine are unavailable.
These systems, which several companies have recently begun to commercialize for industrial heat storage, are a form of thermal energy storage. The bricks are made from the same materials as the insulating bricks that lined primitive kilns and iron-making furnaces thousands of years ago. To optimize for heat storage instead of insulation, the materials are combined in different amounts.
Batteries can store electricity from renewable sources and provide electricity to generate heat on demand. "The difference between firebrick storage and battery storage is that the firebricks store heat rather than electricity and are one-tenth the cost of batteries," said lead study author Mark Z. Jacobson, a professor of civil and environmental engineering in the Stanford Doerr School of Sustainability and School of Engineering. "The materials are much simpler too. They are basically just the components of dirt."
29 notes · View notes
rjzimmerman · 2 months ago
Text
Excerpt from this story from Grist:
Solar panels and wind turbines give the world bountiful energy — but come with a conundrum. When it’s sunny and windy out, in many places these renewables produce more electricity than is actually needed at the time. Then when the sun isn’t shining and wind isn’t blowing, those renewables provide little to no electricity when it’s sorely needed.
So for the grid of tomorrow to go 100 percent renewable, it needs to store a lot more energy. You’ve probably heard about giant lithium-ion batteries stockpiling that energy for later use. But when providing backup power, even a big battery bank will usually drain in four hours. The need for an alternative has the United States government, researchers, and startups scrambling to develop more “long-duration energy storage” that can provide a minimum of 10 hours of backup power — often by using reservoirs, caverns, and other parts of the landscape as batteries.
A new study from several universities and national labs in the United States and Canada shows that large-scale deployment of long-duration energy storage isn’t just feasible but essential for renewables to reach their full potential, and would even cut utility bills. It looked specifically at the Western Interconnection, a chunk of the grid that includes the western U.S. and Canada, plus a bit of northern Mexico. The study found that building more long-duration energy storage there would reduce electricity prices by more than 70 percent in times of high demand. 
The technologies already exist to hold renewable energy for at least half a day, with more on the way. One technique is known as pumped storage hydropower: When the grid is humming with renewable power, a facility pumps water uphill into a reservoir. Then, when solar or wind power drops off, the facility lets the water loose to flow back down into another reservoir, turning turbines that produce electricity. It’s exploiting energy from the wind and the sun, along with the power of gravity. 
“Battery storage on its own — or what people call short-duration energy storage — is very important,” said Martin Staadecker, an energy systems researcher at the Massachusetts Institute of Technology and lead author of the new study. “But you can’t just rely on lithium-ion batteries, because it would be very expensive to have enough to actually provide power for an entire week.”
As of 2022, the U.S. had 43 pumped storage hydropower facilities with a combined generation capacity of 22 gigawatts. (For perspective, the U.S. has around 150 gigawatts of wind power and 140 gigawatts of solar.) According to the Department of Energy, the U.S. has the potential to double its capacity for that kind of energy storage.
Companies are figuring out how to store energy underground, too. A company called Hydrostor, based in Toronto, Canada, uses excess renewable energy on the grid to pump compressed air into subterranean caverns filled with water. That forces the water aboveground into a reservoir. When the grid needs electricity, Hydrostor lets that water flow back into the chamber, pushing the air back to the surface to drive turbines. “We’re kind of creating a piston underground of water,” said Jon Norman, president of Hydrostor. “We’re actually building a cavity out using techniques that they use in the hydrocarbon storage industry to store propane and butane.”
5 notes · View notes
solarpunkbusiness · 6 months ago
Text
Tumblr media
Australian community battery program cuts power bills and strengthens the grid
Australia’s community battery programme is reducing household electricity bills, cutting greenhouse gas emissions, and bolstering the national grid, policymakers and analysts say.
Under the Community Batteries for Household Solar scheme, which has A$200 million (US$133 million) in state grant funding at its disposal, 400 batteries are being installed in neighbourhoods across the country. Up to 100,000 households will have access to these facilities, allowing them to store excess solar energy for use during peak times — typically in the mornings and evenings.
The programme is aimed, in part, at encouraging more households to install rooftop solar systems. It will also allow households that can’t install solar panels or their own batteries to access clean energy, and will reduce the country’s reliance on costly and polluting gas peaker plants.
While still a relatively new concept, the benefits are starting to show up.
