#geomars
Explore tagged Tumblr posts
Text
this is going to activate a certain group of my followers
(their names are rj, vladimir, and geomar, and they are indeed ocs i promise)
i wanted to use them for style practice and wowie. i kinda dig it
27 notes
·
View notes
Text
[BTS] Fort & Peat | Geomar ♡˚. —2023.04.06 . .🗓
🔎 Twitter Search 「 GEOMARxFortPeat 」
—Fort Thitipong— •Instagram @ fortfts •Twitter @ fort_fts
—Peat Wasuthorn— •Instagram @ peat.wst •Twitter @ peatwasu
14 notes
·
View notes
Link
0 notes
Text
4. Mai 2023 ist Erdüberlastungstag in Deutschland Fehmarn, 4. Mai 2023. Der #Erdüberlastungstag, markiert den Zeitpunkt im Jahr, bis zu dem der Mensch so viel von der Erde beansprucht hat, wie alle Ökosysteme im gesamten Jahr erneuern können. Für die Menschen in Deutschland ist dies der 4. Mai. Ab jetzt leben wir auf Pump, also auf Kosten zukünftiger Generationen und auf Kosten der Umwelt. Errechnet wird dieser symbolische Tag jährlich von Global Footprint Network und greift dabei auf wissenschaftliche und wirtschaftliche Daten der Vereinten Nationen zurück. Im Vergleich aller Länder weltweit liegt Deutschland im oberen Viertel. Dass Länder wie die USA, Katar oder Luxemburg diese Liste anführen rechtfertig uns nicht „nicht zu Handeln". Längst ist klar, dass die Klimaveränderung, die Gletscherschmelze, die Verschmutzungen der Umwelt, das Artensterben... keine Laune in der Natur sind, sondern von uns Menschen und von unserem augenblicklichen Lebensstil, gemacht wird. Anstatt viel zu Reden und mit dem Finger auf andere zu zeigen müssen wir jetzt gemeinsam handeln. Denn für eine verlorengegangene Erde haben wir keinen Ersatz. Das Projekt „Power of Diversity“ will nicht nur zeigen, dass man heute CO2-neutral und Ressourcen autark leben und reisen kann. „Power of Diversity“ schafft auch Bewusstsein für die Ressource Wasser und das Ökosystem Ozean. Auf unseren Touren in die europäischen Häfen schauen wir uns mit den Schülern vor Ort an was Meer ist, was alles dort lebt, wie wichtig Wasser für uns Menschen, Tiere, Natur, aber auch für unsere Ernährung und Wirtschaft ist und wie alles miteinander zusammenhängt. Wir reden und überlegen was wir wie tun können, alleine und alle zusammen. Wir teilen das erfahrene Wissen, damit allen klar wird wie es um uns steht und wie ernst es uns Kindern um unsere Zukunft ist. „Power of Diversity“ ist eine Initiative vieler Menschen, die zeigen, dass es CO2-neutrales Leben möglich ist. Das Projekt finanziert sich ausschliesslich durch private Spenden. Auch du kannst mit dem Erwerb einer Spendenaktie Teil von „Power of Diversity“ werden und damit zeigen, dass dir ein sensibler Umgang mit den Ressourcen wichtig ist. Jeder Euro hilft uns bei der Öffentlichkeitsarbeit und um den Yacht-Bau zu finanzieren. Infos zum “Power of Diversity”-Projekt findest Du unter: www.power-of-diversity.net Kontakt Pasquaia Projektmanagement Michael Mattenklodt [email protected] Mobil: +49 171 3305841 Kahlhorststraße 36a 23562 Lübeck https://www.ecopressblog.de/4-mai-2023-ist-erdueberlastungstag-in-deutschland/?feed_id=492&_unique_id=645375b34d0d5
#BeitragderRedaktion#Crowdfounding#Dekarbonisierung|Nachhaltigkeit#Energie#Initiativen|Engagements#Klima|Klimapolitik|Umweltschutz#NaturundUmwelt#Pressemeldung#Soziales#Diversity#Europa#geomar#gruenehelden#Meer#Ozean#pasquaia#power.of.diversity.eu#primafuersklima#Spenden#Spendenaktion
1 note
·
View note
Text
youtube
A closer look reveals new discoveries. 🧐
During an expedition to Mexico’s Gulf of California in 2015, MBARI’s remotely operated vehicle Doc Ricketts encountered a mother squid cradling a cluster of eggs. This sighting was striking because the eggs were twice as large as those of other deep-sea squids we’ve seen brooding their eggs.
