Tumgik
#researchers said. The corona is heated to millions of degrees
Text
Tumblr media
2 September 2022
Tumblr media
Fresh off its success at the moon, India is now headed for the sun.
The nation launched its first-ever solar observatory today (Sept. 2), sending the Aditya-L1 probe skyward atop a Polar Satellite Launch Vehicle (PSLV) from Satish Dhawan Space Centre at 2:20 a.m. EDT (0620 GMT; 11:50 a.m. local India time).
The PSLV deployed Aditya-L1 into low Earth orbit (LEO) as planned about 63 minutes after liftoff, sparking applause and high fives in mission control.
"Congratulations, India, and congratulations, ISRO [the Indian Space Research Organisation]," Jitendra Singh, India's Minister of State for Science and Technology, said shortly after deployment on ISRO's launch webcast.
"While the whole world watched this with bated breath, it is indeed a sunshine moment for India," Singh added.
The successful launch followed on the heels of another big milestone for India: On August 23, its Chandrayaan-3 mission became the first to land softly near the moon's south pole.
Chandrayaan-3's lander-rover duo are expected to conk out in a week or so, when the harsh lunar night falls at their touchdown site. But Aditya-L1's long journey has just begun.
A long road to a good sun-viewing spot
Aditya-L1 won't stay in LEO forever:
After a series of checkouts, it will use its onboard propulsion system to head toward Earth-sun Lagrange Point 1 (L1), a gravitationally stable spot about 1 million miles (1.5 million kilometers) from our planet in the direction of the sun.
That destination explains the latter part of the mission's name. And the first part is simple enough: "Aditya" translates to "sun" in Sanskrit.
The 3,260-pound (1,480 kilograms) observatory will arrive at L1 about four months from now, if all goes according to plan.
But the long trek will be worth it, according to the ISRO.
"A satellite placed in the halo orbit around the L1 point has the major advantage of continuously viewing the sun without any occultation/eclipses," ISRO officials wrote in an Aditya-L1 mission description.
"This will provide a greater advantage of observing the solar activities and its effect on space weather in real time."
Indeed, another sun-studying spacecraft is already at L1 — the Solar and Heliospheric Observatory (SOHO), a joint NASA-European Space Agency mission that launched in December 1995.
(Several other spacecraft, including NASA's James Webb Space Telescope, are at Earth-sun Lagrange Point 2, which is a million miles from Earth, in the direction away from the sun.)
Tumblr media
Solar flares, the coronal heating mystery and more
Once it's settled in at L1, the solar probe will use four three science instruments to study the particles and magnetic fields in its immediate surroundings and four others to scrutinize the sun's surface (known as the photosphere) and its atmosphere.
This work will help scientists better understand solar activity, including the dynamics of solar flares and coronal mass ejections (CMEs), ISRO officials say.
Flares are powerful flashes of high-energy radiation, and CMEs are huge eruptions of solar plasma.
Both types of outburst can affect us here on Earth. Intense CMEs that hit our planet, for example, trigger geomagnetic storms that can disrupt satellite navigation and power grids.
(As a side benefit, such storms also supercharge the gorgeous light shows known as auroras.)
Aditya-L1 will also tackle the "coronal heating problem," one of the biggest mysteries in heliophysics.
The corona — the sun's wispy outer atmosphere — is incredibly hot, reaching temperatures around 2 million degrees Fahrenheit (1.1 million degrees Celsius), according to NASA.
That's about 200 times hotter than the solar surface, which is "only" 10,000 degrees F (5,500 degrees C) or so.
It's still unclear what is responsible for this startling and counterintuitive discrepancy.
(Why would it be hotter away from the sun's core, where the energy-producing nuclear fusion reactions are occurring?)
Aditya-L1 has other science goals as well. For instance, the mission also aims to more fully flesh out the solar wind, the stream of charged particles flowing constantly from the sun, ISRO officials said.
Aditya-L1 will measure the composition of the solar wind and attempt to determine how it is accelerated.
And Aditya-L1 will do all this work on the cheap:
The mission's price tag is about 3.8 billion rupees, or $46 million US at current exchange rates.
That's in the same ballpark as Chandrayaan-3
India's first successful moon-landing mission costs about 6.15 billion rupees, or $74 million US.
For comparison, NASA's most recent big-ticket sun mission, the record-setting Parker Solar Probe, costs roughly $1.5 billion.
This disparity should not be viewed as an indictment of NASA, however; labor costs are much higher in the United States than in India, among other differences between the two nations' economies.
Tumblr media
Aditya-L1 is a coronagraphy spacecraft to study the solar atmosphere, designed and developed by the Indian Space Research Organisation (ISRO) and various other Indian research institutes.
13 notes · View notes
spacenutspod · 1 year
Link
Ever since the first direct observations of the solar wind in 1959, astronomers have worked to figure out what powers this plasma flow. Now, scientists using the ESA/NASA Solar Orbiter spacecraft think they have an answer: tiny little outbursts called “picoflares” They flash out from the corona at 100 kilometers per second. The discovery comes from highly detailed extreme ultraviolet studies of a coronal hole at the Sun’s south pole. The observations revealed a collection of short-lived, faint features associated with tiny plasma jets ejected from the Sun. “We could only detect these tiny jets because of the unprecedented high-resolution, high-cadence images produced by EUI,” said Lakshmi Pradeep Chitta, Max Planck Institute for Solar System Research, Germany. In a paper describing the observations, Chitta and colleagues outline the observations and findings. This movie was created from observations taken by the ESA/NASA Solar Orbiter spacecraft on 30 March 2022 between 04:30 and 04:55 UTC and shows a ‘coronal hole’ near the Sun’s south pole. Tiny jets show up as little flashes of bright light across the image. Each one expels charged particles, known as plasma, into space. These jets could be the source of the solar wind. Creating the Solar Wind The solar wind is responsible for a number of phenomena in the Solar System. It impacts magnetic fields around various worlds, including Earth, and plays a role in space weather events like aurorae. It also affects comets, shaping their plasma tails as these icy bodies whip around the Sun. Although this wind is a fundamental feature of the Sun, solar physicists haven’t always had a definitive explanation for what generates it. They’ve known for quite some time that it’s mostly associated with coronal holes. These are magnetic structures in the corona and appear as dark regions on the solar surface. Essentially, they’re places in the solar atmosphere where the magnetic field doesn’t duck back down into the Sun. Rather, their magnetic field lines extend out from the Sun and through the Solar System. Naturally, plasma can flow along those “exit lines” and that’s what the solar wind is: an escape of plasma from the Sun. But, the big question remains: what launches it in the first place? Coronal holes can appear nearly anywhere on the Sun, although they occur quite often around the polar regions. They seem to be more common and last longer during the quiet part of the solar cycle (solar minimum). However, they also show up during solar maximum. Jets and the Solar Wind The idea of jets and outbursts from the Sun is not new and solar physicists observe a range of them. The largest are coronal mass ejections. These carry huge amounts of energetic particles out through space. There are also events called X-class solar flares. Then, there are the solar nanoflares These are less energetic but still influential. They have about a billion times less energy than the huge solar flares, but they happen nearly constantly. They could well be responsible for heating the corona to its incredibly high 2-million-degree temperatures. Picoflares carry less power than nanoflares. Those tiny jets discovered by Solar Orbiter show about a thousand times less energy than a nanoflare. However, they seem to pack a mighty punch. Most of their energy gets channeled into ejecting plasma away from the Sun. That contributes to the near-constant flow of the solar wind. They’re ubiquitous enough that they probably eject a larger fraction of the solar wind than expected. A sequence of Solar Orbiter images showing tiny jets called “picoflares” escaping the Sun and helping to create the solar wind. Courtesy: ESA. There’s still quite a bit to learn about this process, but ongoing Solar Orbiter studies should help explain the mechanism further. “One of the results here is that to a large extent, this flow is not actually uniform, the ubiquity of the jets suggests that the solar wind from coronal holes might originate as a highly intermittent outflow,” said Andrei Zhukov, Royal Observatory of Belgium, a collaborator on the work who led the Solar Orbiter observing campaign. Next Steps Solar Orbiter isn’t done measuring these constant little ejections. It’s actually circling the Sun in the equatorial regions at the moment. Eventually, its orbit will cover the polar areas. Luckily, that change in orbit will also help the spacecraft study changes in the Sun as the current solar cycle progresses. That means it will be able to study these tiny structures in coronal holes that show up at different solar latitudes. For More Information Solar Orbiter Discovers Tiny Jets that Could Power the Solar WindPicoflare Jets Power the Solar Wind Emerging from a Coronal Hole on the SunarXiv Article Solar Orbiter Web Page The post Is the Solar Wind Coming From These Tiny Jets on the Sun? appeared first on Universe Today.
0 notes
mysticstronomy · 3 years
Text
ASTRONOMERS SPOT LIGHT FROM BEHIND A BLACK HOLE FOR THE FIRST TIME!!
Blog#113
Wednesday, August 11th ,2021
Welcome back,
When doing astronomy, you can’t blink, because the difference between a never-before-seen phenomenon, and just a regular day at the telescope can be as small as seeing faint X-rays turn into fainter X-rays for a short moment.
That’s what happened when astrophysicist Dan Wilkins noticed, upon fixing his telescopes on the supermassive black hole at the center of the galaxy I Zwicky, that following a normal series of powerful X-rays being flung out from the center, came unexpected additional flashes of X-rays that were smaller, later, and of different “colors.”
