#noSQL
Explore tagged Tumblr posts
Text
Question: Why doesn't Hollywood make more Big Data movies? Answer: NoSQL.
10 notes
·
View notes
Text
SQL and NoSQL represent two distinct database management systems. SQL databases operate on a relational model, leveraging the power of structured query language (SQL) to efficiently handle and manipulate well-structured and consistent data. On the other hand, NoSQL databases are purpose-built for unstructured data, like social media posts or sensor data, utilizing a flexible data model. Their inherent scalability empowers them to seamlessly handle vast amounts of data, making them an ideal fit for cutting-edge web and mobile applications. Ultimately, the decision between SQL and NoSQL hinges on the unique requirements of the application and the nature of the data at hand.
2 notes
·
View notes
Text
As a dev, can confirm.
I've used multiple dev- or sysadmin-oriented software without understanding what they were for, but they were needed by some other parts of the system.
#still not sure what zookeeper does#it's supposedly a vital part of the hadoop ecosystem#we used it for kafka#other things i took a while to get:#mongodb#noSQL#document-based DBs#map-reduce#and so much networking stuff
24K notes
·
View notes
Text
Unlocking the Skills of a Full Stack Developer
To excel as a full stack developer, embark on a journey that begins with mastering the foundational technologies of web development: HTML, CSS, and JavaScript. These essential skills will empower you to build and style dynamic web pages. Next, immerse yourself in front-end frameworks such as React, Angular, or Vue, which will enable you to create engaging and interactive user experiences.
On the back end, dive into server-side languages like Node.js, Python (utilizing powerful frameworks like Django or Flask), Ruby on Rails, and PHP. Understanding how to leverage databases is equally vital, so familiarize yourself with both SQL (using systems like PostgreSQL and MySQL) and NoSQL options like MongoDB.
A strong grasp of APIs is crucial for modern development, so learn how to create and utilize RESTful services and explore GraphQL for efficient data retrieval. Equip yourself with Git for version control, allowing you to track changes and collaborate seamlessly with others.
Enhance your problem-solving abilities through coding challenges on platforms like LeetCode, and build an impressive portfolio by undertaking personal projects or contributing to open-source initiatives. Embrace a mindset of continuous learning by following industry blogs, enrolling in online courses, and participating in workshops to stay ahead of the curve. There is also a masterclass to help you understand these concepts better.
Don’t overlook the importance of soft skills; effective communication and teamwork are vital in today’s collaborative work environment. Finally, seek out mentorship to guide your development and engage in code reviews to benefit from the insights of experienced developers. By diligently following these steps, you can cultivate the expertise and confidence necessary to thrive as a full stack developer in a competitive landscape.
#FullStackDevelopment#WebDevelopment#HTML#CSS#JavaScript#React#Angular#Vue#NodeJS#Python#Django#Flask#RubyOnRails#PHP#SQL#NoSQL#MongoDB#APIs#RESTfulServices#GraphQL#Git#CodingChallenges#LeetCode#PortfolioBuilding#OpenSource#ContinuousLearning#TechMasterclass#SoftSkills#Communication#Teamwork
1 note
·
View note
Text
NewSQL: Bridging the Gap Between SQL and NoSQL
Understand how NewSQL provides the best of both SQL and NoSQL, enabling high scalability without sacrificing transactional consistency.
0 notes
Text
Eloquent Filtering Package: Streamlining Query Management in Laravel
#laravel#php#html#css#javascript#webdevelopment#programming#webdeveloper#nodejs#python#java#vuejs#webdesign#mysql#angular#reactjs#android#webdesigner#jquery#js#software#rubyonrails#mongodb#coding#nosql#developer#programmer#codeigniter#wordpress#softwaredeveloper
1 note
·
View note
Text
Bases de Datos Relacionales vs No Relacionales: Diferencias Clave y Qué Necesitas Saber
Introducción
En el mundo del desarrollo de software, las bases de datos juegan un papel crucial en el almacenamiento y gestión de datos. Existen dos categorías principales de bases de datos: relacionales y no relacionales. Cada tipo tiene sus propias características, ventajas y desventajas. En este blog, exploraremos las diferencias clave entre estas dos categorías y qué necesita saber un programador sobre cada una para tomar decisiones informadas.
1. Bases de Datos Relacionales
a) ¿Qué es una Base de Datos Relacional?