Researchers from MBARI, GEOMAR’s Helmholtz Centre for Ocean Research Kiel, and the University of South Florida have learned this individual likely represents an unknown species of the family of Gonatidae and one that broods giant eggs.
The deep sea is the largest living space on Earth, but an environment we still know very little about. Every new discovery we make is a new piece of the puzzle. Learn more about this dazzling denizen of the deep on our website.
198 notes
·
View notes
Text
Queen Mary’s Engagements in Oct 2024:
01/10: Opening of Parliament
02/10: Official Visit to Brazil - Boat Trip on the Amazon, Adolpho Ducke Forest Reserve and the Amazonian Museum MUSA
02/10: Official Visit to Brazil - Official Reception by the Governor of Amazonas
03/10: Official Visit to Brazil - National Research Institute for the Amazon Forest, Center for Bioeconomy, Lunch
04/10: Official Visit to Brazil - Official Meeting with President of Brazil
04/10: Official Visit to Brazil - Public School, Agricultural Research Institute
04/10: Official Visit to Brazil - Working Dinner with UNFPA at Danish Embassy
05/10: Official Visit to Brazil - Botanical Garden with UNEP
08/10: State Visit from Iceland - Day 1
08/10: State Visit from Iceland - Banquet
09/10: State Visit from Iceland - Day 2
09/10: State Visit from Iceland - Return Event
10/10: State Visit from Iceland - Official Farewell
10/10: Christmas Seal
10/10: 25th Anniversary of the American Chamber of Commerce in Denmark
11/10: 750th Anniversary of Holstebro City
21/10: Official Visit to Germany - Official Welcome at Schloss Bellevue, Reception at the Bundestag
21/10: Official Visit to Germany - Nordic Embassy Complex 25th Anniversary
21/10: Official Visit to Germany - Official Dinner
22/10: Official Visit to Germany - Official Welcome in Schleswig-Holstein, Sailing Tour, Energy Conference at GEOMAR, Danevirke, Flensborghus
31 notes
·
View notes
Text
A trio of physicists and oceanologists, two with the University of Cologne's Institute of Geophysics and Meteorology and the third with the GEOMAR Helmholtz Center for Ocean Research Kiel, all in Germany, has found via the CESM1 climate model that an extreme El Niño tipping point could be reached in the coming decades under current emissions. The study by Tobias Bayr, Stephanie Fiedler and Joke Lübbecke is published in Geophysical Research Letters. The El Niño‐Southern Oscillation (ENSO) is a climate phenomenon in which heat released in parts of the ocean into the atmosphere results in more rainfall in places like the western coast of North and South America and droughts in places like Canada and Africa. Over the past several years, weather watchers have noticed that ENSO events have become more extreme. Prior research has shown that such extreme events used to occur approximately eight or nine times per century. Some in the field have suggested that rising global temperatures could make them happen more often.
continue reading
#world#global warming#el niño (ENSO)#more extreme#more often#el niño tipping point#climate crisis#environment#carbon emissions
20 notes
·
View notes
Text
Illustration of natural and anthropogenic sources, sinks and transport pathways of trace substances in coastal ecosystems that may interact with climate impacts. Red arrows indicate expected directions of change due to climate change. Zitoun et al. 2024
Excerpt from this story from EcoWatch:
A new study is warning that trace metals like lead, arsenic and mercury that are present in ocean water can become more toxic over time as factors like ocean warming and acidity can increase the bioavailability of these trace elements.
Although these elements can naturally occur in coastal areas, their concentrations have increased due to human activities like agriculture and industrial manufacturing. Now, scientists warn that problems such as ocean acidification and warming are further strengthening the toxicity and spread of trace elements, both from natural and human sources.
“Human activities have increased the global flow of toxic metals such as lead by tenfold and mercury by three to seven times compared to pre-industrial levels,” Sylvia Sander, professor of marine mineral resources at GEOMAR, said in a statement. “Toxic elements like silver are increasingly detectable in coastal waters, originating from coal combustion and the growing use of silver nanoparticles in antibacterial products.”