Tumblr media
What he was observing meant astronomers got to say something they love to say: It proved Einstein right… again.
The fainter, different colored lights came from behind the black hole when the powerful burst of X-rays reflected off gasses orbiting it, and which are drawn around by the magnetic and gravitational forces that blend space and time, allowing us to see them faintly.
Tumblr media
“Any light that goes into that black hole doesn’t come out, so we shouldn’t be able to see anything that’s behind the black hole,” said Wilkins, a research scientist at the Kavli Institute for Particle Astrophysics and Cosmology at Stanford, in a statement. “The reason we can see that is because that black hole is warping space, bending light, and twisting magnetic fields around itself.”
The discovery was made by the European Space Agency’s XMM-Newton and NASA’s NuSTAR space telescopes, which captured the phenomenon in stages displayed for easy comprehension on the ESA website.
Tumblr media
At 10 million times the mass of our sun, the supermassive black hole at the center of I Zwicky, 1,800 light-years from our solar system, is surrounded by a swirling cloud of gas and dust that is continuously being pulled into the black hole, like water going down a drain, called a corona.
The corona becomes heated to millions of degrees Kelvin as it spins around, creating disjointed magnetic fields that become “twisted into knots,” which eventually snap, according to ESA.
Tumblr media
This snapping creates a massive explosion of heat and energy, which generates bursts of X-rays called “flares” which can last for two and a half hours sometimes.
During this particular discharge of X-rays, Wilkins observed the light reflecting off the gas on the opposite side of the black hole from where the telescopes were viewing it, which due to the bending of space and time around it, changed the properties and colors of the X-rays.
The revelation that we can see light in different colors from the opposite ends of the black hole led Wilkins and his team to believe they could use them to create a color-coded 3D map of a black hole and its surroundings.
Tumblr media
CBS reminds us that Einstein predicted black holes’ ability to bend light back in 1916, which along with the 2019 “Gates of Hell” image, the gravitational waves discovery using LIGO in 2014, and the discovery that new-born black holes “ring,” means that Einstein, more than 50 years after his death, is still making correct predictions at a faster rate than most living astrophysicists.
SOURCE: www.goodnewsnetwork.org
COMING UP!!
(Saturday, August 14th, 2021)
“PLANS FOR GRAVITATIONAL WAVE OBSERVATORY ON THE MOON!!”
151 notes · View notes
scifigeneration · 5 years
Text
Newest solar telescope produces first images
Just released first images from the National Science Foundation's Daniel K. Inouye Solar Telescope reveal unprecedented detail of the sun's surface and preview the world-class products to come from this preeminent 4-meter solar telescope. NSF's Inouye Solar Telescope, on the summit of Haleakala, Maui, in Hawai'i, will enable a new era of solar science and a leap forward in understanding the sun and its impacts on our planet.
Tumblr media
Activity on the sun, known as space weather, can affect systems on Earth. Magnetic eruptions on the sun can impact air travel, disrupt satellite communications and bring down power grids, causing long-lasting blackouts and disabling technologies such as GPS.
The first images from NSF's Inouye Solar Telescope show a close-up view of the sun's surface, which can provide important detail for scientists. The images show a pattern of turbulent "boiling" plasma that covers the entire sun. The cell-like structures -- each about the size of Texas -- are the signature of violent motions that transport heat from the inside of the sun to its surface. That hot solar plasma rises in the bright centers of "cells," cools, then sinks below the surface in dark lanes in a process known as convection.
"Since NSF began work on this ground-based telescope, we have eagerly awaited the first images," said France Córdova, NSF director. "We can now share these images and videos, which are the most detailed of our sun to date. NSF's Inouye Solar Telescope will be able to map the magnetic fields within the sun's corona, where solar eruptions occur that can impact life on Earth. This telescope will improve our understanding of what drives space weather and ultimately help forecasters better predict solar storms."
Expanding knowledge
The sun is our nearest star -- a gigantic nuclear reactor that burns about 5 million tons of hydrogen fuel every second. It has been doing so for about 5 billion years and will continue for the other 4.5 billion years of its lifetime. All that energy radiates into space in every direction, and the tiny fraction that hits Earth makes life possible. In the 1950s, scientists figured out that a solar wind blows from the sun to the edges of the solar system. They also concluded for the first time that we live inside the atmosphere of this star. But many of the sun's most vital processes continue to confound scientists.
"On Earth, we can predict if it is going to rain pretty much anywhere in the world very accurately, and space weather just isn't there yet," said Matt Mountain, president of the Association of Universities for Research in Astronomy, which manages the Inouye Solar Telescope. "Our predictions lag behind terrestrial weather by 50 years, if not more. What we need is to grasp the underlying physics behind space weather, and this starts at the sun, which is what the Inouye Solar Telescope will study over the next decades."
The motions of the sun's plasma constantly twist and tangle solar magnetic fields . Twisted magnetic fields can lead to solar storms that can negatively affect our technology-dependent modern lifestyles. During 2017's Hurricane Irma, the National Oceanic and Atmospheric Administration reported that a simultaneous space weather event brought down radio communications used by first responders, aviation and maritime channels for eight hours on the day the hurricane made landfall.
Finally resolving these tiny magnetic features is central to what makes the Inouye Solar Telescope unique. It can measure and characterize the sun's magnetic field in more detail than ever seen before and determine the causes of potentially harmful solar activity.
"It's all about the magnetic field," said Thomas Rimmele, director of the Inouye Solar Telescope. "To unravel the sun's biggest mysteries, we have to not only be able to clearly see these tiny structures from 93 million miles away but very precisely measure their magnetic field strength and direction near the surface and trace the field as it extends out into the million-degree corona, the outer atmosphere of the sun."
Better understanding the origins of potential disasters will enable governments and utilities to better prepare for inevitable future space weather events. It is expected that notification of potential impacts could occur earlier -- as much as 48 hours ahead of time instead of the current standard, which is about 48 minutes. This would allow more time to secure power grids and critical infrastructure and to put satellites into safe mode.
The engineering
To achieve the proposed science, this telescope required important new approaches to its construction and engineering. Built by NSF's National Solar Observatory and managed by AURA, the Inouye Solar Telescope combines a 13-foot (4-meter) mirror -- the world's largest for a solar telescope -- with unparalleled viewing conditions at the 10,000-foot Haleakala summit.
Focusing 13 kilowatts of solar power generates enormous amounts of heat -- heat that must be contained or removed. A specialized cooling system provides crucial heat protection for the telescope and its optics. More than seven miles of piping distribute coolant throughout the observatory, partially chilled by ice created on site during the night.
The dome enclosing the telescope is covered by thin cooling plates that stabilize the temperature around the telescope, helped by shutters within the dome that provide shade and air circulation. The "heat-stop" (a high-tech, liquid-cooled, doughnut-shaped metal) blocks most of the sunlight's energy from the main mirror, allowing scientists to study specific regions of the sun with unparalleled clarity.
The telescope also uses state-of-the-art adaptive optics to compensate for blurring created by Earth's atmosphere. The design of the optics ("off-axis" mirror placement) reduces bright, scattered light for better viewing and is complemented by a cutting-edge system to precisely focus the telescope and eliminate distortions created by the Earth's atmosphere. This system is the most advanced solar application to date.
"With the largest aperture of any solar telescope, its unique design, and state-of-the-art instrumentation, the Inouye Solar Telescope -- for the first time -- will be able to perform the most challenging measurements of the sun," Rimmele said. "After more than 20 years of work by a large team devoted to designing and building a premier solar research observatory, we are close to the finish line. I'm extremely excited to be positioned to observe the first sunspots of the new solar cycle just now ramping up with this incredible telescope."
New era of solar astronomy
NSF's new ground-based Inouye Solar Telescope will work with space-based solar observation tools such as NASA's Parker Solar Probe (currently in orbit around the sun) and the European Space Agency/NASA Solar Orbiter (soon to be launched). The three solar observation initiatives will expand the frontiers of solar research and improve scientists' ability to predict space weather.
"It's an exciting time to be a solar physicist," said Valentin Pillet, director of NSF's National Solar Observatory. "The Inouye Solar Telescope will provide remote sensing of the outer layers of the sun and the magnetic processes that occur in them. These processes propagate into the solar system where the Parker Solar Probe and Solar Orbiter missions will measure their consequences. Altogether, they constitute a genuinely multi-messenger undertaking to understand how stars and their planets are magnetically connected."
"These first images are just the beginning," said David Boboltz, a program director in NSF's Division of Astronomical Sciences who oversees the facility's construction and operations. "Over the next six months, the Inouye telescope's team of scientists, engineers and technicians will continue testing and commissioning the telescope to make it ready for use by the international solar scientific community. The Inouye Solar Telescope will collect more information about our sun during the first 5 years of its lifetime than all the solar data gathered since Galileo first pointed a telescope at the sun in 1612."
19 notes · View notes
tomasorban · 5 years
Text
Electrical Birthing of Stars
Popular ideas about star and planet formation have received a jolt from a recent peek into the womb of a newly forming star.
The shock came from the European Space Agency's XMM-Newton X-ray observatory as it peered into a star-forming region called R Corona Australis, about 500 light-years from Earth.
