#Stem Cell Market Growth
Explore tagged Tumblr posts
techtitan-01 · 7 months ago
Text
Stem Cells Market will grow at highest pace owing to growing R&D activities in regenerative medicine
Tumblr media
Stem cells are undifferentiated biological cells that can differentiate into specialized cells and can divide through mitosis to produce more stem cells. They are found in all multicellular organisms. Stem cells are invaluable for drug development, personalized medicine and gene therapy. The major applications of stem cells are in regenerative medicine, drug screening and toxicity testing. On the basis of source, stem cells can be broadly classified into embryonic stem cells and adult stem cells. Embryonic stem cells are derived from the embryo inner cell mass. Adult stems cells are isolated from adult tissues and cells including bone marrow, adipose tissue, heart, gut, skin and retina. The Global Stem Cells Market is estimated to be valued at US$ 14.87 Mn in 2024 and is expected to exhibit a CAGR of 7.9% over the forecast period 2024 To 2031. Key Takeaways Key players operating in the Stem Cells are Abzena Ltd., Clarivate, Immunetrics Inc., GNS Healthcare, Dassault Systemes, Evotec, Novadiscovery, Insilico Medicine Inc., and InSilicoTrials Technologies, among others. The key players are engaged in expanding their product portfolios in stem cell research by developing innovative techniques for isolation and differentiation of stem cells. The demand for Stem Cells  Market Demand is growing mainly due to increasing prevalence of chronic and lifestyle diseases and growing geriatric population globally. Stem cell therapy is considered as a potential treatment for various fatal diseases like cancer, myocardial infarction and diabetes. The increasing success of clinical trials is further driving the growth of the market. Technological advancements in stem cell manufacturing and 3D organoids are further enhancing the applications of stem cells in drug discovery and toxicity testing. Crispr/Cas9 gene editing, spheroid cell culturing and single cell sequencing are the latest technologies being used for manipulating stem cells. Market Trends Growing Focus on Induced Pluripotent Stem Cells: Induced pluripotent Stem Cell Market Size And Trends (iPSCs) have emerged as a major trend in stem cell research as they can be generated from adult tissues such as skin and blood cells. iPSCs have potential applications in disease modeling, drug development and personalized regenerative medicine. Increasing Adoption of 3D Organoid Technologies: 3D organoids are miniature 3D structures grown from stem cells which mimic in vivo tissue structures. Organoids technology is gaining significant popularity due to its potential to revolutionize drug development, toxicity testing and disease modeling. Organoids can replicate the complexity of human tissues better than 2D cell cultures. Market Opportunities Regenerative Medicine Applications: Stem cell therapy holds huge potential in the field of regenerative medicine in treatment of degenerative diseases. Areas such as cardiac disorders, bone disorders, diabetes, neurological disorders and skin injuries offer major opportunities. Drug Discovery and Toxicology Testing: Stem cells provide a predictive human disease model for drug discovery and toxicity assessment. Their ability to replicate human tissues makes them ideal for preclinical drug development and toxicology studies. This opens up major revenue opportunities. Impact of COVID-19 on the Stem Cells Market
The COVID-19 pandemic has significantly impacted the growth of the stem cells market. During the initial outbreak, many research activities and clinical trials involving stem cells were halted to divert resources towards COVID-19 treatment and management. This led to delays in new product development and launch plans of various market players. The demand for stem cell therapy also declined as non-essential procedures were postponed during lockdowns to prevent virus spread in healthcare facilities. However, post-COVID, focus on stem cell research has increased as scientists are exploring its potential in developing therapies against complications arising due to COVID-19 infection such as pulmonary fibrosis. Market players are investing more in R&D activities involving mesenchymal stem cells for treatment of acute respiratory distress syndrome caused by coronavirus. Overall, though COVID-19 stalled market growth in the short-term, focus on stem cell based solutions for COVID-19 related issues is expected to boost the stem cells industry over the coming years. q The North American region currently holds the largest share of the global stem cells market in terms of value. This can be attributed to presence of major market players and higher healthcare spending on emerging cell-based therapies. The United States is the most prominent country dominating the North American as well as global stem cell market. The Asia Pacific region is identified as the fastest growing market for stem cells globally. This growth can be accredited to improving healthcare infrastructure, rising medical tourism, and increasing investments by global market players to tap the opportunities in emerging Asian countries like China, India, and South Korea.
Get more insights on,  Stem Cells Market
About Author: Money Singh is a seasoned content writer with over four years of experience in the market research sector. Her expertise spans various industries, including food and beverages, biotechnology, chemical and materials, defense and aerospace, consumer goods, etc. (https://www.linkedin.com/in/money-singh-590844163)
*Note:1. Source: Coherent Market Insights, Public Source, Desk Research 2. We have leveraged AI tools to mine information and compile it
1 note · View note
mi-researchreports · 1 year ago
Text
0 notes
industrynewsupdates · 1 month ago
Text
Mesenchymal Stem Cells Market Key Players, Revenue And Growth Rate
The global mesenchymal stem cells (MSC) market size is expected to reach USD 7.27 billion by 2030, expanding at a CAGR of 12.92% from 2024 to 2030, according to a new report by Grand View Research, Inc. An exponential increase in Mesenchymal Stem Cell (MSC) based research and its implications in the field of regenerative medicine is anticipated to fuel the industry expansion. Moreover, the constantly evolving landscape of cell therapies is also anticipated to propel investments in the mesenchymal stem cells market space; large-scale operational firms are targeting small or emerging players with an operating strategy of acquisition to bolster their market presence.
The strong pipeline of mesenchymal stem cell-based products coupled with emerging applications of mesenchymal stem cells is anticipated to accelerate the industry growth. For instance, in 2022, the U.S.FDA has approved around 19 stem cell therapies for range of life-threatening disorders. Some of these therapies include, BREYANZI of BMS, ALLOCORD, KYMIRAH of Novartis etc. Moreover, a substantial number of companies are exploring the potential of MSCs as therapeutic regime for the management of inflammatory conditions, in turn, boosting market growth.
For instance, on January 2022, the Century Therapeutics and Bristol Myers Squibb entered a collaboration to expand IPSC-derives allogenic cell therapies. In addition, Takeda/TiGenix phase 3 clinical trial incorporated mesenchymal stem cells for complex perianal fistulas in Crohn's Disease. This was the most successful late-stage clinical trial as of September 2020. In addition, in August 2022 AGC Biologics partnered with human mesenchymal stem cell supplier, RoosterBio Inc. to deliver clinically proven advanced therapies for life-threatening conditions. These factors are projected to bolster the usage of stem cell products offered by key entities, thereby intensifying the market competition.
Gather more insights about the market drivers, restrains and growth of the Mesenchymal Stem Cells Market
Mesenchymal Stem Cells Market Report Highlights
• The products segment dominated the segment and accounted for the largest revenue share of 78.89% in 2023. Among the products, the cells and cell lines segment has emerged as a key contributor to the segment’s revenue
• Based on workflow type, the culture and cryopreservation segment dominated the industry with revenue share of 44.55% in 2023. The segment growth is attributed to the high demand for cryopreservation services and enhancement of healthcare infrastructure in developing economies
• The allogenic MSCs segment accounted for the higher revenue share of 56.60% in 2023. This is attributed to the high safety profile of allogeneic mesenchymal stem cells in clinical applications
• The bone marrow segment dominated the market and accounted for the largest revenue share of 24.56% in 2023. Bone marrow is a major source of isolation for mesenchymal cells
• The disease modelling application segment dominated the application and accounted for the largest revenue share of 35.23% in 2023. The use of cellular disease models with patient specific MSCs provides an ideal tool for pathological research
• North America dominated the market and accounted for the largest revenue share of 45.11% in 2023. The higher revenue share of the region is accounted to supportive government legislation and rising application of cell therapies in chronic disorders
Mesenchymal Stem Cells Market Segmentation
Grand View Research has segmented the global mesenchymal stem cells market based on Product & services, workflow type, type,source of isolation,indication, application and region:
Mesenchymal Stem Cells Products & Services Outlook (Revenue, USD Million, 2018 - 2030)
• Products
o Cells & Cell Lines
o Kits, Media, & Reagents
o Others
• Services
Mesenchymal Stem Cells Workflow Type Outlook (Revenue, USD Million, 2018 - 2030)
• Cell Sourcing & Isolation
• Culture & Cryopreservation
• Differentiation
• Characterization
Mesenchymal Stem Cells Type Outlook (Revenue, USD Million, 2018 - 2030)
• Autologous
• Allogenic
Mesenchymal Stem Cells Source of Isolation Outlook (Revenue, USD Million, 2018 - 2030)
• Bone Marrow
• Cord Blood
• Peripheral Blood
• Fallopian Tube
• Fetal Liver
• Lung
• Adipose Tissues
Mesenchymal Stem Cells Indication Outlook (Revenue, USD Million, 2018 - 2030)
• Bone And Cartilage Repair
• Cardiovascular Diseases
• Inflammatory And Immunological Diseases
• Liver Diseases
• Cancer
• GvHD
• Others
Mesenchymal Stem Cells Application Outlook (Revenue, USD Million, 2018 - 2030)
• Disease Modeling
• Drug Development & Discovery
• Stem Cell Banking
• Tissue Engineering
• Toxicology Studies
• Others
Mesenchymal Stem Cells Regional Outlook (Revenue, USD Million, 2018 - 2030)
• North America
o U.S.
o Canada
• Europe
o Germany
o UK
o France
o Italy
o Spain
o Denmark
o Sweden
o Norway
• Asia Pacific
o China
o Japan
o India
o South Korea
o Australia
o Thailand
• Latin America
o Brazil
o Mexico
o Argentina
• Middle East and Africa (MEA)
o South Africa
o Saudi Arabia
o UAE
Order a free sample PDF of the Mesenchymal Stem Cells Market Intelligence Study, published by Grand View Research.