The researchers found that the effects of rising sea levels, ocean warming, melting sea ice, drying river beds and ocean acidification could all play roles in the transport and accumulation of trace elements, particularly those that occur naturally. The researchers published their findings in the journal Communications Earth & Environment.
But trace elements from human sources are also contaminating the environment, with heavy metals coming into the oceans from fossil fuel and industry activities. Further, shipping and plastics can also introduce more trace elements into the oceans, especially because plastics can bind certain metals, including lead and copper.
As ocean temperatures rise, the bioavailability of trace elements increases, meaning it becomes easier for marine life to absorb the trace elements, the researchers explained. Trace elements, especially copper, also experience an increase in bioavailability and solubility in the presence of more acidic water. Copper can become extremely toxic to marine life in higher concentrations.
In a recent report on planetary vital signs, a team of international scientists confirmed that ocean warming and acidification had reached record extremes in recent years.
13 notes
·
View notes
Text
This story originally appeared in Hakai Magazine and is part of the Climate Desk collaboration.
In the Fram Strait off Greenland’s west coast, Véronique Merten encountered the foot soldiers of an invasion.
Merten was studying the region’s biodiversity using environmental DNA, a method that allows scientists to figure out which species are living nearby by sampling the tiny pieces of genetic material they shed, like scales, skin, and poop. And here, in a stretch of the Arctic Ocean 400 kilometers north of where they’d ever been seen before: capelin.
And they were everywhere.
The small baitfish found in the northern Atlantic and Pacific Oceans is an ardent colonizer. Whenever the ocean conditions change, it’s really easy for capelin to expand their range, says Merten, a marine ecologist at the GEOMAR Helmholtz Centre for Ocean Research Kiel in Germany.
It is difficult to estimate an animal’s abundance based solely on the amount of its DNA in the water. Yet in Merten’s samples, capelin was the most frequently encountered species—far more than typical Arctic fish like Greenland halibut and Arctic skate. To Merten, the evidence of so many capelin so far north is a bold sign of a worrying Arctic phenomenon: Atlantification.
The Arctic Ocean is warming quickly—the Fram Strait is nearly 2 °C warmer than it was in 1900. But Atlantification is about more than rising temperatures: it’s a process that is reshaping the physical and chemical conditions of the Arctic Ocean.
Because of the oceans’ global circulation patterns, water routinely flows from the Atlantic into the Arctic. This exchange mostly occurs in deeper water, with currents carrying warm and relatively salty Atlantic water north. This warm Atlantic water, however, doesn’t mix well with the Arctic’s surface water, which is relatively cool and fresh. Fresher water is less dense than saltier water, so the Arctic water tends to float on top, trapping the saltier Atlantic water deep below the ocean’s surface.
As sea ice disappears, however, the surface of the Arctic Ocean is heating up. The barrier between the layers is degrading and Atlantic water is mixing more easily into the upper layer. This is kicking off a feedback loop, where warmer surface water melts more sea ice, further exposing the ocean’s surface to sunlight, which heats the water, melts the ice, and allows Atlantic and Arctic water to blend even more. That’s Atlantification: the transformation of the Arctic Ocean from colder, fresher, and ice-capped to warmer, saltier, and increasingly ice-free.
Merten’s discovery of abundant capelin in the Fram Strait—as well as the DNA she found from other Atlantic species, like tuna and cock-eyed squid, far outside their typical range—is further proof of just how quickly Atlantification is playing out. And its consequences could be enormous.
In the Barents Sea off Russia, for example, a long-term study presents a grim picture of how Atlantification can disrupt Arctic ecosystems. As the Barents Sea has grown warmer and saltier, Atlantic species have been “moving in and taking over,” says Maria Fossheim, a fisheries ecologist with the Institute of Marine Research in Norway who led that study.
Fish communities in the Barents Sea, Fossheim says, have shifted north 160 kilometers in just nine years—“three or four times the pace that [previous studies] had foreseen.” By the end of her study, in 2012, Fossheim found that Atlantic species had expanded throughout the Barents Sea, while Arctic species were mostly pushed out.
Merten’s findings suggest the Fram Strait may be heading in a similar direction. Because this study is the first to examine the diversity of fish in the Fram Strait, however, it is unclear how recent these changes really are. “We need these baselines,” Merten says. “It could be that [capelin] already occurred there years ago, but no one ever checked.”