The astronomers who investigated the region were well schooled in the standard “nebular hypothesis” of star and planet formation. The theory holds that stars are born in the “gravitational collapse” of vast precursor clouds over great spans of time. Based on their model, astronomers had assumed that the cloud was “between 10,000 to 100,000 years into the process of gathering itself together”. Its temperature was estimated at 400 degrees below zero Fahrenheit (minus 240 Celsius). Traditional theory says that millions of years will pass before the cloud has collapsed sufficiently to “ignite the nuclear fusion”  of a new star.
Investigators had not anticipated anything comparable to the events they observed. Extremely high energies were at work, strong enough to produce X-rays—something that could never occur in an inactive and diffuse cloud in space: “ The detection of X-rays from the cold stellar precursor surprised astronomers,” states a report by SPACE.com. “The detection of X-rays this early indicates that gravity alone is not the only force shaping young stars," said Kenji Hamaguchi, a NASA-funded researcher at the Goddard Space Flight Center.
The gravity-driven universe is, of course, the bedrock of popular cosmology. Now it has failed another test. “The observations reveal that matter is falling toward the core 10 times faster than gravity could account for,” the report states. According to Michael Corcoran of NASA Goddard, a co-author on the report, "The X-ray emission shows that forces appear to be accelerating matter to high speeds, heating regions of this cold gas cloud to 100 million degrees Fahrenheit". By comparison, the superheated corona of the Sun measures at about 2 million degrees Fahrenheit.
What is happening inside R Corona Australis? The investigators concluded that “some previously unrealized energetic process, likely related to magnetic fields, is superheating parts of the cloud, nudging it to become a star”.  We’ve seen this many times before: a new discovery evokes statements of surprise, and magnetic fields are mysteriously factored in to save appearances—but with no mention of the electric currents that create magnetic fields. How does this happen?
It happens because electricity is re-defining the physical universe, while conventional astronomers hold steadfastly to an electrically neutral, gravity-only universe. No official acknowledgement of this crisis has ever been issued by mainstream institutions. Yet without electric neutrality across the plasma of interstellar and intergalactic space, popular cosmology loses its foundation. Not only the gravity-based models, but everything conjured through the magic of gravitational mathematics (from dark matter and dark energy to black holes) will evaporate.
Tumblr media
There is a simple, readily observed, and easily testable physical process that accounts for the discoveries in R Corona Australis. Those who have studied plasma and electricity in the laboratory discuss the dynamic all the time. The work began with the Norwegian experimental researcher Kristian Birkeland, and culminated in the pioneering life’s work of Nobel Laureate Hannes Alfvén, the father of plasma science. Alfvén, the researchers that worked with him, and such independent researchers today as Australian physicist Wallace Thornhill and retired professor of electrical engineering Donald Scott have offered numerous insights on the role of electricity in space. And their models have demonstrated exceptional predictive ability.
Astrophysicists know that such clouds are slightly ionized. However, in the Electric Universe they are not everywhere charge neutral. As a result electric fields and currents exist within the cloud. These electric currents take the form of parallel filaments in twisted pairs, behaving like cosmic power transmission lines. The electromagnetic force between the filaments is the strongest long-range force in the universe since it falls off linearly with distance rather than with the square of the distance as does gravity. That is why matter is falling into core of the cloud “10 times faster than gravity could account for".
Plasma cosmologists also understand that electric currents heat and accelerate gas to high speeds, generating intense magnetic fields. And in electromagnetic "z-pinches" along these current filaments, plasma instabilities generate copious x-rays!
The more we learn about the cosmos the less it looks like the picture still taught in school. But without vigilance old theories become an ideology and persist far beyond their usefulness.
22 notes · View notes
spaceexp · 6 years
Text
NASA’s NICER Mission Maps ‘Light Echoes’ of New Black Hole
NASA - Neutron star Interior Composition Explorer (NICER) patch. Jan. 30, 2019 Scientists have charted the environment surrounding a stellar-mass black hole that is 10 times the mass of the Sun using NASA’s Neutron star Interior Composition Explorer (NICER) payload aboard the International Space Station. NICER detected X-ray light from the recently discovered black hole, called MAXI J1820+070 (J1820 for short), as it consumed material from a companion star. Waves of X-rays formed “light echoes” that reflected off the swirling gas near the black hole and revealed changes in the environment’s size and shape. “NICER has allowed us to measure light echoes closer to a stellar-mass black hole than ever before,” said Erin Kara, an astrophysicist at the University of Maryland, College Park and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who presented the findings at the 233rd American Astronomical Society meeting in Seattle. “Previously, these light echoes off the inner accretion disk were only seen in supermassive black holes, which are millions to billions of solar masses and undergo changes slowly. Stellar black holes like J1820 have much lower masses and evolve much faster, so we can see changes play out on human time scales.” A paper describing the findings, led by Kara, appeared in the Jan. 10 issue of Nature and is available online: http://dx.doi.org/10.1038/s41586-018-0803-x
NICER Charts the Area Around a New Black Hole
Video above: Watch how X-ray echoes, mapped by NASA’s Neutron star Interior Composition Explorer (NICER) revealed changes to the corona of black hole MAXI J1820+070. Video Credits: NASA’s Goddard Space Flight Center. J1820 is located about 10,000 light-years away toward the constellation Leo. The companion star in the system was identified in a survey by ESA’s (European Space Agency) Gaia mission, which allowed researchers to estimate its distance. Astronomers were unaware of the black hole’s presence until March 11, 2018, when an outburst was spotted by the Japan Aerospace Exploration Agency’s Monitor of All-sky X-ray Image (MAXI), also aboard the space station. J1820 went from a totally unknown black hole to one of the brightest sources in the X-ray sky over a few days. NICER moved quickly to capture this dramatic transition and continues to follow the fading tail of the eruption. “NICER was designed to be sensitive enough to study faint, incredibly dense objects called neutron stars,” said Zaven Arzoumanian, the NICER science lead at Goddard and a co-author of the paper. “We’re pleased at how useful it’s also proven in studying these very X-ray-bright stellar-mass black holes.” A black hole can siphon gas from a nearby companion star into a ring of material called an accretion disk. Gravitational and magnetic forces heat the disk to millions of degrees, making it hot enough to produce X-rays at the inner parts of the disk, near the black hole. Outbursts occur when an instability in the disk causes a flood of gas to move inward, toward the black hole, like an avalanche. The causes of disk instabilities are poorly understood. Above the disk is the corona, a region of subatomic particles around 1 billion degrees Celsius (1.8 billion degrees Fahrenheit) that glows in higher-energy X-rays. Many mysteries remain about the origin and evolution of the corona. Some theories suggest the structure could represent an early form of the high-speed particle jets these types of systems often emit.
Image above: In this illustration of a newly discovered black hole named MAXI J1820+070, a black hole pulls material off a neighboring star and into an accretion disk. Above the disk is a region of subatomic particles called the corona. Image Credits: Aurore Simonnet and NASA’s Goddard Space Flight Center. Astrophysicists want to better understand how the inner edge of the accretion disk and the corona above it change in size and shape as a black hole accretes material from its companion star. If they can understand how and why these changes occur in stellar-mass black holes over a period of weeks, scientists could shed light on how supermassive black holes evolve over millions of years and how they affect the galaxies in which they reside. One method used to chart those changes is called X-ray reverberation mapping, which uses X-ray reflections in much the same way sonar uses sound waves to map undersea terrain. Some X-rays from the corona travel straight toward us, while others light up the disk and reflect back at different energies and angles. X-ray reverberation mapping of supermassive black holes has shown that the inner edge of the accretion disk is very close to the event horizon, the point of no return. The corona is also compact, lying closer to the black hole rather than over much of the accretion disk. Previous observations of X-ray echoes from stellar black holes, however, suggested the inner edge of the accretion disk could be quite distant, up to hundreds of times the size of the event horizon. The stellar-mass J1820, however, behaved more like its supermassive cousins.  As they examined NICER’s observations of J1820, Kara’s team saw a decrease in the delay, or lag time, between the initial flare of X-rays coming directly from the corona and the flare’s echo off the disk, indicating that the X-rays traveled shorter and shorter distances before they were reflected. From 10,000 light-years away, they estimated that the corona contracted vertically from roughly 100 to 10 miles — that’s like seeing something the size of a blueberry shrink to something the size of a poppy seed at the distance of Pluto
Neutron star Interior Composition Explorer (NICER). Animation Credit: NASA
“This is the first time that we’ve seen this kind of evidence that it’s the corona shrinking during this particular phase of outburst evolution,” said co-author Jack Steiner, an astrophysicist at the Massachusetts Institute of Technology’s Kavli Institute for Astrophysics and Space Research in Cambridge. “The corona is still pretty mysterious, and we still have a loose understanding of what it is. But we now have evidence that the thing that’s evolving in the system is the structure of the corona itself.” To confirm the decreased lag time was due to a change in the corona and not the disk, the researchers used a signal called the iron K line created when X-rays from the corona collide with iron atoms in the disk, causing them to fluoresce. Time runs slower in stronger gravitational fields and at higher velocities, as stated in Einstein’s theory of relativity. When the iron atoms closest to the black hole are bombarded by light from the core of the corona, the X-ray wavelengths they emit get stretched because time is moving slower for them than for the observer (in this case, NICER). Kara’s team discovered that J1820’s stretched iron K line remained constant, which means the inner edge of the disk remained close to the black hole — similar to a supermassive black hole. If the decreased lag time was caused by the inner edge of the disk moving even further inward, then the iron K line would have stretched even more. These observations give scientists new insights into how material funnels in to the black hole and how energy is released in this process.