0 notes
kadambarimmr123 · 3 months ago
Text
The market for plant stem cells is expanding primarily due to the fashion and entertainment industries' increasing need for natural skincare products and their high level of protection against harmful UV rays.
0 notes
lalsingh228-blog · 10 months ago
Text
Stem Cells Market to enjoy 'explosive growth' to 2030
Tumblr media
The Latest research coverage on Stem Cells Market provides a detailed overview and accurate market size. The study is designed considering current and historical trends, market development and business strategies taken up by leaders and new industry players entering the market. Furthermore, study includes an in-depth analysis of global and regional markets along with country level market size breakdown to identify potential gaps and opportunities to better investigate market status, development activity, value and growth patterns. Access Sample Report + All Related Graphs & Charts @: https://marketresearchforecast.com/report/stem-cells-market-528/sample-report
Major & Emerging Players in Stem Cells Market:- PromoCell GmbH (Germany), AcceGen (U.S.), Bio-Techne (U.S.), Cellular Engineering Technologies (U.S.), Merck KgaA (Germany), Thermo Fisher Scientific Inc. (U.S.), Lonza (Switzerland), Miltenyi Biotec B.V. & Co. KG (Germany), STEMCELL Technologies (Canada) The Stem Cells Market Study by Market Research Forecast gives an essential tool and source to Industry stakeholders to figure out the market and other fundamental technicalities, covering growth, opportunities, competitive scenarios, and key trends in the Stem Cells market. The application of stem cells to the management of many physiological ailments is becoming more and more common. Technology developments in the pharmaceutical and healthcare industries provide investors in the stem cells industry significant income opportunities. The global market is expanding due to increased spending in research and development initiatives that seek to identify new uses for stem cells in various healthcare areas. In addition, there is an increased need for stem cells due to the growing prevalence of illnesses such as diabetes, cancer, and heart disease. Industry players are presently investigating novel approaches to cultivate and utilise stem cells for various applications. The market is growing even more as a result of the pharmaceutical industry's and clinical research institutions' rapid expansion in developed regions.However, a significant obstacle to commercial expansion is the high prices connected with stem cell operations. As a result, businesses in the stem cell sector are encouraged to try out new methods in order to improve testing procedures and advance the field. The titled segments and sub-section of the market are illuminated below: by Cell Type ( Embryonic Stem Cells (ESCs), by Application ( Research and Clinical), by End-user ( Pharmaceutical & Biotechnology Companies, Academic & Research Institutes, and Others)by North America ( U.S. ,Canada ), by Europe ( U.K. ,Germany ,France ,Italy ,Spain ,Scandinavia ,Rest of Europe ), by Asia Pacific ( Japan ,China ,India ,Australia ,South Korea ,Southeast Asia ,Rest of Asia Pacific ), by Latin America ( Brazil ,Mexico ,Rest of Latin America ), by The Middle East & Africa ( South Africa ,GCC ,Rest of the Middle East & Africa ) Forecast 2024-2031 Stem Cells Trends:
Personalized medicine: Stem cells offer personalized therapies tailored to individual patients.
Stem cell banking: The storage of stem cells for future therapeutic use is becoming increasingly popular.
Tissue engineering: Stem cells are used to create functional tissues for transplantation and regenerative medicine.
Emerging Trends in Stem Cells:
Induced pluripotent stem cells (iPSCs): These cells are reprogrammed from adult somatic cells, reducing the ethical concerns associated with embryonic stem cells.
Gene editing technologies: CRISPR-Cas9 and other gene editing tools enable precise modifications to stem cells, improving their therapeutic potential.
Bioprinting of stem cells: 3D printing techniques are being used to create complex tissue structures from stem cell populations. Enquire for customization in Report @: https://marketresearchforecast.com/report/stem-cells-market-528/enquiry-before-buy
Significant developments in Stem Cells Sector:
December 2023: GenCure and the University of Texas at San Antonio (UTSA) collaborated to develop cellular therapy products, services, and testing.
August 2023: BlueRock Therapeutics LP and bit.bio signed an agreement for the discovery, development, and manufacturing of iPSC-derived regulatory T cells (Tregs).
July 2023: PromoCell GmbH launched the PromoExQ MSC Growth Medium XF for in-vitro expansion of human Mesenchymal Stem Cells (hMSCs).
July 2023: Pluristyx, Inc. partnered with Stem Genomics to evaluate the genomic stability of Pluristyx's Pluripotent Stem Cell (PSC) lines.
June 2023: FUJIFILM Cellular Dynamics launched its human iPSC-derived iCell Blood-Brain Barrier Isogenic Kit for drug discovery in neuroactive medicines. Some Point of Table of Content: Chapter One: Report Overview Chapter Two: Global Market Growth Trends Chapter Three: Value Chain of Stem Cells Market Chapter Four: Players Profiles Chapter Five: Global Stem Cells Market Analysis by Regions Chapter Six: North America Stem Cells Market Analysis by Countries Chapter Seven: Europe Stem Cells Market Analysis by Countries Chapter Eight: Asia-Pacific Stem Cells Market Analysis by Countries Chapter Nine: Middle East and Africa Stem Cells Market Analysis by Countries Chapter Ten: South America Stem Cells Market Analysis by Countries Chapter Eleven: Global Stem Cells Market Segment by Types Chapter Twelve: Global Stem Cells Market Segment by Applications What are the market factors that are explained in the Stem Cells Market report?
– Key Strategic Developments: Strategic developments of the market, comprising R&D, new product launch, M&A, agreements, collaborations, partnerships, joint ventures, and regional growth of the leading competitors.
– Key Market Features: Including revenue, price, capacity, capacity utilization rate, gross, production, production rate, consumption, import/export, supply/demand, cost, market share, CAGR, and gross margin.– Analytical Tools: The analytical tools such as Porter’s five forces analysis, SWOT analysis, feasibility study, and investment return analysis have been used to analyze the growth of the key players operating in the market. Buy This Exclusive Research Here: https://marketresearchforecast.com/report/stem-cells-market-528/checkout?type=corporate Definitively, this report will give you an unmistakable perspective on every single reality of the market without a need to allude to some other research report or an information source. Our report will give all of you the realities about the past, present, and eventual fate of the concerned Market. Thanks for reading this article; you can also get individual chapter wise section or region wise report version like North America, Europe or Asia. Contact US : Craig Francis (PR & Marketing Manager) Market Research Forecast Unit No. 429, Parsonage Road Edison, NJ New Jersey USA – 08837 Phone: +1 201 565 3262, +44 161 818 8166 [email protected]
0 notes
digimarketresearch · 10 months ago
Text
Induced Pluripotent Stem Cells Market Size, Share, Trends, Global Demand, Growth and Opportunity Analysis
"Induced Pluripotent Stem Cells (iPSCs) Market survey report analyses the general market conditions such as product price, profit, capacity, production, supply, demand, and market growth rate which supports businesses on deciding upon several strategies. Furthermore, big sample sizes have been utilized for the data collection in this business report which suits the necessities of small, medium as well as large size of businesses. The report explains the moves of top market players and brands that range from developments, products launches, acquisitions, mergers, joint ventures, trending innovation and business policies.
The large scale Induced Pluripotent Stem Cells (iPSCs) Market report is prepared by taking into account the market type, organization volume, accessibility on-premises, end-users’ organization type, and availability at global level in areas such as North America, South America, Europe, Asia-Pacific, Middle East and Africa. Extremely talented pool has invested a lot of time for doing market research analysis and to generate this market report. Induced Pluripotent Stem Cells (iPSCs) Market report is sure to help businesses for the long lasting accomplishments in terms of better decision making, revenue generation, prioritizing market goals and profitable business.