Una base de datos relacional (RDBMS, por sus siglas en inglés) organiza los datos en tablas relacionadas entre sí mediante claves primarias y foráneas. Utiliza el lenguaje SQL (Structured Query Language) para la gestión y consulta de datos.
b) Características Clave:
Estructura Tabular: Los datos se almacenan en tablas con filas y columnas. Cada tabla representa una entidad, y cada fila una instancia de esa entidad.
Relaciones entre Tablas: Las tablas pueden estar relacionadas entre sí mediante claves primarias y foráneas.
Transacciones ACID: Asegura que las transacciones sean Atómicas, Consistentes, Aisladas y Duraderas, garantizando la integridad de los datos.
c) Ventajas:
Integridad de Datos: Garantiza la precisión y consistencia de los datos mediante restricciones y reglas.
Consultas Complejas: El lenguaje SQL permite realizar consultas complejas y combinaciones de datos.
Escalabilidad Vertical: Se pueden aumentar los recursos del servidor para manejar mayores cargas de trabajo.
d) Desventajas:
Escalabilidad Horizontal Limitada: Puede ser más difícil escalar horizontalmente (distribuir datos en múltiples servidores).
Rigidez del Esquema: Requiere un esquema fijo, lo que puede hacer que los cambios en la estructura de datos sean complicados.
e) Ejemplos Populares:
MySQL: Amplamente utilizado en aplicaciones web y sistemas de gestión de contenido.
PostgreSQL: Conocido por su robustez y cumplimiento de estándares SQL.
Microsoft SQL Server: Ofrece herramientas avanzadas de análisis y administración de datos.
Oracle Database: Ampliamente utilizado en grandes empresas por su escalabilidad y características avanzadas.
2. Bases de Datos No Relacionales
a) ¿Qué es una Base de Datos No Relacional?
Las bases de datos no relacionales (NoSQL) están diseñadas para manejar grandes volúmenes de datos no estructurados o semi-estructurados. No utilizan un esquema fijo y pueden almacenar datos en varios formatos, como documentos, pares clave-valor, columnas o grafos.
b) Características Clave:
Flexibilidad del Esquema: No requieren un esquema fijo, permitiendo la adaptación de datos según sea necesario.
Escalabilidad Horizontal: Diseñadas para escalar horizontalmente mediante la distribución de datos en múltiples servidores.
Tipos de Datos Diversos: Pueden manejar datos en formatos como JSON, XML, o BSON.
c) Ventajas:
Escalabilidad Horizontal: Fácil de escalar distribuyendo datos en múltiples servidores.
Flexibilidad del Esquema: Permite agregar y modificar datos sin necesidad de un esquema rígido.
Alto Rendimiento: Adecuado para aplicaciones con grandes volúmenes de datos y requisitos de alta disponibilidad.
d) Desventajas:
Consistencia Eventual: En algunos casos, las bases de datos NoSQL sacrifican la consistencia inmediata en favor de la disponibilidad y particionamiento.
Consultas Limitadas: La capacidad de realizar consultas complejas puede ser limitada en comparación con SQL.
e) Ejemplos Populares:
MongoDB: Una base de datos orientada a documentos que utiliza JSON-like para el almacenamiento de datos.
Cassandra: Una base de datos orientada a columnas, conocida por su escalabilidad y disponibilidad.
Redis: Una base de datos en memoria basada en pares clave-valor, utilizada para almacenamiento en caché y procesamiento en tiempo real.
Neo4j: Una base de datos orientada a grafos que permite consultas sobre relaciones entre datos.
3. Cuándo Usar Cada Tipo de Base de Datos
a) Bases de Datos Relacionales:
Aplicaciones Transaccionales: Cuando la integridad y consistencia de los datos son críticas, como en sistemas financieros o de gestión de inventarios.
Consultas Complejas: Si necesitas realizar consultas complejas o combinaciones de datos con SQL.
Aplicaciones con Esquema Fijo: Cuando el esquema de los datos es estable y no se espera que cambie con frecuencia.
b) Bases de Datos No Relacionales:
Big Data y Aplicaciones Web: Para manejar grandes volúmenes de datos y aplicaciones que requieren alta disponibilidad y rendimiento.