Image above: The NICER instrument installed on the International Space Station, as captured by a high-definition external camera on Oct. 22, 2018. Image Credit: NASA. “NICER’s observations of J1820 have taught us something new about stellar-mass black holes and about how we might use them as analogs for studying supermassive black holes and their effects on galaxy formation,” said co-author Philip Uttley, an astrophysicist at the University of Amsterdam. “We’ve seen four similar events in NICER’s first year, and it’s remarkable. It feels like we’re on the edge of a huge breakthrough in X-ray astronomy.” NICER is an Astrophysics Mission of Opportunity within NASA's Explorer program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined and efficient management approaches within the heliophysics and astrophysics science areas. NASA's Space Technology Mission Directorate supports the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation. Related links: NASA’s Neutron star Interior Composition Explorer (NICER): https://www.nasa.gov/nicer Monitor of All-sky X-ray Image (MAXI): https://www.nasa.gov/mission_pages/station/research/experiments/603.html International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html NASA’s Goddard Space Flight Center (GSFC): https://www.nasa.gov/goddard University of Maryland: https://www.umd.edu/ European Space Agency (ESA): https://www.esa.int/ESA Japan Aerospace Exploration Agency (JAXA): http://global.jaxa.jp/ Images (mentioned), Animation (mentioned), Video (mentioned), Text, Credits: NASA/Rob Garner/Goddard Space Flight Center, by Jeanette Kazmierczak. Greetings, Orbiter.ch Full article
103 notes · View notes
deivapublisher · 7 years
Text
human leaps: Kavignar Thanigai.
human leaps: Kavignar Thanigai.
Scientists To Chase Solar Eclipse Using NASA Jets The total solar eclipse provides a rare opportunity for scientists to study the Sun, particularly its atmosphere. World | Press Trust of India | Updated: July 26, 2017 13:39 IST
Tumblr media
WASHINGTON:  In a first, scientists are planning to chase the shadow of the Moon using NASA’s research jets during the upcoming total solar eclipse in the US, in order…
View On WordPress
#" said Dan Seaton#000 feet#allowing fine structures and motions in the Sun&039;s corona to be visible. Observations of Mercury will also be taken a half-hour before a#and there is much less atmospheric turbulence#and with what strengths and sizes. The two planes#but the high- resolution and high-speed images to be taken from the WB-57F jets might reveal their effects on the corona. The high-definitio#but with a large collective effect - might release heat into the corona. No one has yet directly seen nanoflares#captured 30 times per second#Caspi will capture the clearest images of the Sun&039;s corona to date and the first-ever thermal images of Mercury#greatly improving image quality. At the planes&039; cruising altitude of 50#in order to capture the clearest ever images of the Sun&039;s outer atmosphere. Amir Caspi of the Southwest Research Institute in the US an#launching from Ellington Field near NASA&039;s Johnson Space Center in Houston will observe the total eclipse for about three and a half mi#observations taken with onboard telescopes will avoid looking through the majority of Earth&039;s atmosphere#particularly its atmosphere. As the Moon completely covers the Sun and perfectly blocks its light during an eclipse#researcher at University of Colorado in the US. The total solar eclipse provides a rare opportunity for scientists to study the Sun#researchers said. The corona is heated to millions of degrees#revealing how temperature varies across the planet&039;s surface. nasa wb 57f aircraft Amir Caspi and his team will use NASA&039;s WB-57F#scientists are planning to chase the shadow of the Moon using NASA&039;s research jets during the upcoming total solar eclipse in the US#scientists will observe the solar corona using stabilised telescopes aboard the WB-57F research aircraft. This vantage point provides distin#taken in the infrared#termed nanoflares - too small and frequent to detect individually#the sky is 20-30 times darker than as seen from the ground#the typically faint corona is easily seen against the dark sky. During the upcoming total solar eclipse#WASHINGTON: In a first#when the sky is still relatively dark. These images#will be analysed for wave motion in the corona to see if waves move towards or away from the surface of the Sun#will be the first attempt to map the variation of temperature across the surface of the planet.#yet the lower atmospheric layers like the photosphere - the visible surface of the Sun - are only heated to a few thousand degrees. Scientis
0 notes
sciencespies · 3 years
Text
Dyson Spheres Around Black Holes Could Reveal Alien Civilizations, Scientists Say
https://sciencespies.com/space/dyson-spheres-around-black-holes-could-reveal-alien-civilizations-scientists-say/
Dyson Spheres Around Black Holes Could Reveal Alien Civilizations, Scientists Say
One of the biggest questions we have about the Universe is: Are we alone as a technologically advanced species? This raises other questions: If aliens are out there, what would their technology look like? And, pertinently, how could we detect it?
A new study has laid out some answers to these questions – at least, if the technology in question is a type of insane energy harvester called a Dyson sphere, drawing down energy from a black hole.
“In this study, we consider an energy source of a well-developed Type II or a Type III civilization. They need a more powerful energy source than their own Sun,” the researchers write in their paper.
“An accretion disk, a corona, and relativistic jets could be potential power stations for a Type II civilization. Our results suggest that for a stellar-mass black hole, even at a low Eddington ratio, the accretion disk could provide hundreds of times more luminosity than a main sequence star.”
The concept of a Dyson sphere was popularized by theoretical physicist Freeman Dyson in the 1960s as a solution to the problem of power consumption that exceeds the capabilities of a civilization’s planet. The sphere itself is built around the planetary system’s star – a megastructure that harvests the star’s energy at the source.
Dyson’s paper proposed that infrared emissions of thermal energy might escape as the Dyson structure captures and converts stellar energy, which could hypothetically give away the presence of these hypothetical structures. This infrared signature, if we could detect it, would allow us to home in on alien civilizations.
Led by astronomer Tiger Yu-Yang Hsiao of National Tsing Hua University in Taiwan, a team of researchers has taken the concept a step further. What if the Dyson sphere (or Dyson ring or Dyson swarm) was arranged around a black hole? Would it work, and what would we be able to detect, from here on Earth?
The one thing above all others that black holes are known for is their powerful gravitational field that slurps up everything that draws close enough, and doesn’t let it out again (that we can detect).
You might, therefore, be wondering how one could harvest anything from such a beast. As it turns out, there are a number of processes in the extreme environment around a black hole from which energy could possibly be harvested.
In their paper, the team consider a number of these processes: the accretion disk of material swirling around a black hole, super-heated by friction to up to millions of degrees; Hawking radiation, the theoretical black-body radiation emitted by black holes proposed by Stephen Hawking.
Other potentially relevant phenomena that could contribute include spherical accretion, the corona of magnetized plasma between the inner edge of the accretion disk and the event horizon, and the jets launched at relativistic speeds from the poles of active black holes.
Based on models of black holes clocking in at 5, 20, and 4 million times the mass of the Sun (which is the mass of Sagittarius A*, the supermassive black hole at the heart of the Milky Way), Hsiao and colleagues were able to determine that a sphere of satellites would be able to effectively harvest energy from some of these processes.
“The largest luminosity can be collected from an accretion disk, reaching 100,000 times the luminosity of the Sun, enough to maintain a Type II civilization,” the researchers write.
“Moreover, if a Dyson sphere collects not only the electromagnetic radiation but also other types of energy (e.g., kinetic energy) from the jets, the total collected energy would be approximately five times larger.”
Such structures would be detectable across multiple wavelengths, the researchers found, with hotter Dyson spheres more visible across the ultraviolet range, and cooler Dyson spheres visible in infrared, just as Dyson himself predicted.
However, given that active black holes already emit a lot of radiation in both these wavelength ranges, making a detection of the Dyson excess could be easier said than done.
The team suggests that making other measurements, such as changes in light as the black hole is minutely affected by the gravity of the sphere, could help reveal where these structures might be hiding.
The research has been published in the Monthly Notices of the Royal Astronomical Society.