Source
8 notes · View notes
cannabisnewstoday · 1 year ago
Text
13 notes · View notes
head-post · 1 year ago
Text
Britons have to choose between heating and eating this winter
The UK has some of the most poorly insulated homes in Europe, although the nation was previously a leader in this area. Fifteen years ago, around a million homes a year were retrofitted with insulation and a target was set for all new homes to be zero-carbon by 2016, Big Issue reports.
However, all these initiatives are now forgotten. The UK has pulled out of the race for a low-carbon economy – and working families in need of money will be paying the price. As the cold weather arrives, energy prices are on the rise again, and from this month, people are facing another price hike: a typical annual energy bill will rise by £95 to £1,928.
It costs over £700 a year more to heat a poorly insulated home than a well-insulated one. Yet the government offers nothing to the millions of people living in draughty homes and being overcharged.
The abolition of minimum energy efficiency standards in rented properties and a return to fossil fuel boilers points to a fundamental failure of leadership, according to Big Issue.
Read more HERE
Tumblr media
8 notes · View notes
globalgreening · 7 months ago
Text
Global Greening Flagship Projects for Desalination, Energy Storage and Hydrogen Production
As many people know the integration of solar, water and wind energy is essential for sustainable living, production and working future. Everyone should consider how these solutions can be tailored to fit various contexts and address specific regional challenges – especially efficient and intelligent energy consumption and energy storage. By adapting technologies and strategies to meet local needs, we can maximize the impact and sustainability of renewable energy initiatives. Global Greening Deserts project developer have been developing world-leading concepts and projects for many years. Agrovoltaik, Energy Storage Park, Greenhouse Ship, Greening Camps and RecyclingShip are some of the flagship projects. Urban Greening Camps are another outstanding large-scale developments, especially for megacities and regions that need better, faster and more efficient greening or re-greening. Solar cities with more water storage capacity through sponge city concepts, brighter and greener spaces, modular and mobile greening, more biodiversity and diverse green spaces with healthy soils that reduce heat, emissions and disaster risks.
Rural Development: Enhancing Livelihoods and Sustainability
Solar Water Pumping for Agriculture: In rural areas, access to reliable water sources can significantly impact agricultural productivity. Solar-powered water pumps can provide a cost-effective and sustainable solution for irrigation, enabling farmers to grow more crops and improve their livelihoods.
Community Water Projects: Developing community-managed water projects that use solar energy for purification and distribution can ensure access to clean water in remote areas. These projects can reduce waterborne diseases and improve overall health and wellbeing.
Renewable Energy Cooperatives: Establishing cooperatives where community members collectively invest in and manage solar energy systems can promote local ownership and sustainability. These cooperatives can generate income, reduce energy costs, and empower communities to take charge of their energy needs.
Urban Renewal: Transforming Cities into Green Hubs
Solar Rooftop Programs: Encouraging the installation of solar panels on rooftops of residential, commercial, and public buildings can transform cities into green energy hubs. Incentive programs, such as subsidies and tax credits, can motivate property owners to adopt solar energy.
Integrated Water Management: Urban areas can benefit from integrated water management systems that use solar energy to power water treatment, recycling, and desalination processes. These systems can enhance water security and support sustainable urban growth.
Green Infrastructure: Incorporating green infrastructure elements like green roofs, solar-powered street lighting, and water recycling systems into urban planning can reduce the environmental footprint of cities. These features can also improve air quality, reduce urban heat islands, and enhance the quality of life for residents.
Disaster Resilience: Enhancing Preparedness and Recovery
Portable Solar Solutions: In disaster-prone areas, portable solar power systems can provide critical energy for emergency response and recovery efforts. These systems can power communication devices, medical equipment, and temporary shelters, ensuring that affected communities have the resources they need.
Water Purification in Emergencies: Solar-powered water purification units can be deployed quickly in disaster areas to provide clean drinking water. These units can reduce the risk of waterborne diseases and support the health of affected populations.
Resilient Infrastructure: Building resilient infrastructure that integrates solar and water energy systems can enhance the ability of communities to withstand and recover from natural disasters. This includes designing buildings and facilities that can operate independently of the main grid and ensure continuous access to essential services.
Strategies for Scaling Up: Replication and Adaptation
To maximize the impact of solar and water energy integration, it’s crucial to develop strategies for scaling up successful projects. This involves replicating proven models, adapting them to different contexts, and ensuring that they are sustainable in the long term.
Replication Frameworks: Developing frameworks that outline the key components and best practices of successful projects can facilitate replication in other regions. These frameworks can include technical specifications, implementation guidelines, and lessons learned.