Datos No Estructurados: Cuando trabajas con datos no estructurados o semi-estructurados, como contenido de redes sociales o datos de sensores.
Escalabilidad: Si tu aplicación requiere escalar horizontalmente para manejar un crecimiento rápido en la carga de trabajo.
4. Recursos Adicionales
Documentación y Tutoriales:
Documentación de MySQL
Documentación de MongoDB
Tutorial de PostgreSQL
Introducción a NoSQL
Libros Recomendados:
“SQL: El lenguaje de consulta estructurado” de Jesús García
“MongoDB: The Definitive Guide” de Kristina Chodorow (en inglés)
“Designing Data-Intensive Applications” de Martin Kleppmann (en inglés)
Conclusión
Entender las diferencias entre bases de datos relacionales y no relacionales es esencial para elegir la solución adecuada para tus proyectos de desarrollo. Las bases de datos relacionales son ideales para aplicaciones que requieren integridad y consultas complejas, mientras que las bases de datos no relacionales ofrecen flexibilidad y escalabilidad para manejar grandes volúmenes de datos. Conociendo las características y ventajas de cada tipo, puedes tomar decisiones más informadas y construir aplicaciones más efectivas.
#basesdedatos#relacionalvsnorelacional#SQL#NoSQL#MongoDB#MySQL#PostgreSQL#Cassandra#Redis#Neo4j#diferenciasdedatos#programación#desarrollodesoftware#databases#almacenamientodedatos#consultasdedatos#esquemasdedatos#scalabilidad
0 notes
Text
Understanding Big Data: Characteristics, Importance, and Applications
Big Data refers to the huge amount of data that is generated really quickly from lots of different sources. This data is often so big, complicated, and fast that regular data processing methods and tools can’t handle it. Big Data is usually linked to the following characteristics, also known as the “3 Vs”: Volume: The sheer amount of data generated and collected today is massive, from social…
0 notes
Text
DNI if:
Basically available
Soft state
Eventually Consistent
0 notes
Text
Master MongoDB with Confidence with Online MongoDB Course! 🚀
The Cyber Success Institute offers a 21-days Online MongoDB Course with Certification designed for MongoDB enthusiasts. Learn from the best and elevate your database skills.
📅 Starting From: 12th August 2024 ⏰ Time: 7:30 PM to 9:00 PM
🌐 To know more in detail visit us at, 👉 https://bootcamp.cybersuccess.biz/online-mongodb-course/
📱 Contact us on, 📲 77094 45407 📲 7620686761
🔥Transform Your Career with MongoDB! Seize The Opportunity Today! 🏆✌
0 notes
Text
New Trick – Organizing Prisma Models with the MERN Stack – Prisma #16
In this blog, we will explore “New Trick – Organizing Prisma Models with the MERN Stack”. Here, you will learn how to split and organize Prisma models, enums & types from the prisma.schema file into multiple files and import predefined data from JSON files. Let’s dive in and check it out:
#prisma#mongodb#reactjs#react#mern#mernstack#nosql#javascript#js#nodejs#npm#prismaorm#orm#database#redundancy#highavailability#replica#replicaset#developers#developer#software#softwaredeveloper#programming#programminglanguage#javascriptprogramming#advancedjavascript#techtrick#trick
0 notes
Text
SQL and NoSQL: Differences, Use cases and Databases
SQL and NoSQL are counter technologies meant to accomplish the same business goals. The difference mainly exists in the autonomy to ‘explore data deeply’ and ‘ease of scalability’
SQL has existed as a widely accepted industry standard for so long now. Its counterpart; NoSQL, emerged almost 12 years ago when the world needed a disparate system that could process unstructured data as well as comply with increasing storage and power requirements.
The rise of NoSQL almost diminished the decade old SQL paradigm of relational database management system (RDBMS) giving rise to non relational database systems.
Now as we see, SQL didn’t go away, instead its potential to manipulate data in databases is increasingly realized.
In this article, we explore sql and nosql difference, sql vs. nosql use cases, and comparison of databases.
SQL and NoSQL Difference
The differences in SQL and NoSQL exist among four key parameters: Language, Scalability, Structure, and Transaction Processing.
Language
SQL is used to query structured data only. Structured data exists in the form of rows and columns (2D tables) and therefore exert the constraint for a carefully built schema before querying data.
