#Additive manufacturing
Explore tagged Tumblr posts
Text
Inspired by the architecture of human bone's tough outer layer, engineers at Princeton have developed a cement-based material that is 5.6 times more damage-resistant than standard counterparts. The bio-inspired design allows the material to resist cracking and avoid sudden failure, unlike conventional, brittle cement-based counterparts. In a Sept. 10, article in the journal Advanced Materials, the research team led by Reza Moini, an assistant professor of civil and environmental engineering, and Shashank Gupta, a third-year Ph.D. candidate, demonstrate that cement paste deployed with a tube-like architecture can significantly increase resistance to crack propagation and improve the ability to deform without sudden failure. "One of the challenges in engineering brittle construction materials is that they fail in an abrupt, catastrophic fashion," Gupta said.
Read more.
24 notes · View notes
solarpunkbusiness · 2 months ago
Text
Tumblr media
Swiss researchers develop robotic additive manufacturing method that uses earth-based materials—and not cement
Researchers at ETH Zurich, a university in Switzerland, have developed a new robotic additive manufacturing method to help make the construction industry more sustainable. Unlike concrete 3D printing, the process does not require cement.
According to a press statement from ETH Zurich, the robotic printing process, called impact printing, uses cheap, abundant, and low-carbon earth-based materials such as clay or excavated earth. Currently, the robotic additive manufacturing method uses a mix of excavated materials, silt, and clay. Most of the custom material is common waste product sourced locally from Eberhard Unternehmungen, a Swiss construction company. In the future, the process could use other materials.
With ETH Zurich’s method, a robot deposits material from above, gradually building a wall. On impact, the pieces of material bond together, with minimal additives. Whereas concrete 3D printing creates layers, ETH Zurich’s method extrudes and drops the material one bit at a time at velocities of up to 10 meters per second. The fast speed allows the material to bond quickly.
youtube
ETH Zurich’s process can build full-scale, freeform structures, including one- or two-story walls and columns. The printing tool has been used to build structures as tall as almost 10 feet. The process results in walls with a bumpy texture, but robotic surface finishing methods can achieve a smoother finish.
The custom printing tool can be integrated with multiple robotic platforms. As a result, the tool can build walls in both offsite facilities and onsite construction projects. At ETH Zurich’s Robotic Fabrication Laboratory, the tool has been integrated with a high-payload gantry system. The hardware can be mounted on an autonomous legged excavator to build walls on sites with variable terrain.
ETH Zurich says it aims to increase the cost competitiveness of sustainable building materials through efficient and automated production.
34 notes · View notes
architecturalthesis · 7 months ago
Text
Tumblr media
scene setup
7 notes · View notes
materiallugy · 3 months ago
Text
Additive manufacturing for aerospace part.
Know more about additive manufacturing
4 notes · View notes
Text
Tumblr media
2 notes · View notes
3dprinterchat · 1 year ago
Text
3D printing with Ceramic slurries
Did you know that 3D printing is becoming more accessible and affordable? While printing in various plastics or resin is relatively easy and inexpensive, printing in other materials can be more complex. There are printers available for metals and even concrete, but they tend to be much more expensive compared to their plastic counterparts. However, ceramic, as a material for 3D printing, has…
Tumblr media
View On WordPress
12 notes · View notes
jcmarchi · 11 months ago
Text
Scientists 3D Print Self-Heating Microfluidic Devices - Technology Org
New Post has been published on https://thedigitalinsider.com/scientists-3d-print-self-heating-microfluidic-devices-technology-org/
Scientists 3D Print Self-Heating Microfluidic Devices - Technology Org
The one-step fabrication process rapidly produces miniature chemical reactors that could be used to detect diseases or analyze substances.
MIT researchers have used 3D printing to produce self-heating microfluidic devices, demonstrating a technique which could someday be used to rapidly create cheap, yet accurate, tools to detect a host of diseases.
MIT researchers developed a fabrication process to produce self-heating microfluidic devices in one step using a multi-material 3D printer. Pictured is an example of one of the devices. Illustration by the researchers / MIT
Microfluidics, miniaturized machines that manipulate fluids and facilitate chemical reactions, can be used to detect disease in tiny samples of blood or fluids. At-home test kits for Covid-19, for example, incorporate a simple type of microfluidic.
But many microfluidic applications require chemical reactions that must be performed at specific temperatures.
These more complex microfluidic devices, which are typically manufactured in a clean room, are outfitted with heating elements made from gold or platinum using a complicated and expensive fabrication process that is difficult to scale up.