Adaptation to Local Conditions: Adapting projects to local environmental, cultural, and economic conditions is essential for their success. This may involve customizing technology, engaging with local stakeholders, and addressing specific challenges unique to the area.
Sustainability Planning: Ensuring the long-term sustainability of projects requires comprehensive planning, including maintenance, funding, and capacity building. Establishing local management structures and securing ongoing support can help projects remain viable and effective over time.
The integration of solar, water and wind energy offers a transformative pathway towards a sustainable future. By harnessing the power of these renewable resources, we can address critical challenges related to energy access, water scarcity, and environmental degradation. The efforts of Suns Water and similar initiatives are vital in driving this transformation.
As we project developers continue to explore and implement renewable energy solutions, it is critical to foster collaboration, innovation and community engagement. By working together, we can create a world where clean energy and safe water are accessible to all, where environmental sustainability is prioritized, and where artistic expression continues to inspire and mobilize change. Suns Water innovative, creative and advocatory style of working brings many good results, hope and inspiration in the developments. The future is bright, and with the collective effort of individuals, communities, and organizations worldwide, we can achieve a sustainable and resilient planet for generations to come. Together, we can turn the vision of a world powered by solar and water energy into a reality, ensuring a prosperous and harmonious future for all.
Education and Sustainable Development
Empowering young people and future future generations through better education, environmental awareness and commitment to real sustainable goals. One of the most important aspects is promoting a sense of responsibility for the environment and providing the tools and knowledge needed to make a difference - also to ensure that the legacy of sustainable practices continues.
Educational Programs and Curricula
School Partnerships: Partnering with schools to integrate renewable energy and water management topics into their curricula can inspire students from a young age. Interactive lessons, field trips to solar and water energy sites, and hands-on projects can make learning about sustainability engaging and impactful.
University Collaborations: Collaborating with universities to offer courses, research opportunities, and internships focused on renewable energy and water management can prepare students for careers in these fields. Universities can also serve as testing grounds for innovative technologies and approaches.
Online Learning Platforms: Developing online courses and resources that cover various aspects of solar and water energy can reach a global audience. These platforms can provide accessible education for people of all ages, from students to professionals looking to expand their knowledge.
Community Engagement and Awareness Campaigns
Workshops and Seminars: Hosting workshops and seminars on topics related to renewable energy and water management can raise awareness and provide practical knowledge to community members. These events can be tailored to different audiences, from homeowners to local business owners.
Public Awareness Campaigns: Running public awareness campaigns that highlight the benefits and importance of solar and water energy can foster community support. Using various media, such as social media, local newspapers, and community radio, can help reach a wide audience.
Community Events: Organizing community events such as clean energy fairs, art festivals, and sustainability expos can engage the public in a fun and educational way. These events can showcase local projects, provide demonstrations, and offer opportunities for community members to get involved.
Engagement and Leadership
Mentorship Programs: Creating mentorship programs that connect students and young professionals with experienced leaders in the fields of renewable energy and water management can provide valuable guidance and support. These programs can help young people navigate their career paths and develop their skills.
Innovation Challenges and Competitions: Hosting innovation challenges and competitions that encourage young people to develop creative solutions for renewable energy and water issues can stimulate interest and innovation. These events can offer prizes, scholarships, and opportunities for further development of winning ideas.
Technology and Innovation: The Next Frontier
The field of renewable energy is constantly evolving, with new technologies and innovations emerging that have the potential to revolutionize the way we generate and use energy. Staying at the forefront of these developments is crucial for maximizing the impact of solar and water energy integration.
Advanced Solar Technologies
Perovskite Solar Cells: Perovskite solar cells are a promising technology that offers higher efficiency and lower production costs compared to traditional silicon solar cells. Research and development in this area are rapidly advancing, with potential for widespread adoption in the near future.
Bifacial Solar Panels: Bifacial solar panels can capture sunlight from both sides, increasing their efficiency. These panels can be particularly effective in areas with high levels of reflected light, such as snowy or desert regions.
Solar Windows and Building-Integrated Photovoltaics: Solar windows and building-integrated photovoltaics (BIPV) allow for the integration of solar energy generation into the design of buildings. These technologies can turn entire structures into energy producers without compromising aesthetics.