That’s because for data whose structure could not be defined; data from mobile applications, and SAP systems with a lot of varying fields where new fields occur every now and then, SQL fails given its syntax and control flow that works only for table based data.
Apart from the structure constraint on data, SQL has been well nurtured in the past 40 years to offer wide functionality for complex queries, and is secure in usage.
The learning curve of SQL is also short compared to other programming languages (including NoSQL). Moreover, all the variants of SQL including for example SQL server, and MySQL have a great amount of similarity in usage and therefore are easily learnt across the globe.
NoSQL has its own advantages over SQL. It offers the flexibility to query unstructured data (with a dynamic schema not limited to representing data in rows and columns). This means now each type of data could have alternate structure all stored beside each other in a single database.
NoSQL was introduced some 12 years ago with the aim of utilization of unstructured or loosely structured data in database applications.
There’s freedom from rigorous data engineering before the storage to use the data for BI and ML applications. NoSQL offers greater exploration of data in that the raw data is directly fed to the system for storage and after that the BI and ML engineers could build schemas as they like.
The spotlight on NoSQL waned when its users realized it lacked standardization and wide documentation leading to difficulty in carrying out complex queries.
Moreover, NoSQL language varies across databases where each database (MongoDB, Cassandra, etc) have their completely varying versions of noSQL.CategorySQLNoSQLLanguageStructured data onlyStructured and unstructuredScalabilityVerticalHorizontalStructureTable format4 Types incl. columnar formatTransactionsACID complianceCAP theoremSQL vs. NoSQL Difference
Scalability
Scalability is one of the most distinctive features of SQL and NoSQL databases. For the scope of this article, we define scalability as the capacity of a system to process a number of concurrent queries.
The ease of adding and removing processing resources for the purpose of supporting concurrent users determines the effectiveness of scalability.
SQL supports vertical scalability that means new processing resources could be added within the same server. It’s based on the actor model that uses multiple CPU cores. All the processor cores participate in processing over the same data.
NoSQL adopts the horizontal scalability that instead of adding cores to CPU adds new servers in parallel to old ones. It uses a master/slave architecture where a master processor divides data among slave processors.
In essence, horizontal scaling is more desirable due to its ability to divide data across parallel machines. This way it enables faster processing from utilization of all resources in less time. Whereas vertical scaling, although much easier to implement, lacks the kind of linear scalability as in horizontal scaling.
Learn more about differences in horizontal scalability and vertical scalability here.
Structure
SQL databases store data in rows and columns where a column represents a specific data type only. While making these tables some rules are defined to maintain the integrity of data as well as making it efficient for the querying process.
NoSQL databases don’t conform to this tabular structure, and don’t require data engineering such as above. Instead they use other formats that are more flexible to add any kind of data desired. These formats are:
Column-oriented structure: Data resides in columns however these columns support any kind of data type. It results in high dimensional data.
Key-Value structure: Data objects are defined and a unique key is assigned to each object.
Document stores: specifically holds semi-structured data where some of the data is structured, while it may contain other data that has no defined column category.
Graph databases: It uses nodes and relationships to structure data instead of a table or a document. Nodes present data elements while relationships present how they are related to each other.
Learn more about Graph databases in this comprehensive article.
Transaction Processing
As you may be well aware that SQL databases process transactions in such a way as to minimize the erroneous events that might affect the data. For this, it uses the ACID rules. These are the:
Atomicity of a transaction prevents it from getting saved when it’s incomplete. A transaction is either saved when it’s completed only or failed otherwise.
Consistency prevents data from being corrupted by following rules at each step of transactional processing.
Isolation keeps away multiple users to change the same data at same time.
Durability records a transaction once it is made. No roll back can be done after a transaction is saved.
In distributed systems as a copy of data is stored on all distributed nodes through replication the transactional processing is a little different. NoSQL uses the CAP theorem that is specifically designed for successful transaction processing on distributed systems.
Consistency ensures the delivery of latest results where sometimes in case of a node separated from the system due to a network failure might not receive the updated information. An error message must be sent to the user instead of an unlatest value fetched from a node.
Availability, unlike a consistent system, ensures that a transaction is always successful (returning a non-error result) even when there’s network failure.
Partition Tolerance is a phenomenon for uninterruptible system performance in case of a network failure between parallel systems. More than one link is created among nodes such that if a link fails, there are other links that duplicate data to other nodes.