Either way, they’re there now. The question is: what will show up next?
13 notes
·
View notes
Photo
Мировой океан превращается в токсичное болото: и вот почему Океан стремительно нагревается, окисляется и теряет кислород — хорошо документированные последствия изменения климата. Но как эти изменения влияют на загрязняющие вещества в морской среде? На этот вопрос ответили ученые из Центра океанических исследований имени Гельмгольца (GEOMAR) вместе с коллегами, пишет SciTechDaily. Cвинец, ртуть, кадмий и другие опасные металлы попадают в океаны не только в результате деятельности человека. На их появление и распространение также влияют природные источники, которые преображаются из-за изменения климата. Повышение уровня моря, разливы или высыхание рек, таяние морского льда и ледников — все эти процессы мобилизуют и увеличивают циркулирующие в природе потоки загрязняющих веществ. «Наша рабочая группа сосредоточилась на изучении воздействия изменения климата и парниковых газов на загрязняющие вещества в океане», — говорит доктор Сильвия Сандер, профессор морских минеральных ресурсов в GEOMAR. Один из примеров такого воздействия — повышение уровня ртути в арктических водах: таяние ледников и вечной мерзлоты вместе с прибрежной эрозией высвобождают больше ртути из природных источников. Это процесс угрожает сообществам, которые полагаются на традиционное рыболовство, поскольку ртуть накапливается в пищевой цепочке и может оказаться на наших тарелках через загрязненную рыбу. Климатические изменения, такие как повышение температуры моря, закисление океана и истощение запасов кислорода, по-разному влияют на микроэлементы. Более высокая температура воды увеличивает их биодоступность и поглощение морскими организмами. Это объяснимо тем, что более высокие температуры ускоряют метаболизм, снижают растворимость кислорода и усиливают вентиляцию жабр, что приводит к большему поступлению металлов в живые организмы и накоплению их в телах представителей фауны. Поскольку океан поглощает большую часть углекислого газа, выделяемого людьми, он становится более кислым — уровень pH падает. Это увеличивает растворимость и биодоступность металлов, таких как медь, цинк или железо. Эффект особенно выражен в случае меди, которая в более высоких концентрациях очень токсична для многих морских организмов. Кроме того, растущее истощение кислорода, особенно в прибрежных зонах и на морском дне, усиливает токсическое воздействие микроэлементов. Из-за этого особенно страдают организмы, живущие непосредственно в или на морском дне, такие как мидии, крабы и другие ракообразные. Таким образом, деятельность человека влияет на количество загрязняющих веществ в Мировом океане и прибрежных районах двумя способами: напрямую, через выбросы загрязняющих веществ в окружающую среду, и косвенно, через воздействие антропогенного изменения климата на природные источники. Ранее в сети обсуждали опрометчивые решения по спасению климата Земли. Стало известно, что высадка деревьев в Арктике ускорит, а не замедлит глобальное потепление.