Innovative Water and Wind Technologies
Advanced Water Recycling: Technologies that enhance water recycling processes, such as membrane bioreactors and advanced oxidation processes, can make wastewater treatment more efficient and effective. These systems can be powered by solar energy to further reduce their environmental impact.
Atmospheric Water Generators: Atmospheric water generators (AWGs) extract water from humid air, providing a source of clean drinking water. Solar-powered AWGs can offer a sustainable solution for water-scarce regions.
Solar Thermal Desalination: Solar thermal desalination uses solar heat to evaporate and condense water, separating it from salts and impurities. This method can be more energy-efficient and sustainable compared to traditional desalination processes.
Rethinking traditional wind power generation and further developing Vertical Axis Wind Turbines, which are much more efficient, environmentally friendly and aesthetically pleasing. Some of the best systems are also part of Greening Camps concepts and Energy Storage Parks. Even the flagship projects like the Greenhouse Ship and the Recycling Ship can be powered by VAWTs and produce a lot of hydrogen. The concept papers were published many months ago.
Integrating Artificial Intelligence and IoT
Smart Energy Management Systems: Integrating artificial intelligence (AI) and Internet of Things (IoT) technologies into energy management systems can optimize the use and distribution of solar energy. These systems can predict energy demand, monitor performance, and automate adjustments to improve efficiency.
Water Resource Monitoring: IoT sensors and AI can be used to monitor water resources in real time, providing data on water quality, usage, and availability. This information can be used to manage water resources more effectively and respond to issues promptly.
Predictive Maintenance: AI can predict maintenance needs for solar and water energy systems, reducing downtime and extending the lifespan of equipment. This proactive approach can save costs and improve the reliability of renewable energy systems.
Social Equity and Inclusion
Ensuring Access for All: Efforts must be made to ensure that renewable energy and clean water are accessible to all, regardless of socioeconomic status. This includes implementing policies and programs that support underserved and marginalized communities.
Community-Led Development: Empowering communities to lead their own renewable energy projects can promote social equity and inclusion. Providing resources, training, and support can help communities develop solutions that meet their specific needs and priorities.
Addressing Environmental Justice: Ensuring that the benefits of renewable energy and water projects are equitably distributed is crucial. This involves addressing environmental justice issues.
Long-Term Sustainability and Resilience
Climate Resilience: Developing renewable energy and water systems that can withstand and adapt to the impacts of climate change is essential for long-term sustainability. This includes designing infrastructure that is resilient to extreme weather events and changing environmental conditions.
Sustainable Development Goals (SDGs): Aligning renewable energy and water projects with the United Nations Sustainable Development Goals (SDGs) can provide a comprehensive framework for achieving sustainability. These goals address a wide range of social, economic, and environmental issues.
Global Collaboration: International collaboration and knowledge sharing are critical for addressing global challenges. By working together, countries and organizations can leverage their strengths, share best practices, and develop coordinated strategies for sustainable development.
Super Visions and Visionary Transformation: The Path Forward
As we move forward, let us continue to explore new frontiers, push the boundaries of what is possible, and work together to build a brighter, greener future for generations to come. The vision of a world powered by solar and water energy is within our reach, and with dedication, creativity, and collaboration, we can turn this vision into reality. Together, we can create a sustainable and resilient planet where all life can thrive. Suns Water is the original project or working title for the organization and future company SunsWater™.
The creator of this outstanding project believes in the good forces or powers of humanity, real nature, natural technologies, solar, water and wind energy. That's why he also found many great ideas, developed awesome concepts and projects. The founder and some real scientists believe that most of the water on planet Earth comes or came from the sun. There is a lot of research on how much space water was created in the early days of the formation of the solar system. Most of the water on planet Earth does not come from external sources such as asteroids or meteoroids. Planetary and solar researchers can confirm it. We scientific researchers hope that more people will discuss and exchange about such studies and theories.
The initiator of the Sun's Water Theory has spent many years researching and studying the sun, planets and moons in relation to water and ice. Large data sets and historical archives, internet databases and much more data have been analyzed to determine the actual reality. Mathematical and physical logic can prove that most of the water comes from the sun. Another great discovery made by the founder of the Suns Water project is a solid form of hydrogen, he calls it "Sun Granulate".
The journey towards a sustainable future powered by solar, water and wind energy is both challenging and inspiring. It requires a collective effort from individuals, communities, organizations, and governments worldwide. By embracing innovation, fostering collaboration, and prioritizing education and equity, we can create a world where clean energy and safe water are accessible to all. Through its projects, partnerships, and community initiatives, SunsWater can inspire a global shift towards sustainable practices and technologies.