Access Full 350 Pages PDF Report @
The global induced pluripotent stem cells (iPSCs) market is expected to gain market growth in the forecast period of 2022 to 2029. Data Bridge Market Research analyses that the market is growing with a CAGR of 9.9% in the forecast period of 2022 to 2029 and is expected to reach USD 2,081.08 million by 2029. Increasing research activities over stem cell therapies act as driver for the induced pluripotent stem cells (iPSCs) market growth.
Key Coverage in the Induced Pluripotent Stem Cells (iPSCs) Market Report:
Detailed analysis of Induced Pluripotent Stem Cells (iPSCs) Market by a thorough assessment of the technology, product type, application, and other key segments of the report
Qualitative and quantitative analysis of the market along with CAGR calculation for the forecast period
Investigative study of the market dynamics including drivers, opportunities, restraints, and limitations that can influence the market growth
Comprehensive analysis of the regions of the Induced Pluripotent Stem Cells (iPSCs) industry and their futuristic growth outlook
Competitive landscape benchmarking with key coverage of company profiles, product portfolio, and business expansion strategies
Table of Content:
Part 01: Executive Summary
Part 02: Scope of the Report
Part 03: Global Induced Pluripotent Stem Cells (iPSCs) Market Landscape
Part 04: Global Induced Pluripotent Stem Cells (iPSCs) Market Sizing
Part 05: Global Induced Pluripotent Stem Cells (iPSCs) Market Segmentation by Product
Part 06: Five Forces Analysis
Part 07: Customer Landscape
Part 08: Geographic Landscape
Part 09: Decision Framework
Part 10: Drivers and Challenges
Part 11: Market Trends
Part 12: Vendor Landscape
Part 13: Vendor Analysis
The major companies which are dealing in the induced pluripotent stem cells (iPSCs) are Thermo Fisher Scientific Inc., FUJIFILM Corporation, LumaCyte,  Horizon Discovery Ltd., Hopstem Biotechnology LLC., Takara Bio Inc., Cell Applications, Inc., Citius Pharmaceuticals, Inc., Lonza., Evotec SE., Fate Therapeutics, Universal Cells Inc. (An Astellas Company), Axol Bioscience Ltd., R & D Systems, Inc., Charles River Laboratories International, Inc., Corning Incorporated, REPROCELL Inc., Applied StemCell., Merck KGaA, GeneCopoeia, Inc. and among other domestic players. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.
Browse Trending Reports:
Dupuytrens Disease Market
Mitogen Activated Protein Kinase Mapk Inhibitors Therapeutics Market
Neonatal Seizures Drugs Market
Chikungunya Treatment Market
Sickle Cell Disease Treatment Market
About Data Bridge Market Research:
Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.
Contact Us:
Data Bridge Market Research
US: +1 888 387 2818
UK: +44 208 089 1725
Hong Kong: +852 8192 7475
0 notes
aimarketresearch · 10 months ago
Text
Induced Pluripotent Stem Cells Market Size, Share, Trends, Demand, Future Growth, Challenges and Competitive Analysis
Induced Pluripotent Stem Cells (iPSCs) Market survey report analyses the general market conditions such as product price, profit, capacity, production, supply, demand, and market growth rate which supports businesses on deciding upon several strategies. Furthermore, big sample sizes have been utilized for the data collection in this business report which suits the necessities of small, medium as well as large size of businesses. The report explains the moves of top market players and brands that range from developments, products launches, acquisitions, mergers, joint ventures, trending innovation and business policies.
The large scale Induced Pluripotent Stem Cells (iPSCs) Market report is prepared by taking into account the market type, organization volume, accessibility on-premises, end-users’ organization type, and availability at global level in areas such as North America, South America, Europe, Asia-Pacific, Middle East and Africa. Extremely talented pool has invested a lot of time for doing market research analysis and to generate this market report. Induced Pluripotent Stem Cells (iPSCs) Market report is sure to help businesses for the long lasting accomplishments in terms of better decision making, revenue generation, prioritizing market goals and profitable business.
Access Full 350 Pages PDF Report @
The global induced pluripotent stem cells (iPSCs) market is expected to gain market growth in the forecast period of 2022 to 2029. Data Bridge Market Research analyses that the market is growing with a CAGR of 9.9% in the forecast period of 2022 to 2029 and is expected to reach USD 2,081.08 million by 2029. Increasing research activities over stem cell therapies act as driver for the induced pluripotent stem cells (iPSCs) market growth.
Key Coverage in the Induced Pluripotent Stem Cells (iPSCs) Market Report:
Detailed analysis of Induced Pluripotent Stem Cells (iPSCs) Market by a thorough assessment of the technology, product type, application, and other key segments of the report
Qualitative and quantitative analysis of the market along with CAGR calculation for the forecast period
Investigative study of the market dynamics including drivers, opportunities, restraints, and limitations that can influence the market growth
Comprehensive analysis of the regions of the Induced Pluripotent Stem Cells (iPSCs) industry and their futuristic growth outlook
Competitive landscape benchmarking with key coverage of company profiles, product portfolio, and business expansion strategies
Table of Content:
Part 01: Executive Summary
Part 02: Scope of the Report
Part 03: Global Induced Pluripotent Stem Cells (iPSCs) Market Landscape
Part 04: Global Induced Pluripotent Stem Cells (iPSCs) Market Sizing
Part 05: Global Induced Pluripotent Stem Cells (iPSCs) Market Segmentation by Product
Part 06: Five Forces Analysis
Part 07: Customer Landscape
Part 08: Geographic Landscape
Part 09: Decision Framework
Part 10: Drivers and Challenges
Part 11: Market Trends
Part 12: Vendor Landscape
Part 13: Vendor Analysis
The major companies which are dealing in the induced pluripotent stem cells (iPSCs) are Thermo Fisher Scientific Inc., FUJIFILM Corporation, LumaCyte,  Horizon Discovery Ltd., Hopstem Biotechnology LLC., Takara Bio Inc., Cell Applications, Inc., Citius Pharmaceuticals, Inc., Lonza., Evotec SE., Fate Therapeutics, Universal Cells Inc. (An Astellas Company), Axol Bioscience Ltd., R & D Systems, Inc., Charles River Laboratories International, Inc., Corning Incorporated, REPROCELL Inc., Applied StemCell., Merck KGaA, GeneCopoeia, Inc. and among other domestic players. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.
Browse Trending Reports:
Digital Mobile X Ray Devices Market
Point Of Care Poc Urinalysis Market
Viral Clearance Services Market
Preparative And Process Chromatography Market
Next Generation Dna Sequencing Ngs Market
About Data Bridge Market Research:
Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.
Contact Us:
Data Bridge Market Research
US: +1 888 387 2818
UK: +44 208 089 1725
Hong Kong: +852 8192 7475
0 notes
juanvmartinez2024 · 10 months ago
Text
Global Stem Cell Manufacturing Market, Top Companies, Size, Demands and Forecast to 2028
0 notes
mitalipingale · 1 year ago
Text
The Stem Cell Media Market is projected to expand at a CAGR of 10% from 2023-2031.
0 notes
bishtmeenakshi · 1 year ago
Text
Healing Horizons: Exploring the Stem Cell Therapy Landscape
Tumblr media
Explore Stem Cell Therapy market size and growth dynamics, navigating horizons of healing potential. Witness how this intersects with the broader Blood Product Market, shaping the future of regenerative medicine.
0 notes
delicatemagazinedreamer · 1 year ago
Text
Human Embryonic Stem Cells Market Is Estimated To Witness High Growth Owing To Increasing Research and Development Activities.