#Space
0 notes
sciencebulletin · 3 years
Text
First detection of light from behind a black hole
Tumblr media
Fulfilling a prediction of Einstein’s theory of general relativity, researchers report the first-ever recordings of X-ray emissions from the far side of a black hole. Watching X-rays flung out into the universe by the supermassive black hole at the center of a galaxy 800 million light-years away, Stanford University astrophysicist Dan Wilkins noticed an intriguing pattern. He observed a series of bright flares of X-rays—exciting, but not unprecedented—and then, the telescopes recorded something unexpected: additional flashes of X-rays that were smaller, later and of different "colors" than the bright flares. According to theory, these luminous echoes were consistent with X-rays reflected from behind the black hole—but even a basic understanding of black holes tells us that is a strange place for light to come from. "Any light that goes into that black hole doesn't come out, so we shouldn't be able to see anything that's behind the black hole," said Wilkins, who is a research scientist at the Kavli Institute for Particle Astrophysics and Cosmology at Stanford and SLAC National Accelerator Laboratory. It is another strange characteristic of the black hole, however, that makes this observation possible. "The reason we can see that is because that black hole is warping space, bending light and twisting magnetic fields around itself," Wilkins explained. The strange discovery, detailed in a paper published July 28 in Nature, is the first direct observation of light from behind a black hole—a scenario that was predicted by Einstein's theory of general relativity but never confirmed, until now. "Fifty years ago, when astrophysicists starting speculating about how the magnetic field might behave close to a black hole, they had no idea that one day we might have the techniques to observe this directly and see Einstein's general theory of relativity in action," said Roger Blandford, a co-author of the paper who is the Luke Blossom Professor in the School of Humanities and Sciences and Stanford and SLAC professor of physics and particle physics. How to see a black hole The original motivation behind this research was to learn more about a mysterious feature of certain black holes, called a corona. Material falling into a supermassive black hole powers the brightest continuous sources of light in the universe, and as it does so, forms a corona around the black hole. This light—which is X-ray light—can be analyzed to map and characterize a black hole. The leading theory for what a corona is starts with gas sliding into the black hole where it superheats to millions of degrees. At that temperature, electrons separate from atoms, creating a magnetized plasma. Caught up in the powerful spin of the black hole, the magnetic field arcs so high above the black hole, and twirls about itself so much, that it eventually breaks altogether—a situation so reminiscent of what happens around our own Sun that it borrowed the name "corona." "This magnetic field getting tied up and then snapping close to the black hole heats everything around it and produces these high energy electrons that then go on to produce the X-rays," said Wilkins. As Wilkins took a closer look to investigate the origin of the flares, he saw a series of smaller flashes. These, the researchers determined, are the same X-ray flares but reflected from the back of the disk—a first glimpse at the far side of a black hole. "I've been building theoretical predictions of how these echoes appear to us for a few years," said Wilkins. "I'd already seen them in the theory I've been developing, so once I saw them in the telescope observations, I could figure out the connection." Future observations The mission to characterize and understand coronas continues and will require more observation. Part of that future will be the European Space Agency's X-ray observatory, Athena (Advanced Telescope for High-ENergy Astrophysics). As a member of the lab of Steve Allen, professor of physics at Stanford and of particle physics and astrophysics at SLAC, Wilkins is helping to develop part of the Wide Field Imager detector for Athena. "It's got a much bigger mirror than we've ever had on an X-ray telescope and it's going to let us get higher resolution looks in much shorter observation times," said Wilkins. "So, the picture we are starting to get from the data at the moment is going to become much clearer with these new observatories." Co-authors of this research are from Saint Mary's University (Canada), Netherlands Institute for Space Research (SRON), University of Amsterdam and The Pennsylvania State University. Read the full article
0 notes
spacenutspod · 1 year
Link
The Sun dominates the Solar System in almost every way imaginable, yet much of its inner workings have been hidden from humanity. Over the centuries, and especially in the last few decades, technological advancements allowed us to ignore our mothers’ exhortations and stare at the Sun for as long as we want. We’ve learned a lot from all those observations. A new study shows how the Sun experiences its own ‘meteor showers.’ These so-called meteor showers are nothing like the meteor showers we enjoy on a summer’s evening. Instead, they’re clumps of plasma formed by localized cooling. The European Space Agency’s Solar Orbiter captured images of them. A meteor shower occurs when Earth passes through a cloud of dust particles, usually from a passing comet. As these tiny particles strike Earth’s atmosphere, the friction heats them up, and they burn. Some meteor showers produce more than 1000 meteors per hour. There are no meteor showers on the Sun. Its powerful solar wind prevents dust from encroaching into its space. But new research from European scientists shows that there’s something strange going on in the Sun. Meteor-like fireballs of plasma can fall onto its surface. A team of researchers headed by Patrick Antolin, Assistant Professor at Northumbria University, presented their results at the National Astronomy Meeting at Cardiff University. They’ll also be published in a forthcoming paper in the journal Astronomy and Astrophysics titled “Extreme-ultraviolet fine structure and variability associated with coronal rain revealed by Solar Orbiter/EUI HRIEUV and SPICE.” Astrophysicists call this unusual phenomenon ‘coronal rain.’ The corona is the Sun’s outer layer. It reaches millions of kilometres into space, and it’s extremely hot. The extreme heat means the corona is made of plasma. But it’s also subject to temperature fluctuations. “Just detecting coronal rain is a huge step forward for solar physics because it gives us important clues about the major solar mysteries, such as how it is heated to millions of degrees.”Patrick Antolin, Northumbria University When the local temperature drops, the plasma can condense into huge, super-dense clumps. These clumps have nowhere to go but down, back to the Sun. The clumps are enormous, up to 250km wide, according to the new observations. And they don’t fall gently. The Sun’s powerful gravity drags them down at over 100 km per second. This image from the research shows the Earth to scale on the left, and several tracks from falling clumps of plasma marked in red. The ESA’s Solar Orbiter captured this image in March 2022. Image Credit: Patrick Antolin. Background image: ESA/Solar Orbiter EUI/HRI To capture these images, the Solar Orbiter came within 49 million kilometres of the Sun. This close approach allowed the highest-resolution images ever taken of the Sun’s corona. The orbiter also observed the heating and compression of gas immediately below the clumps of solar rain. The temperature and pressure rise dramatically in the clumps, and the temperature gradually falls again as the clumps fall back to the Sun. When they fall back to the Sun, these clumps don’t burn up like Earthly meteor showers. Instead, they’re partially ionized and follow the Sun’s powerful magnetic field lines as they fall to the surface. The clumps can produce a brief yet strong brightening when they reach the surface. The impacts also produce upward surges of material as well as shock waves, which can heat the material again. “The inner solar corona is so hot we may never be able to probe it in situ with a spacecraft,” said lead author Patrick Antolin. “However, SolO orbits close enough to the Sun that it can detect small-scale phenomena occurring within the corona, such as the effect of the rain on the corona, allowing us a precious indirect probe of the coronal environment that is crucial to understanding its composition and thermodynamics. Just detecting coronal rain is a huge step forward for solar physics because it gives us important clues about the major solar mysteries, such as how it is heated to millions of degrees.” Purely as a thought experiment, it’s fun to think about what would happen if Earth was subjected to these blobs of plasma. A 250 km blob of super-heated plasma would be unimaginably destructive if it struck Earth. Of course, that can’t happen; it’s purely speculative. But it is another reminder of how puny and helpless humanity is in the face of nature’s lethality. “If humans were alien beings capable of living on the Sun’s surface, we would constantly be rewarded with amazing views of shooting stars,” joked Antolin, “but we would need to watch out for our heads!” The post The Sun Gets Meteor Showers Too, But They’re Very Different appeared first on Universe Today.
0 notes
mitchbattros · 6 years
Text
Solar Mystery Starts To Unravel As NASA Detects 'Tadpole' Jets Coming From Sun's Surface
One of the biggest mysteries of the Sun is why its upper atmosphere—also known as the corona—is over 200 times hotter than its surface. For some unknown reason, this region that extends millions of miles into space is superheated—while the surface temperature hovers around 5,500 degree Celsius, the corona can reach two million degrees Celsius.
Tumblr media
In a study published in Nature Astronomy, scientists with NASA are now edging closer to understanding this weird phenomenon. While analyzing data taken by one of the space agency’s solar observation satellites, researchers discovered jets emerging from sunspots and shooting up to 3,000 miles into the inner corona. The jets had bulky heads and slim tails, so they looked like tadpoles swimming through the layers of the Sun. Sunspots are regions that temporarily appear on the surface of the Sun. They are much cooler than the surrounding areas and are highly magnetized. Previously, there were two main hypotheses about what was heating the Sun’s corona. The first relates to nanoflares, where explosions caused by the reconnection of magnetic lines release energy into the atmosphere, heating it in the process. The second involves electromagnetic waves, with charged particles being pushed into the Sun’s atmosphere. The tadpole discovery adds a third possibility to the mix. Scientists found the tadpoles were made up entirely of plasma—the fourth state of matter, consisting of electrically conducting material made up of charged particles. The tadpoles (also known as ‘pseudo shocks’) may help heat up the Sun’s corona at specific times in its 11 year cycle—specifically during the solar maximum, when there is increased activity on the Sun’s surface. The pseudo-shocks are thought to occur when magnetic field lines become tangled and produce explosions. This often happens around sunspots, but may well take place in other magnetized regions of space. Computer simulations showed that the tadpoles could carry enough energy to heat the inner corona. "We were looking for waves and plasma ejecta, but instead, we noticed these dynamical pseudo-shocks, like disconnected plasma jets, that are not like real shocks but highly energetic to fulfill Sun's radiative losses," lead author Abhishek Srivastava, from Indian Institute of Technology, said in a statement. The Sun is currently coming to the end of its latest cycle—known as sunspot cycle 24—and will enter the next one at some point this year. As the new cycle begins, sunspot activity will begin to increase before reaching a peak, known as the solar maximum—currently expected to be around 2024. Previously, scientists suggested that sunspot cycle 25 could be weaker than the current cycle, potentially meaning a period of global cooling could ensue. However, this has largely been ruled out, with a team of scientists in India recently predicting that the next solar cycle could be even stronger than the current one. In their paper published in Nature Astronomy, the authors said: "We conclude that near-Earth and inter-planetary space environmental conditions and solar radiative forcing of climate over sunspot cycle 25 (i.e., the next decade) will likely be similar or marginally more extreme relative to what has been observed during the past decade over the current solar cycle." Read the full article
0 notes
spaceexp · 6 years
Text
Illuminating First Light Data from Parker Solar Probe
NASA - Parker Solar Probe Mission patch. September 19, 2018 Just over a month into its mission, Parker Solar Probe has returned first-light data from each of its four instrument suites. These early observations – while not yet examples of the key science observations Parker Solar Probe will take closer to the Sun – show that each of the instruments is working well. The instruments work in tandem to measure the Sun’s electric and magnetic fields, particles from the Sun and the solar wind, and capture images of the environment around the spacecraft.