The concepts and specific ideas are protected by international laws. The information in this article, contents and specific details are protected by national, international and European rights as well as by artists' rights, article, copyright and title protection. The artworks and project content are the intellectual property of the author and founder of the Global Greening and Trillion Trees Initiative. Any constructive and helpful feedback is welcome, as is any active and genuine support.
2 notes · View notes
aci25 · 1 year ago
Text
New Breakthrough in Energy Storage – MIT Engineers Create Supercapacitor out of Ancient Materials
Tumblr media
MIT engineers have created a “supercapacitor” made of ancient, abundant materials, that can store large amounts of energy. Made of just cement, water, and carbon black (which resembles powdered charcoal), the device could form the basis for inexpensive systems that store intermittently renewable energy, such as solar or wind energy. Credit: Image courtesy of Franz-Josef Ulm, Admir Masic, and Yang-Shao Horn
Constructed from cement, carbon black, and water, the device holds the potential to offer affordable and scalable energy storage for renewable energy sources.
Two of humanity’s most ubiquitous historical materials, cement and carbon black (which resembles very fine charcoal), may form the basis for a novel, low-cost energy storage system, according to a new study. The technology could facilitate the use of renewable energy sources such as solar, wind, and tidal power by allowing energy networks to remain stable despite fluctuations in renewable energy supply. 
The two materials, the researchers found, can be combined with water to make a supercapacitor — an alternative to batteries — that could provide storage of electrical energy. As an example, the MIT researchers who developed the system say that their supercapacitor could eventually be incorporated into the concrete foundation of a house, where it could store a full day’s worth of energy while adding little (or no) to the cost of the foundation and still providing the needed structural strength. The researchers also envision a concrete roadway that could provide contactless recharging for electric cars as they travel over that road.
The simple but innovative technology is described in a recent paper published in the journal PNAS, in a paper by MIT professors Franz-Josef Ulm, Admir Masic, and Yang-Shao Horn, and four others at MIT and at the Wyss Institute.
Capacitors are in principle very simple devices, consisting of two electrically conductive plates immersed in an electrolyte and separated by a membrane. When a voltage is applied across the capacitor, positively charged ions from the electrolyte accumulate on the negatively charged plate, while the positively charged plate accumulates negatively charged ions. Since the membrane in between the plates blocks charged ions from migrating across, this separation of charges creates an electric field between the plates, and the capacitor becomes charged. The two plates can maintain this pair of charges for a long time and then deliver them very quickly when needed. Supercapacitors are simply capacitors that can store exceptionally large charges.
The amount of power a capacitor can store depends on the total surface area of its conductive plates. The key to the new supercapacitors developed by this team comes from a method of producing a cement-based material with an extremely high internal surface area due to a dense, interconnected network of conductive material within its bulk volume. The researchers achieved this by introducing carbon black — which is highly conductive — into a concrete mixture along with cement powder and water, and letting it cure. The water naturally forms a branching network of openings within the structure as it reacts with cement, and the carbon migrates into these spaces to make wire-like structures within the hardened cement.
These structures have a fractal-like structure, with larger branches sprouting smaller branches, and those sprouting even smaller branchlets, and so on, ending up with an extremely large surface area within the confines of a relatively small volume. The material is then soaked in a standard electrolyte material, such as potassium chloride, a kind of salt, which provides the charged particles that accumulate on the carbon structures. Two electrodes made of this material, separated by a thin space or an insulating layer, form a very powerful supercapacitor, the researchers found.
Tumblr media
Since the new “supercapacitor” concrete would retain its strength, a house with a foundation made of this material could store a day’s worth of energy produced by solar panels or windmills, and allow it to be used whenever it’s needed. Credit: Image courtesy of Franz-Josef Ulm, Admir Masic, and Yang-Shao Horn
The two plates of the capacitor function just like the two poles of a rechargeable battery of equivalent voltage: When connected to a source of electricity, as with a battery, energy gets stored in the plates, and then when connected to a load, the electrical current flows back out to provide power.
“The material is fascinating,” Masic says, “because you have the most-used manmade material in the world, cement, that is combined with carbon black, that is a well-known historical material — the Dead Sea Scrolls were written with it. You have these at least two-millennia-old materials that when you combine them in a specific manner you come up with a conductive nanocomposite, and that’s when things get really interesting.”