Tumblr media
The global Human Embryonic Stem Cells Market is estimated to be valued at US$ 1,058.9 Mn in 2021 and is expected to exhibit a CAGR of 9.2% over the forecast period 2022-2028, as highlighted in a new report published by Coherent Market Insights. Market Overview: The Human Embryonic Stem Cells Market refers to the market for stem cells derived from human embryos. These cells have the ability to differentiate into various types of specialized cells, making them a valuable resource for research and potential therapeutic applications. The advantages of human embryonic stem cells include their ability to replicate indefinitely and their potential to treat various diseases and conditions such as Parkinson's disease, diabetes, and spinal cord injuries. Market Key Trends: One key trend in the Human Embryonic Stem Cells Market is the increasing research and development activities in the field. With the growing understanding of stem cell biology and their potential applications, scientists and researchers are actively exploring the use of human embryonic stem cells for regenerative medicine and tissue engineering. For example, researchers are investigating the use of these cells to develop functional heart muscle cells for treating heart diseases. Such advancements in research are expected to drive the growth of the market. PEST Analysis: - Political: The use of human embryonic stem cells is a highly debated topic in many countries due to ethical concerns regarding embryo destruction. Some countries have strict regulations or bans on the use of these cells, which can limit their research and commercial applications. - Economic: The human embryonic stem cells market has significant economic potential, as it offers opportunities for developing novel therapies and treatments for various diseases. This can attract investments and funding from both public and private sectors. - Social: The social perception of using human embryonic stem cells varies among different demographics and cultural backgrounds. Public awareness and acceptance of these cells can influence their research and development activities. - Technological: Advances in stem cell technology, such as the development of induced pluripotent stem cells (iPSCs), provide alternatives to human embryonic stem cells. These iPSCs are derived from adult cells and have similar properties to embryonic stem cells, reducing the ethical concerns associated with their use. Key Takeaways: - The global Human Embryonic Stem Cells Market Segmentation is expected to witness high growth, exhibiting a CAGR of 9.2% over the forecast period. This growth is driven by increasing research and development activities in the field. - Regionally, North America is expected to dominate the market due to the presence of key players and significant investments in stem cell research and regenerative medicine. - Key players operating in the global human embryonic stem cells market include Takara Bio Inc., ViaCyte Inc., PromoCell GmbH, Merck KgaA, PeproTech Inc., Astellas Pharma Inc., Thermo Fisher Scientific, Lineage Cell Therapeutics Inc., and STEMCELL Technologies Inc. The human embryonic stem cells market is witnessing high growth due to increasing research and development activities. Despite ethical concerns and regulatory restrictions in some countries, the market holds significant potential for developing novel therapies and treatments for various diseases. North America is expected to dominate the market, and key players are actively involved in advancing the field of stem cell research and development. Overall, the market offers lucrative opportunities for investors and stakeholders in the coming years.
0 notes
catboybiologist · 1 year ago
Text
Alright I can't finish this all in one sitting, but here's at least a bit of.... something? A word vomit? A prelude to smut about the eroticism of the machine? For all you robot, mecha, and spaceship fuckers out there. @k1nky-r0b0t-g1rl that means you
Pappy always said that manufacturing biological transportation was nothing knew. I mean, shit, humanity's been breeding horses for how long? To him, not much was novel about what was going on in the shipyards way out by Neptune when I was a kid.
But Pappy didn't know a lot of things. And he certainly didn't meet Roseanna.
The Federation Navy had experimented with biologics for decades. The idea was to create self regenerating ships- something to interface with the hull, move the new titanium plates and particulates into place, have a living, growing mass interfacing with the steel so that the ship didn't have to head all the way back to the yards to patch up after every dogfight.
The first generation... worked. With a full time crew, that is. Full time people on deck jabbin the rigid, chitonous interface with the hull full of growth hormones to get them to set just right. Full time onboard bioengineers to compute what signaling cocktail ya need to hit 'em with to get it to grow back right. Skilled onboard technicians to shave back the chitin when it tried to overgrow the titanium, and slap some new cells in to seed the process in heavily damaged areas. Less input material, less time in the yards, but far more manpower. Great for a Federation cruiser on deep space peacekeeping missions. Far too complex for small craft. Right?
Until some bastard put brains in 'em.
Well. A lotta suits would say that they weren't brains. They were a diffuse network of sensory neurons and ganglia, living inside the body of the ship, integrating signals from a skin of alloyed metal and fibrous protein, calculating power draw too and from various components, and integrating with the mechanical and electrical components of the ship to precisely manage the "wound healing" process of the vessel. And of course, it just so happened that one of those ganglia was larger and more complex than the rest of them, and it just so happened that the computer interfaces with this ganglia exhibit complex, thinking behaviors on the level of human cognition, and it just so happens that most pilots and navigators reported them developing their own personalities.....
But of course, the Navy didn't want anyone to have some kind of pesky empathy in the way of their operations. And they certainly didn't want anyone side eyeing the rate at which they disposed of the damn things, and let them suffer and rot after disposal. So as far as the official record was concerned, they didn't have brains.
Like most people in the belt, I found Rosie on a... unsponsored field trip to the Neptune scrap yards. She wasn't a ship then. She wasn't much of anything. Not much more than a vat with the central ganglia and just barely enough of the stem cells needed to regrow a network. But I took her all the same. Brains were valuable. Few pilots outside the Navy had them back then. Nowadays, a black market for "brain seeds", a cocktail of neuronal stem cells and enough structural stem cells to grow your own into the chassis of your ship. They were pumpin' em out, and leaving them to die. It was cruel. They may be vehicles, but they're a livin' being too.
But I digress. I'd never do that to Roseanna. I make sure she gets proper care. And for a good, proper, working ship? That includes some good, proper work.
The asteroid we were docked in was one of my usuals- good bars, nice temp quarters, nice views of the rock's orbiting twin, and a spacious hanger for Rosie to rest in. The chasiss I had imprinted Roseanna to was a 40-meter light skipper, with some adjustments for handling deep space trips. It was pretty much the smallest thing you could actually use to live and work for long periods of time, but it got the job done. The angular design made the entire ship look like a wedge, or the blade of a bulky dagger. It didn't hurt that each bottom edge was fortified with a sharpened titanium blade, turning the entire sides of the ship into axe-like rams.
Those would probably come in handy today.
I approached Roseanna on the catwalk above her, marveling her alloyed scales. I could almost see her shudder in anticipation as my footsteps vibrated through the air above her. I took the steps down, and hit the trigger to open her top hatch.
When the news got out of the Navy scuffling with a rebelling mining station, an electric air raced across the station. Some went about their day as normal. Some resigned themselves to picking at the leftovers after the dust had settled. And some, like me, knew that they could get the finest pickings.
I strapped in to the pilot's seat like it was an old boot.
"Welcome, Captain Victoria."
Rosie could talk, but more often than not, she chose not to. But she understood me just fine. Most of our communication took place using her three prerecorded lines- her welcome statement, affirmative, and negative- as well as the tiny screen showing a small, emoticon face. Many pilots chose to give their ships an elaborate render, but Rosie preferred it this way. It was the first face I gave her, from somewhere out of the scrap heaps, and she refused any offer I made to upgrade. Secretly, I was overjoyed. To me, that was her face. That was her voice. And it was beautiful to see her true self through them.
I brushed my hands across her paneling. Across the switches, the hydraulic controls for the plasma fuel, the steering, the boosts, the comms channels. The thing with biologics was that you were still the pilot. For whatever reason, they hadn't quite gotten to the point where the brains could take over their own piloting. My personal opinion was just that their personalities lacked the ambition to. But whatever reason that was, the best pilots were still the ones that knew both their ship, and the ship's brain. And me and Rosie? We knew each other well.
As my fingers touched the brushed aluminum controls, rimmed with chitinous layers rooting them into the ship, I could feel the walls around me holding their invisible breath. "Do you know what we're doing today, Rosie?"
Her tiny panel flickered on. ...?
"We got a scrap run."
^_^
:)
^_^
Her panel flicked between various expressions of excitement. My finger quivered on the main power, holding for a moment before flicking it on. The primary electronics of the ship hummed to life, and what Rosie controlled pulsed with it. My hands moved across the main functional panels- main hydraulic plasma valve, exhaust ports open, and finally, flicking the switch the start the plasma burner.
My hands gripped the steering. The hanger's airlock doors opened in front of me. My neck length hair started to float as the station's gravity shut off. I hit the switch to unlatch from the supports above. For a moment, we hang there. The dull crackle of the idling plasma burner is the only sound that resonates through Rosie's hull.
Go time.
I punch the boost.
277 notes · View notes
hi-sierra · 10 months ago
Text
Biologics, chapter 0.5
Hello, hello! I finally have added a significant amount to my story, Biologics, resulting in a total of ~4400 words. Not a whole ton, I know, but unfortunately life gets to ya. It isn't quite where I want it to be to consider a proper chapter one, but I feel like there's enough written for me to post. General warning that this is intended to heavily lean into the theme of "eroticism of the machine", so if that doesn't appeal to you, you've been warned. It does, however, have many general sci fi worldbuilding elements, so I hope it has a somewhat broad appeal!
So yes, if you already read the first snippet, that's going to be mostly a one to one repeat with some grammatical adjustments. Feel free to scroll down until you get to the new stuff. Flow-wise, there just wasn't a good place to break between the two sections.
Look at me rambling. And I wonder why I can't get any of this stuff done. Anyways, here it is!
Biologics
Pappy always said that manufacturing biological transportation was nothing knew. I mean, shit, humanity's been breeding horses for how long? To him, not much was novel about what was going on in the shipyards way out by Neptune when I was a kid.
But Pappy didn't know a lot of things. And he certainly didn't meet Roseanna.