In NoSQL databases, only two properties are fulfilled at a time, that is, either CA, CP, or AP.
Learn more about the CAP theorem with example cases in this insightful article.
SQL vs NoSQL Use Cases
SQL databases are preferred when scalability requirements are not very large. This simply means it won’t support concurrent requests from a large number of users such as those in big data applications.
Big data applications demand storage of huge sized and highly varied data that arrives very frequently on databases. These applications require processing of both structured and unstructured data as well as require high scalability needs.
For big data applications, NoSQL databases have immense use cases and are preferred over SQL based solutions.
Quite surprisingly, today we see some unique database solutions that leverage the SQL language to query ‘big data’ stored across the distributed systems in the cloud. Examples include Snowflake’s relational database that is scalable as well as capable of storing semi-structured data.
Learn more about Snowflake’s unique approach in this comprehensive article.
Databases
Today the old SQL based databases have started to invent NoSQL like features to compete against the rising technology.
We call it ‘Combined Strength’ that uses the good points of both technologies to enable rich and more flexible database experience.
Today MySQL of Oracle has evolved to support semi-structured data such as JSON and document based files along with support for horizontal scaling
Meanwhile, on the non-relational end, NoSQL databases such as MongoDB also offer relational features such as indexing, aggregation queries, and ACID compliance in its document based data format.
Moreover, the noSQL databases have increasingly adopted a SQL-based syntax for attracting data analysts and data scientists who have extensive SQL experience and limited programing knowhow.
Adding to that, Cassandra has CQL, Spark developed SparkQL, and JIRA developed JQL.
Although the NoSQL databases have a lot to offer through its support for programming languages, building a SQL-like support can empower those with SQL know-how to use the best of their knowledge.
Conclusion
The SQL vs. NoSQL debate has evolved from a clear-cut dichotomy to a more nuanced understanding of their strengths and weaknesses. Modern databases often blend elements of both approaches, offering flexibility and scalability.
Dicecamp's Data Engineering Course Using SQL Server Tools could be a valuable resource for individuals looking to master SQL and its applications in the modern data landscape. By focusing on SQL Server tools, the course likely equips students with practical skills to work with relational databases and potentially explore their integration with NoSQL technologies.
Would you like to learn more about specific SQL Server tools or how they can be used in conjunction with NoSQL databases.
0 notes
Text
What should an elite software engineer know
In today’s tech landscape, success as a software engineer goes beyond coding. Here are key areas to focus on:
Programming Skills: Master languages like Python, Java, C++, or JavaScript, and understand algorithms and data structures.
System Design: Learn to design scalable and reliable systems, familiarizing yourself with microservices, APIs, and cloud architecture.
Development Methods: Understand methodologies like Agile and Scrum to work efficiently and adapt to changes during development.
Version Control: Use Git to track code changes and collaborate smoothly with team members.
Testing and Quality: Know how to test your software with methods like unit testing and test-driven development (TDD) to ensure quality.
Problem-Solving Skills: Develop strong analytical skills to tackle complex challenges and optimize your code.
DevOps Practices: Learn about continuous integration and deployment (CI/CD) and automation tools to streamline development processes.
Database Management: Understand both SQL and NoSQL databases for effective data management and optimization.
Security Best Practices: Be aware of common vulnerabilities and write secure code to protect applications.
Collaboration and Communication: Cultivate teamwork and communication skills for a positive work environment.
Staying Updated: Keep abreast of new trends and technologies like AI and machine learning.
Soft Skills: Develop empathy, adaptability, and a growth mindset to enhance collaboration and leadership.
By mastering these areas, you can unlock lucrative earnings in your career as a software engineer. Unlocking Lucrative Earnings: Mastering Software Engineering Salaries is about investing in your skills for success.
#SoftwareEngineering#TechSkills#Programming#SystemDesign#AgileDevelopment#GitVersionControl#QualityAssurance#ProblemSolving#DevOps#CI_CD#DatabaseManagement#SQL#NoSQL#CyberSecurity#Collaboration#TechTrends#MachineLearning#AI#SoftSkills#ContinuousLearning#CareerGrowth#TechLeadership#SoftwareEngineerSuccess#TechCareers#UnlockEarnings#SoftwareDevelopment#GrowthMindset
1 note
·
View note