Parker Solar Probe. Animation Credit: NASA
“All instruments returned data that not only serves for calibration, but also captures glimpses of what we expect them to measure near the Sun to solve the mysteries of the solar atmosphere, the corona,” said Nour Raouafi, Parker Solar Probe project scientist at the Johns Hopkins University Applied Physics Lab in Laurel, Maryland. The mission’s first close approach to the Sun will be in November 2018, but even now, the instruments are able to gather measurements of what’s happening in the solar wind closer to Earth. Let’s take a look at what they’ve seen so far. WISPR (Wide-field Imager for Solar Probe) As the only imager on Parker Solar Probe, WISPR will provide the clearest-yet glimpse of the solar wind from within the Sun’s corona. Comprising two telescopes, WISPR sits behind the heat shield between two antennae from the FIELDS instrument suite. The telescopes were covered by a protective door during launch to keep them safe. WISPR was turned on in early September 2018 and took closed-door test images for calibration. On Sept. 9, WISPR’s door was opened, allowing the instrument to take the first images during its journey to the Sun.
Image above: The right side of this image — from WISPR’s inner telescope — has a 40-degree field of view, with its right edge 58.5 degrees from the Sun’s center. The left side of the image is from WISPR’s outer telescope, which has a 58-degree field of view and extends to about 160 degrees from the Sun. There is a parallax of about 13 degrees in the apparent position of the Sun as viewed from Earth and from Parker Solar Probe. Image Credits: NASA/Naval Research Laboratory/Parker Solar Probe. Russ Howard, WISPR principal investigator from the Naval Research Laboratory, studied the images to determine the instrument was pointing as expected, using celestial landmarks as a guide. “There is a very distinctive cluster of stars on the overlap of the two images. The brightest is the star Antares-alpha, which is in the constellation Scorpius and is about 90 degrees from the Sun,” said Howard. The Sun, not visible in the image, is far off to the right of the image’s right edge. The planet Jupiter is visible in the image captured by WISPR’s inner telescope — it’s the bright object slightly right of center in the right-hand panel of the image. “The left side of the photo shows a beautiful image of the Milky Way, looking at the galactic center,” said Howard. The exposure time – i.e. the length of time that light was gathered for this image, an interval which can be shortened or lengthened to make the image darker or brighter – is on the lower end, and there’s a reason: “We intentionally wanted to be on the low side in case there was something very bright when we first turned on, but it is primarily because we are looking so far from the Sun,” explains Howard. As the spacecraft approaches the Sun, its orientation will change, and so will WISPR’s images. With each solar orbit, WISPR will capture images of the structures flowing out from the corona. While measurements have been made before by other instruments at a distance of 1 AU – or approximately 93 million miles – WISPR will get much closer, about 95% of the way to the Sun from Earth, dramatically increasing the ability to see what’s occurring in that region with a much finer scale than ever before and providing a more pristine picture of the solar corona. ISʘIS (Integrated Science Investigation of the Sun)
Image Credits: NASA/Princeton University/Parker Solar Probe. ISʘIS (pronounced “ee-sis” and including the symbol for the Sun in its acronym) measures high-energy particles associated solar activity like flares and coronal mass ejections. (The mission’s other particle instrument suite, SWEAP, focuses on low-energy particles that make up the solar wind.) ISʘIS’ two Energetic Particle Instruments cover a range of energies for these activity-driven particles: EPI-Lo focuses on the lower end of the energy spectrum, while EPI-Hi measures the more energetic particles. Both instruments have gathered data under low voltage, making sure their detectors work as expected. As Parker Solar Probe approaches the Sun, they will be fully powered on to measure particles within the Sun’s corona. EPI-Lo’s initial data, on the left, shows background cosmic rays, particles that were energized and came rocketing into our solar system from elsewhere in the galaxy. As EPI-Lo’s high voltage is turned on and Parker Solar Probe gets closer to the Sun, the particles measured will shift toward solar energetic particles, which are accelerated in bursts and come streaming out from the Sun and corona. On the right, data from EPI-Hi shows detections of both hydrogen and helium particles from its lower-energy telescopes. Nearer to the Sun, scientists expect to see many more of these particles — along with heavier elements — as well as some particles with much higher energies, especially during solar energetic particle events. “The ISʘIS team is delighted with instrument turn-on so far,” said David McComas, Professor of Astrophysical Sciences at Princeton University and principal investigator of the ISʘIS instrument suite. “There are a few more steps to go, but so far everything looks great!” FIELDS The FIELDS instrument suite aboard Parker Solar Probe captures the scale and shape of electric and magnetic fields in the Sun’s atmosphere. These are key measurements to understanding why the Sun’s corona is hundreds of times hotter than its surface below.
Graphic Credits: NASA/UC Berkeley/Parker Solar Probe. FIELDS’ sensors include four two-meter electric field antennas — mounted at the front of the spacecraft, extending beyond the heat shield and exposed to the full brunt of the solar environment — as well as three magnetometers and a fifth, shorter electric field antenna mounted on a boom that extends from the back of the spacecraft. The data above, gathered during the boom deployment shortly after the spacecraft’s launch in August, shows how the magnetic field changes as the boom swung away from Parker Solar Probe. The early data is the magnetic field of the spacecraft itself, and the instruments measured a sharp drop in the magnetic field as the boom extended away from the spacecraft. Post-deployment, the instruments are measuring the magnetic field in the solar wind — illustrating the very reason such sensors need to be held out far from the spacecraft.
Image Credits: NASA/UC Berkeley/Parker Solar Probe/Wind. In early September, the four electric field antennas on the front of the spacecraft were successfully deployed — and almost immediately observed the signatures of a solar flare. “During its commissioning time, FIELDS measured its first radio burst from a solar flare,” said principal investigator Stuart Bale, of the Space Sciences Laboratory at the University of California, Berkeley. Such bursts of radio waves can be detected during solar flares — enormous eruptions of energy and light — and are associated with the energetic electrons that flares release. This radio burst was captured by the FIELDS electric field antennas, shown above with measurements from NASA’s Wind spacecraft (on the top) for comparison. “FIELDS is one of the most comprehensive fields and waves suites ever flown in space, and it is performing beautifully,” said Bale. SWEAP (Solar Wind Electrons Alphas and Protons)
Image Credits: NASA/University of Michigan/Parker Solar Probe. The SWEAP suite includes three instruments: Two Solar Probe Analyzers measure electrons and ions in the solar wind, while the Solar Probe Cup sticks out from behind Parker Solar Probe’s heat shield to measure the solar wind directly as it streams off the Sun. After opening covers, turning on high voltages and running internal diagnostics, all three instruments caught glimpses of the solar wind itself. Because of Parker Solar Probe’s position and orientation, the science team expected that Solar Probe Cup would mostly measure background noise at first, without picking up the solar wind. But just after the instrument was powered on, a sudden, intense gust of solar wind blew into the cup, visible in the data as the red streak. As the spacecraft approaches the Sun, such observations will be Solar Probe Cup’s bread and butter — and will hopefully reveal new information about the processes that heat and accelerate the solar wind.
Image Credits: NASA/University of Michigan/Parker Solar Probe. The two Solar Probe Analyzers (SPAN) also caught early peeks of the solar wind. During commissioning, the team turned the spacecraft so that SPAN-A — one of the two SPAN instruments — was exposed to the solar wind directly. It captured about 20 minutes’ worth of data (right), including measurements of solar wind ions (top) and electrons (bottom). While SPAN-A and its sister instrument, SPAN-B, will measure solar wind electrons throughout the mission, the spacecraft’s orientation now means that SPAN-A will likely go several more years before it captures such ion measurements again. This is because solar wind electrons can be measured from any direction, as their low mass and high temperature make their motion much more random, while the much heavier solar wind ions follow a relatively direct path out from the Sun. “SWEAP’s solar wind and corona plasma instrument performance has been very promising,” said Justin Kasper, principal investigator of the SWEAP instrument suite at University of Michigan.  “Our preliminary results just after turn-on suggest we have a set of highly sensitive instruments that will allow us to do amazing science close to the Sun.” Download these images in HD formats from NASA’s Scientific Visualization Studio: https://svs.gsfc.nasa.gov/13072 Related links: NASA’s Wind spacecraft: https://wind.nasa.gov/ Parker Solar Probe: https://www.nasa.gov/parkersolarprobe/ Images (mentioned), Graphic (mentioned), Text, Credits: NASA’s Goddard Space Flight Center, by Sarah Frazier (NASA) & Justyna Surowiec (APL)/Johns Hopkins University Applied Physics Lab. Greetings, Orbiter.ch Full article
42 notes · View notes
appinsta · 6 years
Text
NASA’s Parker Solar Probe launches tonight to ‘touch the sun’
Update: Launch delayed to about the same time Sunday morning – tune in to watch!
NASA’s ambitious mission to go closer to the Sun than ever before is set to launch in the small hours between Friday and Saturday — at 3:53 AM Eastern from Kennedy Space Center in Florida, to be precise. The Parker Solar Probe, after a handful of gravity assists and preliminary orbits, will enter a stable orbit around the enormous nuclear fireball that gives us all life and sample its radiation from less than 4 million miles away. Believe me, you don’t want to get much closer than that.