The Federation Navy had experimented with Biologics for decades. The idea was to create self regenerating ships- organic matter that interfaced with the hull, moving new titanium plates and patches into place down to microscopic precision. If you had a living, growing mass interfacing with steel, a ship didn't have to head all the way back to the yards to patch up after every dogfight.
The first generation... worked. With a full time crew, that is. Full time people on deck jabbin the rigid, chitonous matrix full of growth hormones to get them to set just right. Full time onboard bioengineers to compute what signaling cocktail ya need to hit 'em with to get it to grow back right. Skilled onboard technicians to shave back the chitin when it tried to overgrow the titanium, and slap some new cells in to seed the process in heavily damaged areas. Less input material, less time in the yards, but far more manpower. Great for a Federation cruiser on deep space peacekeeping missions. Far too complex for small craft. Right?
Until some bastard put brains in 'em.
Well. A lotta suits would say that they weren't brains. They were a diffuse network of sensory neurons and ganglia, living inside the body of the ship, integrating signals from a skin of alloyed metal and fibrous protein, calculating power draw too and from various components, integrated with the mechanical and electrical components of the ship to precisely manage the "wound healing" process of the vessel. And of course, it just so happened that one of those ganglia was larger and more complex than the rest of them, and it just so happened that the computer interfaces with this ganglia exhibit complex, thinking behaviors on the level of human cognition, and it just so happens that most pilots and navigators reported them developing their own personalities.....
But of course, the Navy didn't want anyone to have some kind of pesky empathy in the way of their operations. And they certainly didn't want anyone side eyeing the rate at which they disposed of the damn things, just to let them suffer and rot. So as far as the official record was concerned, they weren't brains. But I knew different.
Like most people in the belt, I found Rosie on an... unsponsored field trip to the Neptune scrap yards. She wasn't a ship then. She wasn't much of anything. Not much more than a vat with the central ganglia and just barely enough of the stem cells needed to regrow a network. But I took her all the same. Brains were valuable. Few pilots outside the Navy had them back then. Nowadays, a black market for "brain seeds", a cocktail of neuronal stem cells and enough structural stem cells to grow your own into the chassis of your ship, was thriving. The Navy was pumpin' em out, and leaving them to die. It was cruel. Sometimes, being scavenged and resold was a kinder fate. But more often, some nasty piece of work would pick them up eventually, and treat them like just another goddamn ship. They may be vehicles, but they're a livin' being too.
I digress. I'd never do that to Roseanna. I make sure she gets proper care. And for a good, proper, working ship? That includes some good, proper work.
The asteroid we were docked in was one of my usuals- good bars, nice temp quarters, nice views of the rock's orbiting twin, and a spacious hanger for Rosie to rest in. The chassis I had imprinted Roseanna to was a 40-meter light skipper, with some adjustments for handling deep space trips, as well as some... personal touches. It was pretty much the smallest thing you could actually use to live in and work for long periods of time, but it got the job done. The angular design made the entire ship look like a wedge, or the blade of a bulky dagger. It didn't hurt that each bottom edge was fortified with a sharpened titanium blade, turning the entire sides of the ship into axe-like rams.
Those would probably come in handy today.
I approached Roseanna on the catwalk above her, marveling her alloyed scales. I could almost see her shudder in anticipation as my footsteps vibrated through the air above her. I took the steps down, and hit the trigger to open her top hatch.
When the news got out of the Navy scuffling with a rebelling mining station, an electric air raced across the station. Some went about their day as normal. Some resigned themselves to picking at the leftovers after the dust had settled. And some, like me, knew that they could get the finest pickings.
I slipped into the pilot's seat like it was an old boot.
"Welcome, Captain Victoria."
Rosie could talk, but more often than not, she chose not to. But she understood me just fine. Most of our communication took place using her three prerecorded lines- her welcome statement, affirmative, and negative- as well as a tiny screen showing a small, emoticon face. Many pilots chose to give their ships an elaborate render, but Rosie preferred it this way. It was the first face I gave her, from somewhere out of the scrap heaps, and she refused any offer I made to upgrade. Hell, she even had a hi-res screen for external cameras and comms, but she refused to interface directly with it. Secretly, I was overjoyed. To me, the little pixelated screen was her face. That was her voice. And it was beautiful to see her true self through them.
I brushed my hands across her paneling. Across the switches, the hydraulic controls for the plasma fuel, the steering, the boosts, the comms channels. The thing with Biologics was that you were still the pilot. For whatever reason, they hadn't quite gotten to the point where the brains could take over their own piloting. My personal opinion was just that their personalities lacked the ambition to. Cuz they certainly could take over some ships functions directly, and had the skill to do complex mechanical and electrical tasks. The Navy never let 'em drive, though, and most pilots didn't even know they could give them the ability to control any of the ships functions directly. But with a little help, a little bit of solid engineering, and a pilot that knew their ship... well, you could do a lot. And me and Rosie? We knew each other well. Over the years, I'd added some nice things for her, and she loved using them to help me out.
As my fingers touched the brushed aluminum controls, rimmed with chitinous layers affixing them to the ship, I could feel the walls around me holding their invisible breath. "Do you know what we're doing today, Rosie?"
Her tiny panel flickered on.
[...?]
"We got a scrap run."
[ ^_^]
[ :) ]
[ ^_^ ]
Her panel flicked between various expressions of excitement. My finger quivered on the main power, holding for a moment before flicking it on. The primary electronics of the ship hummed to life, and the parts Rosie controlled pulsed with it. My hands moved across the main functional panels- main hydraulic plasma valve, exhaust ports open, and finally, flicking the switch the start the plasma burner.
My hands gripped the steering. The hanger's airlock doors opened in front of me. My neck length hair started to float as the station's gravity shut off. I hit the switch to unlatch from the supports above. For a moment, we hang there. The dull crackle of the idling plasma burner is the only sound that resonates through Rosie's hull.
Go time. I punch the boost.
The station shakes. Rosie was never a subtle one.
The mechanics are deafened.
The crowd of spectators are deafened.
The other pilots in the hanger are deafened.
But me? The vibrations of Rosie's hull shuddering under me was the sweetest symphony my ears ever had the pleasure of hearing. As we shot out of that hanger, I found myself involuntarily humming a high note, harmonizing with the sweet rumble of my baby's acceleration as we shoot out into the inky, black expanse of space. The twin asteroids shot by us as we disappeared, leaving only the faint blue plasma trail from our engines.
My hand is firm on the boost, weathered hands tightly gripping the bar of the accelerator. I remember installing this thing in her- it was an aftermarket adjustment, not included in the usual light skipper chassis. Gently stripping away the back of her chassis, caressing her insides as I rooted the paneling, firmly attaching the tanks and burners on her insides... these hands had taken great pleasure in that. Bested only, of course, by the first time I had felt the thing roar to life.
And what a feeling it was. Rosie's entire chassis, biological and mechanical, shuddering under my grasp. The grip of my calloused hands on the boost controls, tight and sweaty around the ridged grip of the horizontal bar. The noises she made, as if to shout in glee and wild abandon at being unchained and let loose into the eternal field of space, as she was made to do. The gentle touch of her skin on my back, my body pressed in contact with the small fraction of hers that was my seat. I glanced down at her face panel.
[ :| ]
[ :D ]
[ :| ]
[ :D ]
[ :| ]
[ :D ]
[ :| ]
[ :D ]
My humming gave way to a chuckle, and then a wholehearted, exhilarated laugh. Someone was enjoying herself. The flickering faces on her panel reminded me of the happily panting station dogs back on Mars.
But as much as I would like this to just be a joyride, I had promised Rosie a scrap run. And the pickings were looking good. I glanced down at the nav. I was intentionally headed at a slightly indirect angle- Rosie's boost was her main attractive feature (both as a ship, and as a working partner), and the extra leeway I had in travel time let me strategize a bit more. I doubted we would be the first people there, but I figured we could get in before the main rush. The only trouble was darting in and grabbing something right from under the noses of the first locusts. The scrap field in question included a disabled heavy mining freighter, a goliath of the ship larger than some of the asteroids it made supply runs between. I assumed that most other scavengers would be approaching directly from our station, and the other stations in its proximity. With Rosie's boost, we could overshoot, hook around, and put the freighter in between us and the guns of the more violent craft. Rosie has no long range weapons of any kind- not only would they slow down her miraculous speed, but she didn't like them. I tried installing a small plasma cannon once, and she expressed immense distaste. Maybe they were too brutish for her, or maybe she didn't like the way they felt inside her, burdening her with pressure from the inside that didn't befit the delicate touches I usually graced her with. Rosie loved speed, precision, elegance, and stealth above all else. It's just the kind of ship she was.
That's not to say she was a pacifist, or defenseless. Quite the contrary. She just prefers a more... personal touch.