As the mixture sets and cures, he says, “The water is systematically consumed through cement hydration reactions, and this hydration fundamentally affects nanoparticles of carbon because they are hydrophobic (water repelling).” As the mixture evolves, “the carbon black is self-assembling into a connected conductive wire,” he says. The process is easily reproducible, with materials that are inexpensive and readily available anywhere in the world. And the amount of carbon needed is very small — as little as 3 percent by volume of the mix — to achieve a percolated carbon network, Masic says.
Supercapacitors made of this material have great potential to aid in the world’s transition to renewable energy, Ulm says. The principal sources of emissions-free energy, wind, solar, and tidal power, all produce their output at variable times that often do not correspond to the peaks in electricity usage, so ways of storing that power are essential. “There is a huge need for big energy storage,” he says, and existing batteries are too expensive and mostly rely on materials such as lithium, whose supply is limited, so cheaper alternatives are badly needed. “That’s where our technology is extremely promising, because cement is ubiquitous,” Ulm says.
The team calculated that a block of nanocarbon-black-doped concrete that is 45 cubic meters (or yards) in size — equivalent to a cube about 3.5 meters across — would have enough capacity to store about 10 kilowatt-hours of energy, which is considered the average daily electricity usage for a household. Since the concrete would retain its strength, a house with a foundation made of this material could store a day’s worth of energy produced by solar panels or windmills and allow it to be used whenever it’s needed. And, supercapacitors can be charged and discharged much more rapidly than batteries.
After a series of tests used to determine the most effective ratios of cement, carbon black, and water, the team demonstrated the process by making small supercapacitors, about the size of some button-cell batteries, about 1 centimeter across and 1 millimeter thick, that could each be charged to 1 volt, comparable to a 1-volt battery. They then connected three of these to demonstrate their ability to light up a 3-volt light-emitting diode (LED). Having proved the principle, they now plan to build a series of larger versions, starting with ones about the size of a typical 12-volt car battery, then working up to a 45-cubic-meter version to demonstrate its ability to store a house-worth of power.
There is a tradeoff between the storage capacity of the material and its structural strength, they found. By adding more carbon black, the resulting supercapacitor can store more energy, but the concrete is slightly weaker, and this could be useful for applications where the concrete is not playing a structural role or where the full strength-potential of concrete is not required. For applications such as a foundation, or structural elements of the base of a wind turbine, the “sweet spot” is around 10 percent carbon black in the mix, they found.
Another potential application for carbon-cement supercapacitors is for building concrete roadways that could store energy produced by solar panels alongside the road and then deliver that energy to electric vehicles traveling along the road using the same kind of technology used for wirelessly rechargeable phones. A related type of car-recharging system is already being developed by companies in Germany and the Netherlands, but using standard batteries for storage.
Initial uses of the technology might be for isolated homes or buildings or shelters far from grid power, which could be powered by solar panels attached to the cement supercapacitors, the researchers say. 
Ulm says that the system is very scalable, as the energy-storage capacity is a direct function of the volume of the electrodes. “You can go from 1-millimeter-thick electrodes to 1-meter-thick electrodes, and by doing so basically you can scale the energy storage capacity from lighting an LED for a few seconds, to powering a whole house,” he says.
Depending on the properties desired for a given application, the system could be tuned by adjusting the mixture. For a vehicle-charging road, very fast charging and discharging rates would be needed, while for powering a home “you have the whole day to charge it up,” so slower-charging material could be used, Ulm says.
“So, it’s really a multifunctional material,” he adds. Besides its ability to store energy in the form of supercapacitors, the same kind of concrete mixture can be used as a heating system, by simply applying electricity to the carbon-laced concrete.
Ulm sees this as “a new way of looking toward the future of concrete as part of the energy transition.”
Reference: “Carbon–cement supercapacitors as a scalable bulk energy storage solution” by Nicolas Chanut, Damian Stefaniuk, James C. Weaver, Yunguang Zhu, Yang Shao-Horn, Admir Masic and Franz-Josef Ulm, 31 July 2023, Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.2304318120
The research team also included postdocs Nicolas Chanut and Damian Stefaniuk at MIT’s Department of Civil and Environmental Engineering, James Weaver at the Wyss Institute for Biologically Inspired Engineering, and Yunguang Zhu in MIT’s Department of Mechanical Engineering. The work was supported by the MIT Concrete Sustainability Hub, with sponsorship by the Concrete Advancement Foundation.