Instead, the MIT team used multimaterial 3D printing to create self-heating microfluidic devices with built-in heating elements, through a single, inexpensive manufacturing process. They generated devices that can heat fluid to a specific temperature as it flows through microscopic channels inside the tiny machine.
The self-heating microfluidic devices, such as the one shown, can be made rapidly and cheaply in large numbers, and could someday help clinicians in remote parts of the world detect diseases without the need for expensive lab equipment. Credits: Courtesy of the researchers / MIT
Their technique is customizable, so an engineer could create a microfluidic that heats fluid to a certain temperature or given heating profile within a specific area of the device. The low-cost fabrication process requires about $2 of materials to generate a ready-to-use microfluidic.
The process could be especially useful in creating self-heating microfluidics for remote regions of developing countries where clinicians may not have access to the expensive lab equipment required for many diagnostic procedures.
“Clean rooms in particular, where you would usually make these devices, are incredibly expensive to build and to run. But we can make very capable self-heating microfluidic devices using additive manufacturing, and they can be made a lot faster and cheaper than with these traditional methods. This is really a way to democratize this technology,” says Luis Fernando Velásquez-García, a principal scientist in MIT’s Microsystems Technology Laboratories (MTL) and senior author of a paper describing the fabrication technique.
He is joined on the paper by lead author Jorge Cañada Pérez-Sala, an electrical engineering and computer science graduate student. The research will be presented at the PowerMEMS Conference this month.
An insulator becomes conductive
This new fabrication process utilizes a technique called multimaterial extrusion 3D printing, in which several materials can be squirted through the printer’s many nozzles to build a device layer by layer. The process is monolithic, which means the entire device can be produced in one step on the 3D printer, without the need for any post-assembly.
To create self-heating microfluidics, the researchers used two materials — a biodegradable polymer known as polylactic acid (PLA) that is commonly used in 3D printing, and a modified version of PLA.
The modified PLA has mixed copper nanoparticles into the polymer, which converts this insulating material into an electrical conductor, Velásquez-García explains. When electrical current is fed into a resistor composed of this copper-doped PLA, energy is dissipated as heat.
“It is amazing when you think about it because the PLA material is a dielectric, but when you put in these nanoparticle impurities, it completely changes the physical properties. This is something we don’t fully understand yet, but it happens and it is repeatable,” he says.
Using a multimaterial 3D printer, the researchers fabricate a heating resistor from the copper-doped PLA and then print the microfluidic device, with microscopic channels through which fluid can flow, directly on top in one printing step. Because the components are made from the same base material, they have similar printing temperatures and are compatible.
Heat dissipated from the resistor will warm fluid flowing through the channels in the microfluidic.
In addition to the resistor and microfluidic, they use the printer to add a thin, continuous layer of PLA that is sandwiched between them. It is especially challenging to manufacture this layer because it must be thin enough so heat can transfer from the resistor to the microfluidic, but not so thin that fluid could leak into the resistor.
The resulting machine is about the size of a U.S. quarter and can be produced in a matter of minutes. Channels about 500 micrometers wide and 400 micrometers tall are threaded through the microfluidic to carry fluid and facilitate chemical reactions.
Importantly, the PLA material is translucent, so fluid in the device remains visible. Many processes rely on visualization or the use of light to infer what is happening during chemical reactions, Velásquez-García explains.
Customizable chemical reactors
The researchers used this one-step manufacturing process to generate a prototype that could heat fluid by 4 degrees Celsius as it flowed between the input and the output. This customizable technique could enable them to make devices which would heat fluids in certain patterns or along specific gradients.
“You can use these two materials to create chemical reactors that do exactly what you want. We can set up a particular heating profile while still having all the capabilities of the microfluidic,” he says.
However, one limitation comes from the fact that PLA can only be heated to about 50 degrees Celsius before it starts to degrade. Many chemical reactions, such as those used for polymerase chain reaction (PCR) tests, require temperatures of 90 degrees or higher. And to precisely control the temperature of the device, researchers would need to integrate a third material that enables temperature sensing.
In addition to tackling these limitations in future work, Velásquez-García wants to print magnets directly into the microfluidic device. These magnets could enable chemical reactions that require particles to be sorted or aligned.
At the same time, he and his colleagues are exploring the use of other materials that could reach higher temperatures. They are also studying PLA to better understand why it becomes conductive when certain impurities are added to the polymer.