The navicom beeped at me. We'd reached the point where we needed to make that hook. My bare feet gently swept across the titanium flooring to the steering pedals. My right hand delicately gripped the steering joystick, while my left eased its grip on the boost accelerator.
"Ready for this, darling?"
[ >:) ]
I slammed the steering to the left, and Rosie gleefully complied. The wide bank of the turn as we rotated and soared through the sea of stars twisted my body in its inertia, compressing me further into her. As the angle straightened out to the proper heading, I punched the boost again, and Rosie roared forward.
Slowly, our target came into sight. Damn. This thing had taken some serious damage. Mining freighters typically weren't heavily armored- their only job was to get material from point A to B- but this one had clearly been through some serious modifications. Modifications that now lay in ruin. Titanium plating was scattered in a field around the core of the freighter. I couldn't quite tell what was stuff left behind by the battle, and what was the result of shoddy craftmanship- but it didn't matter. What did matter was that the entire thing had been split almost in half, and the scattered cargo that was leaking out. Cargo that most likely included half the weapon supplies of this little rebel faction. Would fetch a pretty penny, to the right buyer. And hell, if it was just gonna sit here unclaimed...
Ah shit. It wasn't gonna sit here unclaimed. Despite my best efforts, it looks like we weren't the first ones here. A larger scavenger gang had already arrived, and it looks like it was one of the ones I knew- Augustus and his lot. Most likely, they'd be after the weapons intact, one more thing to use to shakedown the scattered independent stations I always flitted between. He would not be happy to see me n Rosie here. What he called his "fleet" was a single, mid-sized carrier ship, about half the size of the freighter we were looting, and the dozen or so scout fighters and strip mining crafts he had looted from the Navy and various corps, and one Biologic that he called his. I respect that part, to be honest. What I don't respect is him immediately turning around and using that charge every goddamn station his ever-increasing "protection fees". Not to mention my personal disdain for the way he treated his ship. Didn't even give her a damn name. I digress. But any chance to loot something from under that slimebag's nose was a win in my book. I knew he wasn't gonna make it easy, though.
Welp. That's what our positioning was for. The side facing us was the main starboard face, and like the rest of the ship, it was peppered in small holes and gashes. Seems like the main damage had happened from the other side, and a few cables and scaffolds on the starboard just barely kept the two rear cargo compartments clinging to the front.
"Alright Rosie, time to creep it in slow. Be quiet, now, don't want them picking up a plasma surge"
[ :| ]
Ha. That was her "my lips are sealed" face. She's having fun with this already.
I cut the booster, coasting closer and closer to the bust open vessel. I eased the reverse thrusters ever so slightly, my fingers gently stroking the dual brake levers, lightly teasing at them to wait until we were as close as I thought we could be without attracted attention.......... before slamming both sides back towards me. For just one, crucial moment.
The goal here was to approximately match the speed and trajectory of a floating piece of titanium plating. Rosie's frontal blades were essentially that, anyways, so all they would see is a somewhat more angular piece of rubble. Hopefully they hadn't seen that same piece of rubble screaming out of travel speed, but I was cautious enough with my distances that I didn't think that was a problem. And they hadn't seen me yet. Once we were close enough to the freighter itself, we were blocked from their raw sightline, and Rosie was running quiet enough to not tip off any of their energy sensors.
But there was still no guarantee. Rosie, however, had no shortage of tricks. Something that she and I had developed together was a nice little bit of snooping. Well cared for and well trained, a Biologic brain had the problem solving of a human, and the computational power of a machine. But them together, and you've got a perfect decoder. And I happened to know that Augustus used an encrypted local frequency to keep his
"Alright Rosie, thinkin you can eavesdrop a little?"
Affirmative.
[...]
[...]
[...]
[...]
[...]
[...]
[..!]
:D
My comms crackled to life. "...7 heavy cannons in center-front portside bay, 3 replacement fighter hatchs...."
The comms crackled back and forth, with each pilot giving updates to what they were finding in their own little segment that they were slicing apart. Occasionally, I saw Augustus or the fighters flick between the slicing ships, overseeing their progress on the port bays. Good. Let them focus on the other side for now. Slowly, the fleet was overshadowed by the freighter. We made it. I released my breath- shit, didn't realize I was holding it- and took a better look at what we were dealing with. It looked as if the scattered debris field had mostly been the remnants of the hull, as well as light weapons for small craft and even infantry. They would fetch some small change, sure, but Rosie's cargo capacity was small. Packing efficiency was the name of the game. I saw the gash that it had all been flooding out of on this side- the entire freighter was covered in them- and peered inside. And ho boy, did my heart flutter.
Heavy cannons.
Jump-graded travel boosters.
Raw, precious metals.
And, hidden in the back corner, seemingly bolted into the wall.... a brain.
We'd hit jackpot, and potentially rescued a poor ship from abandonment, or worse.
"Alright Rosie. Time to get to work."
Affirmative.
And here was another lil something that made Rosie special- her manipulation arms . She always preferred that delicate touch, and wanted to interact with the world in a tactile, real way. So we worked on it. Together. I was tired of taking spacewalks to grab small pieces of scrap, or using the entire goddamn cargo bay on a piece that only had a tiny core, or scraps of precious metals inside. So we needed something that could pluck apart our finds. Do some light disassembly in the field, extract what was valuable, and load it in with the most packing efficiency possible. So I gave her arms- snake like appendages, coiled up in her cargo bay, with thousands of points of articulation. At first, I tried to make some kind of control system that I could use from the cockpit. But Rosie had a different idea. At her urged, I jacked them directly into the same sensory and motor systems that let her grip onto, position, and repair her hull. And by god, it worked.
When I showed her off the first time, no one had ever seen anything like it. Because there was nothing like it. A ship taking real mechanical control, over something so precise and delicate, was something that only a deeply intelligent, deeply skilled ship, with complex decision making and tactile movement could do.
And I was goddamn proud of her.
Every time she deployed them, I watched awe. Rosie gave a face of determination, and sinuous, metallic, tentacle-like appendages slid out in a bundle from the cargo bay opening on her underside. Each one was headed off by a different attachment- a precision laser cutter, a simple three-pointed grabbing claw, a drill, a tiny buzzsaw, camera that let me see what was going on, and more. Each one could be swapped out, depending on the task at hand. With eight of them slithering out from her cargo bay, though, there was usually something for everything. They extended out as a single bouquet, down through the hole of the cargo compartment, and split apart once inside. Each arm got to work.
Her observation monitor flickered on, giving me a view from the camera arm. I would've liked to get the brain out first, but two heavy cannons and a booster blocking the way anyways. We'd cut through that, picking off the energy cores and precious metals in the circuits as we go, and work our way towards the back. Rosie seemed to like the plan as well. My only job was to watch the comms, and watch the sensors.
I watched the camera as the petite tools of the arms excised and picked apart the titanium shell of the first heavy cannon. Her tools- the delicate 'fingers' of her arms- picked, pulled, tugged, and gently gripped every necessary notch, every joined titanium plate that needed to be undone, ever scrap of precious material. Firm, yet precise. Strong, yet never breaking or mishandling a single piece of cargo. As Rosie worked, my eyes darted across the energy sensors. I could see blips firing off as the ships on the other side of the freighter as the slicing ships worked and flitted between their stations from the other side. The comms crackled with their reports to Augustus- they seemed to be moving back and forth to the main carrier to drop off their hauls. It seemed like they had a lot to go through- we'd have plenty of time.
On the camera view, I could see a grabbing claw retracting back through the cargo bay. The first cannon had the back section cleanly excised from the massive barrel and chassis, leaving a path for the tools to get to the booster. The precious energy cell was sliding its way back into Rosie's cargo bay. God damn. She was quick with that. The laser cutter and saw were already making short work of the booster, too. We'd get to the brain in no time.
The chatter on the other line continued. We were still safe, but Augustus' crew had made more progress than I had hoped. Once the slicers had picked apart the port, they'd loop around to the starboard. We had to grab what we could as fast as we can- but I knew neither me or Rosie was gonna leave without that brain. Rosie gracefully sliced the fuel cell and ignition from the plasma burner, leaving the bracketing and vents behind. The second heavy cannon was soon to follow. Each cut through each piece had left a winding path towards the back of the chamber, allowing a physical path to what I had seen just barely poking through: a container for a genuine ship's brain. Rosie slid her camera arm in for a closer look.
The brain was bolted into the chassis of the ship, as well as some containers of growth factor. Seemed like the intent was to grow her in to this freighter. That was certainly an ambitious task, but if they knew what they were doing, it would be well worth it. A self-repairing, intelligent hauler as large as this one would be the heart and soul of resistance movements everywhere, supplying every backwater mining station or moon that longed to be free. Unfortunately, the brave and principled can still be stupid, and these chucklefucks had no idea what they were doing. Slapped in a random cargo bay, desperately trying to get growth out from there with no proper imprinting guidance... shame. If they'd've found me before running into the Navy, I might've helped them out. But at least now, we could give her a better life. I knew a lot of good, caring pilots that would take loving care of a fine ship like her.