0 notes
Text
الصيد المكثف في قاع البحر يزيد من إطلاق الكربون.. مطالبات علمية بإنهاء صيد الأسماك بالشباك الجرافة في المناطق المحمية
يتم اصطياد الأسماك المفلطحة والروبيان في بحر الشمال باستخدام شباك الجر التي يتم جرها عبر قاع البحر، يؤدي هذا إلى إطلاق الكربون في الماء وثاني أكسيد الكربون (CO 2 ) في الغلاف الجوي، كما أظهرت أحدث الأبحاث في مركز هيلمهولتز هيريون. الدراسة هي جزء من ال��شروع التعاوني APOC. الشركاء هم معهد ألفريد فيجنر ومركز هيلمهولتز لأبحاث القطب الشمالي والبحرية (AWI)، ومركز GEOMAR هيلمهولتز لأبحاث المحيطات في كيل،…
#إطلاق الكربون في الماء#الفوائد الكربونية#تخزن كميات أقل من الكربون#تخزين الكربون في بحر الشمال#ثاني أكسيد الكربون#حلقات التغذية الراجعة الديناميكية#حماية البحار#صيد الأسماك
0 notes
Text
No solo los organismos fotosintéticos, como las plantas y algas, generan oxígeno. En el corazón del Pacífico, a unos 4000 metros de profundidad, se ha descubierto que preciados nódulos polimetálicos lo pueden producir por electrólisis del agua marina. El hallazgo hace replantear la cuestión de dónde comenzó la vida aeróbica. Nódulos metálicos en el fondo marino de la zona Clarion-Clipperton, en el océano Pacífico. / ROV KIEL 6000, GEOMAR – Geomar Bilddatenbank Por Enrique Sacristán Un equipo internacional de investigadores ha descubierto que los minerales metálicos de las profundidades oceánicas, muy valorados por las compañías extractoras, son capaces de producir oxígeno a 4000 metros bajo la superficie, en completa oscuridad. Este sorprendente descubrimiento, publicado esta semana en la revista Nature Geoscience, pone en tela de juicio la creencia de que solo los organismos fotosintéticos, como las plantas, las algas o las cianobacterias, generan el oxígeno de la Tierra. El estudio revela que esta molécula se puede crear en los fondos marinos abisales, sin luz, y llegar a sustentar a los organismos aeróbicos que lo respiran. Este ‘oxígeno oscuro’ lo descubrió el ecólogo y biogeoquímico Andrew Sweetman de la Asociación Escocesa de Ciencias Marinas (SAMS, Reino Unido) mientras tomaba muestras del lecho marino de la zona Clarion-Clipperton, un área submarina montañosa que se extiende casi 6500 kilómetros en el noreste del océano Pacífico. Localización de la zona Clarion-Clipperton en el Pacífico. / USGS “Para que la vida aeróbica se iniciara en el planeta, tenía que haber oxígeno, y nuestra idea era que su suministro en la Tierra comenzó con los organismos fotosintéticos, pero ahora sabemos que se produce oxígeno en las profundidades marinas, donde no hay luz”, subraya Sweetman, “por tanto, tenemos que volver a plantearnos preguntas como dónde pudo comenzar la vida aeróbica”. Valiosos nódulos polimetálicos A unos 4000 m de profundidad, el investigador localizó el material clave: nódulos polimetálicos, algunos de los cuales fueron analizados por el catedrático de Química Franz Geiger de la Universidad Northwestern (EE UU), que dirigió los experimentos electroquímicos que explican potencialmente el hallazgo. “Estos nódulos, que hoy parecen un saco de patatas vaciado en el suelo, se han estado formando durante los últimos 100 millones de años a partir de iones disueltos en el agua marina del fondo oceánico”, comenta Geiger a SINC, “y los campos que los contienen pueden cubrir cientos de kilómetros en muchas partes del mundo”. Los organismos fotosintéticos generan oxígeno y azúcares a partir de CO2, agua y luz. Sin embargo, el ‘oxígeno oscuro’ se produciría por electrólisis del agua inducida por los minerales metálicos: “2H20 –> O2 + 2H2 sería la formula”, apunta el químico, “pero es importante señalar que los sensores utilizados en este estudio solo son sensibles al O2, no al H2, que todavía no sabemos si se está produciendo”. Algunos nódulos polimetálicos recolectados del fondo oceánico se han analizado en el laboratorio del químico Franz Geiger en la Universidad Northwestern (EE UU). / Franz Geiger/Northwestern University Geiger explica que los nódulos polimetálicos que producen este oxígeno contienen metales como cobalto, níquel, cobre, litio y manganeso, todos ellos elementos fundamentales para las baterías de dispositivos electrónicos: “Varias empresas mineras a gran escala pretenden ahora extraer estos elementos preciosos del fondo marino a profundidades de entre 3000 y 4000 metros bajo la superficie. Tenemos que replantearnos cómo extraer estos materiales, para no agotar la fuente de oxígeno para la vida en los fondos oceánicos”. Historia del descubrimiento Por su parte, Sweetman recuerda cómo comenzó esta investigación: “Cuando obtuvimos los datos por primera vez, pensamos que los sensores estaban averiados porque en todos los estudios realiz...