Source: scitechdaily.com
11 notes · View notes
ecaico · 9 months ago
Text
4 notes · View notes
mark-ming · 10 months ago
Text
Photovoltaic balcony energy storage power supply demonstration diagram
2 notes · View notes
dandelionsresilience · 2 months ago
Text
Dandelion News - November 15-21
Like these weekly compilations? Tip me at $kaybarr1735 or check out my Dandelion Doodles! (sorry it's slightly late, the links didn't wanna work and I couldn't figure it out all day)
1. Wyoming's abortion ban has been overturned, including its ban on abortion medication
Tumblr media
“Wyoming is the second state to have its near-total abortion ban overturned this month[…. Seven other states] also approved amendments protecting the right to an abortion. A lawsuit seeking to challenge the [FDA]’s approval of abortion medication recently failed when the Supreme Court refused to hear it[….]”
2. Patches of wildflowers in cities can be just as good for insects as natural meadows – study
Tumblr media
“This study confirmed that small areas of urban wildflowers have a high concentration of pollinating insects, and are as valuable to many pollinators as larger areas of natural meadow that you would typically find rurally.”
3. Paris could offer new parents anti-pollution baby 'gift bags' to combat 'forever chemicals'
Tumblr media
“The bag includes a stainless steel baby cup, a wooden toy, reusable cotton wipes, and non-toxic cleaning supplies as part of a "green prescription". […] The city will also have 44 centres for protecting mothers and infants that will be without any pollutants[….]”
4. Indigenous guardians embark on a sacred pact to protect the lowland tapir in Colombia
Tumblr media
“The tapir is now the focus of an Indigenous-led conservation project[… A proposed “biocultural corridor”] will protect not only the populations and movements of wildlife such as tapirs, but also the cultural traditions and spirituality of the Inga and other neighboring Indigenous peoples[….]”
5. Denmark will plant 1 billion trees and convert 10% of farmland into forest
Tumblr media
“[…] 43 billion kroner ($6.1 billion) have been earmarked to acquire land from farmers over the next two decades[.… In addition,] livestock farmers will be taxed for the greenhouse gases emitted by their cows, sheep and pigs from 2030, the first country to do so[….]”
6. The biggest grid storage project using old batteries is online in Texas
Tumblr media
“[Element operates “used EV battery packs” with software that can] fine-tune commands at the cell level, instead of treating all the batteries as a monolithic whole. This enables the system to get more use out of each cell without stressing any so much that they break down[….]””
7. Durable supramolecular plastic is fully ocean-degradable and doesn't generate microplastics
Tumblr media
“The new material is as strong as conventional plastics and biodegradable, [… and] is therefore expected to help reduce harmful microplastic pollution that accumulates in oceans and soil and eventually enters the food chain.”
8. Big Oil Tax Could Boost Global Loss and Damage Fund by 2000%
Tumblr media
“[… A] tax on fossil fuel extraction, which would increase each year, combined with additional taxes on excess profits would […] generate hundreds of billions of dollars by the end of the decade to assist poor and vulnerable communities with the impact of the climate crisis[….]”
9. Rooftop solar meets 107.5 pct of South Australia’s demand, no emergency measures needed
Tumblr media
“[T]he state was able to export around 658 MW of capacity to Victoria at the time[….] The export capacity is expected to increase significantly as the new transmission link to NSW[…] should be able to allow an extra 150 MW to be transferred in either direction by Christmas.”
10. Light-altering paint for greenhouses could help lengthen the fruit growing season in less sunny countries
Tumblr media
“[Scientists] have developed a spray coating for greenhouses that could help UK farmers to produce more crops in the future using the same or less energy[… by optimising] the wavelength of light shining onto the plants, improving their growth and yield.”
November 8-14 news here | (all credit for images and written material can be found at the source linked; I don’t claim credit for anything but curating.)
137 notes · View notes
Text
The world is rapidly transitioning to renewable power, but there are shortcomings. Solar power falls at night, and wind power recedes and ascends irregularly. New technologies need to be developed that can store energy from the electrical grid when there's a surplus and deploy it when there's not enough. Rechargeable lithium-ion batteries play a crucial role in everyday life, powering devices from smartphones to electric vehicles. However, they rely on limited resources like lithium, nickel, and cobalt, raising concerns about sustainability and cost. Xiaowei Teng, the James H. Manning Professor in Chemical Engineering at WPI, is leading a team to explore new battery technologies for grid energy storage. The team's recent results, published in the European scientific journal ChemSusChem, suggest that iron, when treated with the electrolyte additive silicate, could create a high-performance alkaline battery anode. The second most abundant metal in the Earth's crust after aluminum, iron is far more sustainable than nickel and cobalt. The United States alone recycles approximately over 40 million metric tons of iron and steel from scrap each year.