From what I could tell, we were still safe from Augustus. Based on what I was hearing on the comms, each slicer was working on its last cargo hold subsection, and after that, they'd be poking around this side. We had to get this brain and get out.
Tenderly, her claw arm gripped the top of the brain's chamber, as her other fingers started working on the rivets. A saw would bust through part of the titanium bracket holding the chamber down, and when it got too close to the container itself, laser cutters took over, delicately slicing off each affixation point one by one. Rosie worked in a clockwise direction, first working down the three riveting points on the right, sawing off the bottom bracket, and then working up the rivets on the left.
C'mon Rosie. You got this. Just need the top plate....
"Finishing up there, slicer 5T?"
Shit. That was Augustus on the comms.
"Sure thing boss. Just gotta get this load to central. Mind if someone takes a peek on the other side for parasites before I get there?"
Shit.
"Sure thing. Fighter 3A, get your ass in gear and make a full pass of the ship."
An energy spike pinged on my sensor panels as the fighter revved up a booster.
"Gotcha boss. Starting at aft segment."
Shitshitshitshitshitshitshitshitshitshitshit
We still had a sliver of time before we were seen. They'd wanna get a good pass everywhere- there were ships far stealthier than us out there. But it was minutes at most. We had to finish up.
"Rosie, how're we doing there? You done?"
Negative.
[ ;( ]
"Fuck. Rosie, we gotta get outta here."
Affirmative. Affirmative. Affirmative. Affirmative.
Rosie-speak for "I know, I know, I know"
My eyes were fixed to the scanner and my cockpit windows for a visual, but I spared one moment to check Rosie's cam. She was finishing sawing through the top bracket. Just a little more....
"Aft clear, moving to starboard cargo bays."
The brain snapped off of the hull, and Rosie's claws were zipping it back to her cargo bay. I revved the engines into standby. The arms tenderly guided it through the path we had cleared, and out through the hole in the hull. We might be able to barely slip away without them knowing.....
I looked up through the cockpit, just as the dinged-up, formerly Navy fighter showed itself from behind a piece of debris. It froze for a moment, and then lined its nose to face me. Cannon ports shifted open, and slowly took aim.
"Well shit, Augustus, you're gonna wanna see this. Get your ass over here, I'm switching to public comms."
I heard slight fuzz as he switched his channel.
"Alright, leech, I'll keep this simple. You have thirty seconds to relinquish your haul before you join the debris."
For a single, cold moment, I swear I made eye contact with him through our cockpits.
92 notes · View notes
nmsc-market-pulse · 6 months ago
Text
The Art of Building Meat: Bioprinting Techniques in Cultured Meat Market Production
Tumblr media
Introduction:
The future of food is taking shape in bioreactors and 3D printers. Cultured Meat Market, also known as clean meat or lab-grown meat, emerges as a revolutionary solution to the environmental and ethical concerns surrounding traditional meat production. This article delves into the fascinating world of bioprinting techniques, a key component in creating complex, delicious cultured meat products.
Download FREE Sample: https://www.nextmsc.com/cultured-meat-market/request-sample
Cultured Meat: A Sustainable Disruption
Traditional meat production carries a significant environmental burden, contributing to deforestation, greenhouse gas emissions, and water pollution. Cultured meat offers a promising alternative, growing meat from animal cells in a controlled environment.
Here's a simplified breakdown of the process:
Cell Collection: A small sample of muscle stem cells is obtained from an animal through a minimally invasive procedure.
Cell Culture: These cells are multiplied in a nutrient-rich medium within bioreactors.
Differentiation and Maturation: Controlled growth factors in the medium stimulate the cells to differentiate and mature into muscle tissue.
Bioprinting: This innovative step allows for precise arrangement of the cells to create the desired structure and texture of meat.
Maturation and Processing: The bioprinted meat undergoes further maturation and processing to achieve the final product.
Inquire before buying: https://www.nextmsc.com/cultured-meat-market/inquire-before-buying
Bioprinting: Engineering the Future of Meat
Bioprinting takes cultured meat production to a whole new level. Here's how it works:
Digital Design: A computer-aided design (CAD) model is created to define the desired structure of the meat product, such as a steak or a burger patty.
Bioink Preparation: A biocompatible material, often containing a mixture of cells, nutrients, and scaffolding materials, is prepared for printing.
3D Printing Process: The bioink is loaded into a bioprinter, which uses computer-controlled mechanisms to deposit the bioink layer-by-layer, replicating the designed structure.
Cell Culture and Maturation: Once printed, the bioprinted cells are allowed to mature and grow within a bioreactor, mimicking the natural development of muscle tissue.
Benefits of Bioprinting for Cultured Meat
Bioprinting offers several advantages in the production of cultured meat:
Complex Structures: Bioprinting allows for the creation of complex, multi-cellular structures that mimic the texture and marbling of traditional meat cuts. This is difficult to achieve with traditional culturing techniques.
Fat Distribution: Bioprinting enables precise control over fat distribution within the meat, allowing for the creation of leaner or marbled cuts as desired.
Customization: Bioprinting paves the way for personalized meat products tailored to specific dietary needs or preferences.
Vascularization: Bioprinting can potentially be used to create vascular networks within the cultured meat, promoting cell growth and mimicking the natural delivery of nutrients and oxygen.
Types of Bioprinting Techniques for Cultured Meat
Several bioprinting techniques are being explored for cultured meat production, each with its own advantages and limitations:
Extrusion-based Bioprinting: This common technique uses a pressurized system to deposit bioink through a nozzle, creating a filamentous structure. It's suitable for high-viscosity bioinks but may have limitations in resolution.
Inkjet Bioprinting: Similar to an inkjet printer, this technique uses a jet of bioink droplets to create a patterned structure. It offers high resolution but may be limited in the types of bioinks it can handle.
Stereolithography (SLA): This light-based technique uses a laser to solidify layers of bioink resin, building the desired structure layer-by-layer. It offers high accuracy but may require specialized biomaterials.
Challenges and Opportunities in Bioprinting for Cultured Meat
While bioprinting holds immense promise, some challenges need to be addressed:
Cost Reduction: Bioprinting equipment and bioink development are currently expensive, requiring cost optimization for large-scale production.
Bioink Development: Creating bioinks that are biocompatible, support cell growth, and allow for precise printing remains an ongoing area of research.
Scalability: Scaling up bioprinting processes to meet commercial production demands requires further advancements in technology and infrastructure.
However, these challenges offer exciting opportunities for innovation:
Advancements in Biomaterial Science: Development of affordable and efficient bioinks specifically tailored for cultured meat is crucial for large-scale adoption.
Bioprinter Design and Optimization: Improvements in bioprinter design can increase printing speed, resolution, and efficiency for cost-effective production.
Collaboration Between Researchers and Industry: Collaboration can accelerate research and development efforts to overcome technical hurdles and improve bioprinting techniques.
Conclusion: A Bite of the Future - Bioprinted Cultured Meat
Bioprinting represents a transformative leap in the world of cultured meat. This technology holds the potential to create delicious, sustainable, and ethical meat alternatives, replicating the textures and flavors we crave.
While challenges remain in terms of cost reduction, bioink development, and scalability, ongoing research and collaboration are paving the way for advancements. Bioprinting paves the way for a future where:
Cultured meat becomes readily available and affordable for consumers.
Bioprinting techniques can create a wider variety of meat products, from steaks to sausages.
Consumers can enjoy the taste and texture of meat while making a positive environmental impact.
2 notes · View notes
ataleoftwopitties · 1 year ago
Text
Tumblr media
These past few years, I have become a huge advocate for feeding fresh food to dogs to enhance their lives. However, you don't exactly have to transition your dog to a 100% fresh food diet in order to gain the benefits of fresh food.
Simply adding fresh food to your dog's kibble can go a long way in improving their nutrition and overall health. For instance, one study done a group of dogs in 2005 revealed that feeding vegetables just three times a week had significantly lowered their risk of developing cancer, compared to dogs who were only fed kibble.
Asian markets, in particular, have some very beneficial fresh food items that aren't typically found at your local grocery store. These food items, however, are not intended to fully replace your dog's food. Remember - too much of something good can be bad for you.
Instead, they should be offered in moderation as treats, or just small amounts topped over an already complete and balance meal. As a general rule of thumb, treats/toppers should never make more than 10% of your dog's overall diet.