View On WordPress
0 notes
Text
Una trivellazione scientifica svela il mistero storico dell'arcipelago vulcanico di Santorini
Un team internazionale di scienziati guidati dal Dr. Steffen Kutterolf del GEOMAR Helmholtz Center for Ocean Research di Kiel ha trovato per la prima volta le prove di un’eruzione sottomarina storica del vulcano Kameni a Santorini. Nel loro lavoro, pubblicato oggi sulla rivista Nature Geoscience, descrivono depositi di pomice e cenere appena scoperti che supportano le testimonianze storiche di…
View On WordPress
0 notes
Link
#Forschung#Geomar#LübeckerBucht#Nachkriegszeit#Nordsee#Ostsee#Umweltschutz#Weltkriegsbombe#ZweiterWeltkrieg
0 notes
Text
The Atlantification of the Arctic Ocean Is Underway
This story originally appeared in Hakai Magazine and is part of the Climate Desk collaboration.
In the Fram Strait off Greenland’s west coast, Véronique Merten encountered the foot soldiers of an invasion.
Merten was studying the region’s biodiversity using environmental DNA, a method that allows scientists to figure out which species are living nearby by sampling the tiny pieces of genetic material they shed, like scales, skin, and poop. And here, in a stretch of the Arctic Ocean 400 kilometers north of where they’d ever been seen before: capelin.
And they were everywhere.
The small baitfish found in the northern Atlantic and Pacific Oceans is an ardent colonizer. Whenever the ocean conditions change, it’s really easy for capelin to expand their range, says Merten, a marine ecologist at the GEOMAR Helmholtz Centre for Ocean Research Kiel in Germany.
It is difficult to estimate an animal’s abundance based solely on the amount of its DNA in the water. Yet in Merten’s samples, capelin was the most frequently encountered species—far more than typical Arctic fish like Greenland halibut and Arctic skate. To Merten, the evidence of so many capelin so far north is a bold sign of a worrying Arctic phenomenon: Atlantification.
The Arctic Ocean is warming quickly—the Fram Strait is nearly 2 °C warmer than it was in 1900. But Atlantification is about more than rising temperatures: it’s a process that is reshaping the physical and chemical conditions of the Arctic Ocean.
Because of the oceans’ global circulation patterns, water routinely flows from the Atlantic into the Arctic. This exchange mostly occurs in deeper water, with currents carrying warm and relatively salty Atlantic water north. This warm Atlantic water, however, doesn’t mix well with the Arctic’s surface water, which is relatively cool and fresh. Fresher water is less dense than saltier water, so the Arctic water tends to float on top, trapping the saltier Atlantic water deep below the ocean’s surface.
As sea ice disappears, however, the surface of the Arctic Ocean is heating up. The barrier between the layers is degrading and Atlantic water is mixing more easily into the upper layer. This is kicking off a feedback loop, where warmer surface water melts more sea ice, further exposing the ocean’s surface to sunlight, which heats the water, melts the ice, and allows Atlantic and Arctic water to blend even more. That’s Atlantification: the transformation of the Arctic Ocean from colder, fresher, and ice-capped to warmer, saltier, and increasingly ice-free.
Merten’s discovery of abundant capelin in the Fram Strait—as well as the DNA she found from other Atlantic species, like tuna and cock-eyed squid, far outside their typical range—is further proof of just how quickly Atlantification is playing out. And its consequences could be enormous.
In the Barents Sea off Russia, for example, a long-term study presents a grim picture of how Atlantification can disrupt Arctic ecosystems. As the Barents Sea has grown warmer and saltier, Atlantic species have been “moving in and taking over,” says Maria Fossheim, a fisheries ecologist with the Institute of Marine Research in Norway who led that study.
Fish communities in the Barents Sea, Fossheim says, have shifted north 160 kilometers in just nine years—“three or four times the pace that [previous studies] had foreseen.” By the end of her study, in 2012, Fossheim found that Atlantic species had expanded throughout the Barents Sea, while Arctic species were mostly pushed out.
Merten’s findings suggest the Fram Strait may be heading in a similar direction. Because this study is the first to examine the diversity of fish in the Fram Strait, however, it is unclear how recent these changes really are. “We need these baselines,” Merten says. “It could be that [capelin] already occurred there years ago, but no one ever checked.”
Either way, they’re there now. The question is: what will show up next?
0 notes
Video
youtube
⭐ECOSISTEMAS TECNOLÓGICOS PARA LA GESTIÓN. Dr. Geomar Molina B. https://youtu.be/N7lEeIAf21M
0 notes