Read more.
23 notes · View notes
indizombie · 2 years ago
Quote
About 30 pounds of cobalt go into each EV battery to boost performance and energy storage, which are key to luring consumers from dirtier gas cars. But today 70% of cobalt comes from the Democratic Republic of Congo, where an estimated 40,000 children as young as 6 work in dangerous mines. The mines also bring deforestation, habitat fragmentation and high carbon emissions from mining and refinery processes that rely heavily on fossil fuels to produce electricity and drive heavy machinery. Some sources say cobalt mining’s CO2 emissions could double by 2030.
Tim Lyndon, ‘The EV Revolution Brings Environmental Uncertainty at Every Turn’, EcoWatch
20 notes · View notes
energy-5 · 1 year ago
Text
Incorporating Renewable Energy into Your EV Charging Routine
The shift towards electric vehicles (EVs) has been a significant stride in the collective effort to reduce carbon emissions and combat climate change. As the electric vehicle market continues to grow, with global sales hitting over 6.6 million in 2021, a 108% increase from the previous year, the focus now turns to how we power these vehicles. Transitioning from fossil fuels to renewable energy sources for EV charging is the next critical step in ensuring that the benefits of EVs are fully realized. This article explores the ways in which individuals and communities can incorporate renewable energy into their EV charging routines.
Firstly, the concept of 'green charging'—the process of using renewable energy to charge electric vehicles—is not only environmentally sound but also increasingly economically viable. The cost of solar photovoltaic (PV) systems has dropped by about 90% since 2010, making it an accessible option for many. Homeowners with EVs can install solar panels to capture energy during the day, which can then be used to charge their vehicles in the evening. For those without the option to install solar panels, choosing a green energy provider for their home charging setup that sources electricity from renewables is an effective alternative.
In addition to solar power, wind energy is another potent source for EV charging. Wind energy has experienced a dramatic increase in its adoption, with the global wind power capacity reaching 837 GW in 2021, an increase of 93% from the capacity in 2016. EV owners can tap into this resource by purchasing wind energy credits or by selecting energy plans that prioritize wind-sourced electricity. This ensures that the energy used for charging their EVs comes from clean sources, even if they are not directly connected to a wind farm.
The integration of smart chargers has made it easier for EV owners to charge their vehicles when renewable energy production is at its peak. Smart chargers can be programmed to operate when renewable energy generation is high, which usually coincides with low demand periods such as mid-day for solar or night-time for wind. By doing so, EV owners ensure their vehicles are charged using the cleanest energy possible while also taking advantage of lower energy prices during these off-peak times.
Another key element in aligning EV charging with renewable energy is the development of a robust public charging infrastructure that is powered by renewables. Governments and private companies are investing in the installation of public EV charging stations that are directly connected to renewable energy sources. For instance, in California, which leads the US with over 39% of the country's EV sales, there is a plan to install 250,000 charging stations by 2025, many of which will be powered by renewables.
On a larger scale, energy storage systems play a vital role in matching renewable energy supply with EV charging demand. Energy storage solutions, like lithium-ion batteries or pumped hydro storage, can store excess renewable energy generated during peak production times. This stored energy can then be used to provide a consistent and reliable source of green electricity for EV charging, regardless of the time of day or weather conditions.
There is also a growing trend towards vehicle-to-grid (V2G) systems, where EVs do not just consume power but also have the capability to return energy to the grid. This technology allows for a dynamic energy exchange where EVs can be charged during renewable energy peak production and then supply energy back to the grid when it's needed the most. This not only ensures optimal use of renewable energy but also provides stability to the energy grid and potentially offers financial benefits to EV owners.
Finally, to truly capitalize on renewable energy for EV charging, there needs to be increased collaboration between policymakers, renewable energy providers, and the automotive industry. Incentives for residential and commercial solar installations, tax benefits for purchasing green energy, and subsidies for smart chargers are just a few of the ways that can accelerate the adoption of renewable-powered EV charging.
3 notes · View notes