If you’re up late tonight (technically tomorrow morning), you can watch the launch live on NASA’s stream.
This is the first mission named after a living researcher, in this case Eugene Parker, who in the ’50s made a number of proposals and theories about the way that stars give off energy. He’s the guy who gave us solar wind, and his research was hugely influential in the study of the sun and other stars — but it’s only now that some of his hypotheses can be tested directly. (Parker himself visited the craft during its construction, and will be at the launch. No doubt he is immensely proud and excited about this whole situation.)
“Directly” means going as close to the sun as technology allows — which leads us to the PSP’s first major innovation: its heat shield, or thermal protection system.
There’s one good thing to be said for the heat near the sun: it’s a dry heat. Because there’s no water vapor or gases in space to heat up, find some shade and you’ll be quite comfortable. So the probe is essentially carrying the most heavy-duty parasol ever created.
It’s a sort of carbon sandwich, with superheated carbon composite on the outside and a carbon foam core. All together it’s less than a foot thick, but it reduces the temperature the probe’s instruments are subjected to from 2,500 degrees Fahrenheit to 85 — actually cooler than it is in much of the U.S. right now.
Go on – it’s quite cool.
The car-sized Parker will orbit the sun and constantly rotate itself so the heat shield is facing inward and blocking the brunt of the solar radiation. The instruments mostly sit behind it in a big insulated bundle.
And such instruments! There are three major experiments or instrument sets on the probe.
WISPR (Wide-Field Imager for Parker Solar Probe) is a pair of wide-field telescopes that will watch and image the structure of the corona and solar wind. This is the kind of observation we’ve made before — but never from up close. We generally are seeing these phenomena from the neighborhood of the Earth, nearly 100 million miles away. You can imagine that cutting out 90 million miles of cosmic dust, interfering radiation and other nuisances will produce an amazingly clear picture.
SWEAP (Solar Wind Electrons Alphas and Protons investigation) looks out to the side of the craft to watch the flows of electrons as they are affected by solar wind and other factors. And on the front is the Solar Probe Cup (I suspect this is a reference to the Ray Bradbury story, “Golden Apples of the Sun”), which is exposed to the full strength of the sun’s radiation; a tiny opening allows charged particles in, and by tracking how they pass through a series of charged windows, they can sort them by type and energy.
FIELDS is another that gets the full heat of the sun. Its antennas are the ones sticking out from the sides — they need to in order to directly sample the electric field surrounding the craft. A set of “fluxgate magnetometers,” clearly a made-up name, measure the magnetic field at an incredibly high rate: two million samples per second.
They’re all powered by solar panels, which seems obvious, but actually it’s a difficult proposition to keep the panels from overloading that close to the sun. They hide behind the shield and just peek out at an oblique angle, so only a fraction of the radiation hits them.
Even then, they’ll get so hot that the team needed to implement the first-ever active water cooling system on a spacecraft. Water is pumped through the cells and back behind the shield, where it is cooled by, well, space.
The probe’s mission profile is a complicated one. After escaping the clutches of the Earth, it will swing by Venus, not to get a gravity boost, but “almost like doing a little handbrake turn,” as one official described it. It slows it down and sends it closer to the sun — and it’ll do that seven more times, each time bringing it closer and closer to the sun’s surface, ultimately arriving in a stable orbit 3.83 million miles above the surface — that’s 95 percent of the way from the Earth to the sun.
On the way it will hit a top speed of 430,000 miles per hour, which will make it the fastest spacecraft ever launched.
youtube
Parker will make 24 total passes through the corona, and during these times communication with Earth may be interrupted or impractical. If a solar cell is overheating, do you want to wait 20 minutes for a decision from NASA on whether to pull it back? No. This close to the sun even a slight miscalculation results in the reduction of the probe to a cinder, so the team has imbued it with more than the usual autonomy.
It’s covered in sensors in addition to its instruments, and an onboard AI will be empowered to make decisions to rectify anomalies. That sounds worryingly like a HAL 9000 situation, but there are no humans on board to kill, so it’s probably okay.
The mission is scheduled to last seven years, after which time the fuel used to correct the craft’s orbit and orientation is expected to run out. At that point it will continue as long as it can before drift causes it to break apart and, one rather hopes, become part of the sun’s corona itself.
The Parker Solar Probe is scheduled for launch early Saturday morning, and we’ll update this post when it takes off successfully or, as is possible, is delayed until a later date in the launch window.
from Gadgets – TechCrunch https://ift.tt/2vwmTSs from Blogger https://ift.tt/2KR5vwA https://ift.tt/2KJkng7
0 notes
sciencespies · 5 years
Text
Solar Orbiter mission to track the sun's active regions, improve space weather prediction
https://sciencespies.com/space/solar-orbiter-mission-to-track-the-suns-active-regions-improve-space-weather-prediction/
Solar Orbiter mission to track the sun's active regions, improve space weather prediction
Tumblr media Tumblr media
Solar Orbiter. Credit: ESA
Our understanding of space weather, its origin on the sun, and its progression and threat to Earth, comes with critical gaps—gaps that the European Space Agency’s Solar Orbiter hopes to help fill after its upcoming launch.
The mission to study the physics of the sun will be the first to capture images of its poles. The orbiter will work in coordination with NASA’s Parker Solar Probe, which launched in August 2018. Researchers from the University of Michigan are involved with both missions.
Orbiter is scheduled to launch Feb. 7 from Cape Canaveral.
Solar storms are torrents of charged particles and electromagnetic fields from the sun that rattle the Earth’s magnetic field. Major disturbances can harm power lines and put expensive transformers at risk. They can also damage satellites. Until recently, our ability to predict threats from solar activity came from data collected from telescopes and spacecraft that remained far from the action on the sun.
Today, thanks in part to a space weather modeling framework developed at U-M, we have regional geospace forecasts up to 45 minutes in advance. While this small bit of lead time is better than nothing, it’s not likely enough for electric utilities and others to prepare in time to limit consequences.
Solar Orbiter seeks to connect activity on the sun with the solar plasma that flows out into the heliosphere and drives space weather.
“We don’t fully understand how space weather originates on the sun,” said Jim Raines, an associate research scientist in climate and space sciences and engineering. “In fact, events on the sun are very hard to predict right now, though they are observable after the fact. We can’t predict them with the accuracy that we really need.
“We hope that the connections that we’ll be making with Solar Orbiter will lay more of the groundwork needed to build a system that is able to predict space weather accurately.”
Solar Orbiter will be able to actually track active regions, which are regions that might explode into a coronal mass ejection—an important solar space weather event, Raines said.
youtube
Credit: University of Michigan
To do that, he and Sue Lepri, an associate professor of climate and space sciences and engineering and a deputy principal investigator on the mission, are co-investigators on Orbiter’s Solar Wind Analyzer. The suite of instruments includes the Heavy Ion Sensor, partially built at U-M. HIS is a kind of ion mass spectrometer that breaks down the composition of the solar wind it samples.
Knowing the composition will help determine where energy is being deposited and fed into the solar wind and eruptions on the sun, as well as how particles are accelerated in the heliosphere. The heliosphere is essentially the bubble around the solar system formed by the solar wind. It protects us from galactic cosmic radiation.
This data will allow researchers to determine where the solar wind sampled by Orbiter originated on the sun.
“While the Parker Solar Probe focuses on protons, electrons and alpha particles—the most abundant particles coming out of the sun—we’re looking at trace elements that are heavier than that, like carbon, oxygen and iron, but far less abundant,” Lepri said.
“These heavy ions reflect the solar wind’s energy sources. And so that’s something you can’t fully get at unless you understand these heavy ions.”
Orbiter will eventually come within 60 solar radii, or 42 million kilometers (26 million miles), of the sun.
That puts it in a position to pick up where Parker leaves off. Parker Solar Probe’s mission was to fly closer to the sun than any previous spacecraft and collect data directly within the solar corona. Its science goals are to better understand the heating of the solar corona and the acceleration of the solar wind and energetic particles.
“We’ve observed the solar wind and tried to connect it back to the sun to some degree with spacecraft that are sitting just upstream of Earth,” Lepri said. “But there’s a lot of stuff that can happen between the sun and Earth.
“Orbiter will take some of the mystery out of that. It’s connecting what is observed on the sun more directly with what actually is blowing past you in the solar wind. So it helps answer the question: How do you connect the solar magnetic field and the plasma energy in the corona with the solar wind in a bigger sense?”
Explore further
Effects of the solar wind
Provided by University of Michigan
Citation: Solar Orbiter mission to track the sun’s active regions, improve space weather prediction (2020, January 30) retrieved 30 January 2020 from https://phys.org/news/2020-01-solar-orbiter-mission-track-sun.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
#Space
0 notes
kindlecomparedinfo · 6 years
Text
NASA’s Parker Solar Probe launches tonight to ‘touch the sun’
NASA’s ambitious mission to go closer to the Sun than ever before is set to launch in the small hours between Friday and Saturday — at 3:33 AM Eastern from Kennedy Space Center in Florida, to be precise. The Parker Solar Probe, after a handful of gravity assists and preliminary orbits, will enter a stable orbit around the enormous nuclear fireball that gives us all life and sample its radiation from less than 4 million miles away. Believe me, you don’t want to get much closer than that.
If you’re up late tonight (technically tomorrow morning), you can watch the launch live on NASA’s stream.