“If we can understand the mechanism that is related to the electrical conductivity of PLA, that would greatly enhance the capability of these devices, but it is going to be a lot harder to solve than some other engineering problems,” he adds.
“In Japanese culture, it’s often said that beauty lies in simplicity. This sentiment is echoed by the work of Cañada and Velasquez-Garcia. Their proposed monolithically 3D-printed microfluidic systems embody simplicity and beauty, offering a wide array of potential derivations and applications that we foresee in the future,” says Norihisa Miki, a professor of mechanical engineering at Keio University in Tokyo, who was not involved with this work.
“Being able to directly print microfluidic chips with fluidic channels and electrical features at the same time opens up very exiting applications when processing biological samples, such as to amplify biomarkers or to actuate and mix liquids. Also, due to the fact that PLA degrades over time, one can even think of implantable applications where the chips dissolve and resorb over time,” adds Niclas Roxhed, an associate professor at Sweden’s KTH Royal Institute of Technology, who was not involved with this study.
Written by Adam Zewe
Source: Massachusetts Institute of Technology
You can offer your link to a page which is relevant to the topic of this post.
2 notes · View notes
pampermama · 2 years ago
Text
From 3D Printing to Bioprinting: The Future of Manufacturing
In recent years, the world of manufacturing has experienced significant transformations, with 3D printing and bioprinting technologies emerging as key drivers of change. These advanced manufacturing methods have the potential to revolutionize how products are created, impacting various industries and potentially reshaping the global supply chain. In this article, we will delve into the world of…
Tumblr media
View On WordPress
2 notes · View notes
yuhaitechnology · 2 years ago
Text
We are top manufacturer and supplier of Aluminum workbench/Special worktable series at affordable prices. If you need please.....Visit our site or call on the given numbers.
+91-9711074227,+91-8869833523
Tumblr media
2 notes · View notes
potajoe1 · 2 years ago
Video
tumblr
Fren hat 3D printing timelapse. Will sand and paint later this week.
2 notes · View notes
chimerical-creations · 2 years ago
Text
Tumblr media Tumblr media Tumblr media Tumblr media
3D-printed another guide for vinyl application on some steel coasters. First time it got a HIGHTEMP warning and aborted with only ten minutes left to go in the print. That ended up not being a major deal; the model needed some adjustments anyway. Second time it still didn't fit quite right. Third time so far seems like it'll work.
2 notes · View notes
Text
Tumblr media
Atoms in advanced alloys find preferred neighbors when solidifying
A discovery that uncovered the surprising way atoms arrange themselves and find their preferred neighbors in multi-principal element alloys (MPEA) could enable engineers to "tune" these unique and useful materials for enhanced performance in specific applications ranging from advanced power plants to aerospace technologies, according to the researchers who made the finding. MPEAs represent a novel approach to alloy design, differing significantly from traditional alloys that typically have one or two principal elements. Instead, MPEAs consist of multiple principal elements in nearly equal atomic ratios. This design strategy, first reported in 2004, has shown promise in creating a new class of materials with properties desirable for aerospace, automotive or similar industries, such as being very tough at extreme temperatures.
Read more.
22 notes · View notes
solarpunkbusiness · 1 month ago
Text
Tumblr media
Italian multinational group Legor is now using 3D technology to create jewelry and fashion accessories made from 100% precious metals from recycled sources, making progress toward its goals of enabling a circular economy.
9 notes · View notes
architecturalthesis · 8 months ago
Text
Tumblr media Tumblr media Tumblr media
Some photos from the printing process
9 notes · View notes
consensustr · 2 years ago
Text
Tumblr media Tumblr media
Kadınları Seviyorum. Biliyorum onlarda beni seviyor :)
I like women. I know they love me too :)
5 notes · View notes
captain-safetypants · 2 years ago
Photo
To respond to the comment about the cost to print something that big—they say in the video the materials cost about $45. This is the Thing about 3d printing—for most methods (leaving out the ones that use expensive metals and require electron beams and furnaces and things) the investment is primarily in the printer itself, the software to run it and make the drawings, and the time for someone to become proficient in doing those drawings and operating the printer. The materials are mostly just different kinds of plastic—and plastic is generally pretty cheap. So if we can get grants—government grants, private industry grants, philanthropic grants, nonprofit grants—into the hands of people like this, they can make those investments. And then, instead of having to upcharge to recoup that investment cost, they can make life changing things like custom prosthetics available to ordinary people.
Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media
Watch: This revolutionary technology is changing the world for kids born without limbs 
298K notes · View notes