Tumblr media
Bok choy (Chinese cabbage) is full of essential vitamins and minerals needed to support a dog’s eyesight, cardiac function, digestion, bone strength, and immunity. Sulfurophane - a compound found in bok choy and other cruciferous vegetables - has been linked to inhibiting cancer cell growth, lowering blood pressure, and activating the nuclear factor Nrf2 which prevents the development of diabetes and its complications. Bok choy’s low calorie, high fiber content also make it a good option for a snack/food topper for dogs who need to control their weight. 
Preparation: Lightly steam or boil for better nutrient absorption. Cooking will also help neutralize the enzyme (myrosinase) that can decrease thyroid function. You should also chop/trim their long leaves to avoid choking hazards.
Tumblr media
Goji berries (wolfberries) are rich in amino acids, carotenoids which support healthy vision, and polyphenols that have anti-inflammatory, anti-tumor, and cardio-protective properties. Studies on goji berry supplementation in animals have shown that it has the potential to help lower cholesterol, protect the liver by increasing hepatic antioxidant activity, as well as enhance metabolic homeostasis and prevent diabetes-induced renal inflammation. 
Preparation: Remove stems if still attached and cut/mash berries. If dried, soak in water until softened to avoid passing straight through the GI tract and losing the benefits of its nutrients. 
Tumblr media
Offal refers to the internal organs and variety meats of animals that can be consumed as food (i.e. lung, heart, kidney, liver, gizzard, head, feet, etc.) The word 'offal' literally translates to "fall off", and thus, whatever falls off the skeleton during the butchering process. Offal is densely loaded with essential vitamins, minerals, proteins, and fats - so small amounts go a long way. Pet owners who use these as ingredients as part of a complete and balanced recipe should keep in mind that each organ is unique in its nutrient profile - dependent on the animal it is sourced from and how it is raised. For example, grass-fed beef may contain less fat yet more vitamin A and E than grain-fed beef, and beef liver has significantly more vitamin A and copper than chicken liver.
Preparation: Boil in water or low-sodium broth. May also be baked or dehydrated into jerky treats.
Tumblr media
Oyster mushrooms are a good source of protein and fiber, and vitamins that support healthy digestion. They can help to increase satiety and maintain healthy body weight. Oyster mushrooms are also full of pantothenic acid which help to maintain cognitive function and healthy skin/coat. Beta-glucans derived from oyster mushrooms have also been shown to reduce inflammation and strengthen immunity. 
Preparation: Lightly sauté or boil in water or low-sodium broth. Raw or dried mushrooms can be difficult for dogs to digest. 
Tumblr media
Purple sweet potato (Ube or Okinawan sweet potato) are typically found in grocery stores more commonly during the fall/winter seasons. They contain more antioxidants than regular sweet potatoes due to the anthocyanins that cause their violet hue. While all potato varieties may impact blood sugar levels because of their high carbohydrate content, purple potatoes may exert less of an effect because of their high polyphenol content that decreases the absorption of starches in the intestines. In addition, they have been linked to improving blood pressure, likely due to their high potassium content. 
Preparation: Peel skin and bake until soft for better digestibility and to prevent intestinal blockages. May be boiled and drained to reduce oxalate intake for dogs with a history of bladder stones, or prone to urinary issues. 
Tumblr media
Quail eggs are small, yet packed with protein and essential fatty acids, and have a higher ratio of iron, riboflavin, and vitamin b12 than chicken eggs. It is even safe and can be beneficial to feed them with the shells included for added calcium. Quail eggs have been linked to improving bone growth/healing, reducing liver damage, and increasing energy levels. While some studies have shown evidence of quail eggs treating allergies in humans and mice, they may be less likely to trigger reactions than chicken eggs in dogs who have poultry sensitivities.
Preparation: Wash thoroughly, and handle gently as they are more fragile due to their tiny size. Cooking methods are similar to that of chicken eggs, yet require less time. 
Tumblr media
Sardines contain all the amino acids your dog needs for optimal health, making it a "complete protein". They are also notorious for being rich in omegas and coenzyme q-10, which help support heart and brain health. What sets sardines apart from other fish, too, is that they are smaller and more short-lived species than larger predator fish and may have less of a risk for mercury poisoning. Because they are so small and have soft bones, you can feed them whole to your pets.
Preparation: Bake or dehydrate. If already purchased as dried, be sure to make sure there is no added salt or seasonings. If canned, preferably those stored in water only.
Tumblr media
Sushi rice (Japanese sticky rice) has a high proportion of starch and moisture, giving it a stickier texture when cooked. Sushi rice has virtually zero fat, yet still provides a desirable balance of nutrients while remaining gentle on a dog’s digestive tract. Its higher iron content than regular rice supports healthy blood circulation and can provide more energy to dogs who are recovering from illness. Cooling/refrigerating the rice before serving also enables more retrogradation of prebiotic fiber, helping to lower glycemic responses and maximize intestinal function.
Preparation: Rinse thoroughly and soak in water (with 1tbsp apple cider vinegar - optional) before cooking. If you don’t have a rice cooker or instant pot, boil on the stove until the water is completely absorbed. May be cooked with bone broth for added flavor. You can also use small amounts of beet root powder, turmeric, or blue spirulina to add color and nutrients.
9 notes · View notes
global-research-report · 17 hours ago
Text
Amniotic Membrane Market Expansion: Key Applications and Regional Market Insights
The global amniotic membrane market size is expected to reach USD 8.50 billion by 2030, registering a CAGR of 13.1% from 2024 to 2030, according to a new report by Grand View Research, Inc. Global rise in the number of trauma and burn cases, surgeries, and increasing cognizance regarding various benefits offered by amniotic membrane-based products are factors increasing their demand. Amniotic membrane has pain-reducing properties, which may lead to the increased adoption of these tissue-based products in surgical wounds and ophthalmology.
Also, rising expenditure in R&D in the field of stem cells and regenerative medicine and the rising number of surgeries being performed are some of the key factors anticipated to augment the market growth. The global market is expected to gain potential owing to a wide range of product applications in ophthalmology, skin, brain, and head & neck, genitourinary tract, as well as other surgical procedures. In addition, the rise in amniotic membrane-based transplantations across the globe is predicted to fuel the overall market growth. Moreover, rising awareness regarding the product benefits among healthcare professionals as well as individuals is estimated to boost the demand over the forecast years.
However, the dearth of skilled professionals is expected to impede market growth. Amniotic membrane-based products are most commonly used in the treatment of various areas, such as venous, pressure, and diabetic foot ulcers, ophthalmology, surgeries, and also in the management of chronic wounds. Moreover, with increasing research in the field of stem cell research and regenerative medicine, various research and academic institutes are engaged in a study to facilitate the usage of these products for other applications.
Amniotic Membrane Market Report Highlights
The cryopreserved amniotic membrane segment held the largest revenue share of more than 50.0% in 2023 owing to the high effectivity and preservation of histological and biological properties in these membranes
The surgical wounds segment accounted for the maximum revenue share of 36.7% in 2023 due to the increased volume of surgical procedures and wide product usage in surgical applications
Specialty clinics are anticipated to gain the highest market share by 2030 due to the increasing number of cosmetic and reconstructive surgeries being performed globally
North America dominated the market in 2023 with a revenue share of 31.7% owing to the existence of a large number of major players and the high incidence of chronic and infectious diseases
Asia Pacific is expected to grow at the fastest CAGR of 14.5% during the forecast period due to the high population coupled with the rising chronic diseases and burn incidences
Amniotic Membrane Market Segmentation
Grand View Research has segmented the global amniotic membrane market on the basis of product, application, end-use, and region:
Amniotic Membrane Product Outlook (Revenue, USD Million, 2018 - 2030)
Cryopreserved Amniotic Membrane
Dehydrated Amniotic Membrane
Amniotic Membrane Application Outlook (Revenue, USD Million, 2018 - 2030)
Surgical Wounds
Ophthalmology
Others
Amniotic Membrane End Use Outlook (Revenue, USD Million, 2018 - 2030)
Hospitals
Ambulatory Surgical Centers
Specialty Clinics
Research Institutes and Academic Institutes
Amniotic Membrane Regional Outlook (Revenue, USD Million, 2018 - 2030)
North America
US
Canada
Mexico
Europe
UK
Germany
France
Italy
Spain
Denmark
Sweden
Norway
Asia Pacific
Japan
China
India
Australia
South Korea
Thailand
Latin America
Brazil
Argentina
Middle East & Africa
South Africa
Saudi Arabia
UAE
Kuwait
List Of Key Players
Alliqua BioMedical Inc.
Amnio Technology, LLC
Applied Biologics LLC
Human Regenerative Technologies, LLC
DermaSciences
Katena Products, Inc.
MiMedx Group Inc.
Skye Biologics, Inc.
Amniox Medical Inc.
Organogensis, Inc.
Order a free sample PDF of the Amniotic Membrane Market Intelligence Study, published by Grand View Research.
0 notes