This is the first mission named after a living researcher, in this case Eugene Parker, who in the ’50s made a number of proposals and theories about the way that stars give off energy. He’s the guy who gave us solar wind, and his research was hugely influential in the study of the sun and other stars — but it’s only now that some of his hypotheses can be tested directly. (Parker himself visited the craft during its construction, and will be at the launch. No doubt he is immensely proud and excited about this whole situation.)
“Directly” means going as close to the sun as technology allows — which leads us to the PSP’s first major innovation: its heat shield, or thermal protection system.
There’s one good thing to be said for the heat near the sun: it’s a dry heat. Because there’s no water vapor or gases in space to heat up, find some shade and you’ll be quite comfortable. So the probe is essentially carrying the most heavy-duty parasol ever created.
It’s a sort of carbon sandwich, with superheated carbon composite on the outside and a carbon foam core. All together it’s less than a foot thick, but it reduces the temperature the probe’s instruments are subjected to from 2,500 degrees Fahrenheit to 85 — actually cooler than it is in much of the U.S. right now.
Go on – it’s quite cool.
The car-sized Parker will orbit the sun and constantly rotate itself so the heat shield is facing inward and blocking the brunt of the solar radiation. The instruments mostly sit behind it in a big insulated bundle.
And such instruments! There are three major experiments or instrument sets on the probe.
WISPR (Wide-Field Imager for Parker Solar Probe) is a pair of wide-field telescopes that will watch and image the structure of the corona and solar wind. This is the kind of observation we’ve made before — but never from up close. We generally are seeing these phenomena from the neighborhood of the Earth, nearly 100 million miles away. You can imagine that cutting out 90 million miles of cosmic dust, interfering radiation and other nuisances will produce an amazingly clear picture.
SWEAP (Solar Wind Electrons Alphas and Protons investigation) looks out to the side of the craft to watch the flows of electrons as they are affected by solar wind and other factors. And on the front is the Solar Probe Cup (I suspect this is a reference to the Ray Bradbury story, “Golden Apples of the Sun”), which is exposed to the full strength of the sun’s radiation; a tiny opening allows charged particles in, and by tracking how they pass through a series of charged windows, they can sort them by type and energy.
FIELDS is another that gets the full heat of the sun. Its antennas are the ones sticking out from the sides — they need to in order to directly sample the electric field surrounding the craft. A set of “fluxgate magnetometers,” clearly a made-up name, measure the magnetic field at an incredibly high rate: two million samples per second.
They’re all powered by solar panels, which seems obvious, but actually it’s a difficult proposition to keep the panels from overloading that close to the sun. They hide behind the shield and just peek out at an oblique angle, so only a fraction of the radiation hits them.
Even then, they’ll get so hot that the team needed to implement the first-ever active water cooling system on a spacecraft. Water is pumped through the cells and back behind the shield, where it is cooled by, well, space.
The probe’s mission profile is a complicated one. After escaping the clutches of the Earth, it will swing by Venus, not to get a gravity boost, but “almost like doing a little handbrake turn,” as one official described it. It slows it down and sends it closer to the sun — and it’ll do that seven more times, each time bringing it closer and closer to the sun’s surface, ultimately arriving in a stable orbit 3.83 million miles above the surface — that’s 95 percent of the way from the Earth to the sun.
On the way it will hit a top speed of 430,000 miles per hour, which will make it the fastest spacecraft ever launched.
youtube
Parker will make 24 total passes through the corona, and during these times communication with Earth may be interrupted or impractical. If a solar cell is overheating, do you want to wait 20 minutes for a decision from NASA on whether to pull it back? No. This close to the sun even a slight miscalculation results in the reduction of the probe to a cinder, so the team has imbued it with more than the usual autonomy.
It’s covered in sensors in addition to its instruments, and an onboard AI will be empowered to make decisions to rectify anomalies. That sounds worryingly like a HAL 9000 situation, but there are no humans on board to kill, so it’s probably okay.
The mission is scheduled to last seven years, after which time the fuel used to correct the craft’s orbit and orientation is expected to run out. At that point it will continue as long as it can before drift causes it to break apart and, one rather hopes, become part of the sun’s corona itself.
The Parker Solar Probe is scheduled for launch early Saturday morning, and we’ll update this post when it takes off successfully or, as is possible, is delayed until a later date in the launch window.
from RSSMix.com Mix ID 8176395 https://techcrunch.com/2018/08/10/nasas-parker-solar-probe-launches-tonight-to-touch-the-sun/ via http://www.kindlecompared.com/kindle-comparison/
0 notes
un-enfant-immature · 6 years
Text
NASA’s Parker Solar Probe launches tonight to “touch the sun”
NASA’s ambitious mission to go closer to the Sun than ever before is set to launch in the small hours between Friday and Saturday — at 3:33 AM Eastern from Kennedy Space Center in Florida, to be precise. The Parker Solar Probe, after a handful of gravity assists and preliminary orbits, will enter a stable orbit around the enormous nuclear fireball that gives us all life and sample its radiation from less than 4 million miles away. Believe me, you don’t want to get much closer than that.
If you’re up late tonight (technically tomorrow morning), you can watch the launch live on NASA’s stream.
This is the first mission named after a living researcher, in this case Eugene Parker, who in the ’50s made a number of proposals and theories about the way that stars give off energy. He’s the guy who gave us solar wind, and his research was hugely influential in the study of the sun and other stars — but it’s only now that some of his hypotheses can be tested directly. (Parker himself visited the craft during its construction, and will be at the launch. No doubt he is immensely proud and excited about this whole situation.)
“Directly” means going as close to the sun as technology allows — which leads us to the PSP’s first major innovation: its heat shield, or thermal protection system.
There’s one good thing to be said for the heat near the sun: it’s a dry heat. Because there’s no water vapor or gases in space to heat up, find some shade and you’ll be quite comfortable. So the probe is essentially carrying the most heavy-duty parasol ever created.
It’s a sort of carbon sandwich, with superheated carbon composite on the outside and a carbon foam core. All together it’s less than a foot thick, but it reduces the temperature the probe’s instruments are subjected to from 2,500 degrees Fahrenheit to 85 — actually cooler than it is in much of the U.S. right now.
Go on – it’s quite cool.
The car-sized Parker will orbit the sun and constantly rotate itself so that the heat shield is facing inwards and blocking the brunt of the solar radiation. The instruments mostly sit behind it in a big insulated bundle.
And such instruments! There are three major experiments or instrument sets on the probe.
WISPR (Wide-Field Imager for Parker Solar Probe) is a pair of wide-field telescopes that will watch and image the structure of the corona and solar wind. This is the kind of observation we’ve made before — but never from up close. We generally are seeing these phenomena from the neighborhood of the Earth, nearly 100 million miles away. You can imagine that cutting out 90 million miles of cosmic dust, interfering radiation, and other nuisances will produce an amazingly clear picture.
SWEAP (Solar Wind Electrons Alphas and Protons investigation) looks out to the side of the craft to watch the flows of electrons as they are affected by solar wind and other factors. And on the front is the Solar Probe Cup (I suspect this is a reference to the Ray Bradbury story, “Golden Apples of the Sun”), which is exposed to the full strength of the sun’s radiation; a tiny opening allows charged particles in, and by tracking how they pass through a series of charged windows, they can sort them by type and energy.
FIELDS is another that gets the full heat of the sun. Its antennas are the ones sticking out from the sides — they need to in order to directly sample the electric field surrounding the craft. A set of “fluxgate magnetometers,” clearly a made-up name, measure the magnetic field at an incredibly high rate: two million samples per second.
They’re all powered by solar panels, which seems obvious, but actually it’s a difficult proposition to keep the panels from overloading that close to the sun. They hide behind the shield and just peek out at an oblique angle, so only a fraction of the radiation hits them.
Even then, they’ll get so hot that the team needed to implement the first ever active water cooling system on a spacecraft. Water is pumped through the cells and back behind the shield, where it is cooled by, well, space.
The probe’s mission profile is a complicated one. After escaping the clutches of the Earth, it will swing by Venus, but not to get a gravity boost, but “almost like doing a little handbrake turn,” as one official described it. It slows it down and sends it closer to the sun — and it’ll do that 7 more times, each time bringing it closer and closer to the sun’s surface, ultimately arriving in a stable orbit 3.83 million miles above the surface — that’s 95 percent of the way from the Earth to the sun.
On the way it will hit a top speed of 430,000 miles per hour, which will make it the fastest spacecraft ever launched.
youtube
Parker will make 24 total passes through the corona, and during these times communication with Earth may be interrupted or impractical. If a solar cell is overheating, do you want to wait 20 minutes for a decision from NASA on whether to pull it back? No. This close to the sun even a slight miscalculation results in the reduction of the probe to a cinder, so the team has imbued it with more than the usual autonomy.
It’s covered in sensors in addition to its instruments, and an onboard AI will be empowered to make decisions to rectify anomalies. That sounds worryingly like a HAL 9000 situation, but there are no humans on board to kill, so it’s probably okay.
The mission is scheduled to last 7 years, after which time the fuel used to correct the craft’s orbit and orientation is expected to run out. At that point it will continue as long as it can before drift causes it to break apart and, one rather hopes, become part of the sun’s corona itself.
The Parker Solar Probe is scheduled for launch early Saturday morning, and we’ll update this post when it takes off successfully or, as is possible, is delayed until a later date in the launch window.
0 notes