#tungsten wolfgang
Explore tagged Tumblr posts
Text
LEMONTOBER DAY 4: LEAST FAVORITE LEMON DEMON SONG (MR PORTA-POTTY MAN)
Characters aren’t mine they’re from @ledeecity aka @autisticzaphodbeeblebrox . I love making normal things for my friends <3
Also I think I kinda derailed from the actual prompt. Oh well!
#cloudy arts it out#ledee city#mr. porta potty man#tungsten wolfgang#bw stalker#lemontober#lemontober 2024#mr guys yaoi making a comeback
6 notes
·
View notes
Text
Why does the periodic table have so many banger names. Antimony (almost like a mashup between Timothy and Anthony), Tungsten (that one just fucks majorly) and one of my favorites Wolfram (Tungsten but make it German, very similar to Wolfgang)
1 note
·
View note
Text
Inventions
Adrenaline: (isolation of) John Jacob Abel, U.S., 1897.
Aerosol can: Erik Rotheim, Norway, 1926.
Air brake: George Westinghouse, U.S., 1868.
Air conditioning: Willis Carrier, U.S., 1911.
Airship: (non-rigid) Henri Giffard, France, 1852; (rigid) Ferdinand von Zeppelin, Germany, 1900.
Aluminum manufacture: (by electrolytic action) Charles M. Hall, U.S., 1866.
Anatomy, human: (De fabrica corporis humani, an illustrated systematic study of the human body) Andreas Vesalius, Belgium, 1543; (comparative: parts of an organism are correlated to the functioning whole) Georges Cuvier, France, 1799–1805.
Anesthetic: (first use of anesthetic—ether—on humans) Crawford W. Long, U.S., 1842.
Antibiotics: (first demonstration of antibiotic effect) Louis Pasteur, Jules-François Joubert, France, 1887; (discovery of penicillin, first modern antibiotic) Alexander Fleming, England, 1928; (penicillin’s infection-fighting properties) Howard Florey, Ernst Chain, England, 1940.
Antiseptic: (surgery) Joseph Lister, England, 1867.
Antitoxin, diphtheria: Emil von Behring, Germany, 1890.
Appliances, electric: (fan) Schuyler Wheeler, U.S., 1882; (flatiron) Henry W. Seely, U.S., 1882; (stove) Hadaway, U.S., 1896; (washing machine) Alva Fisher, U.S., 1906.
Aqualung: Jacques-Yves Cousteau, Emile Gagnan, France, 1943.
Aspirin: Dr. Felix Hoffman, Germany, 1899.
Astronomical calculator: The Antikythera device, first century B.C., Greece. Found off island of Antikythera in 1900.
Atom: (nuclear model of) Ernest Rutherford, England, 1911.
Atomic theory: (ancient) Leucippus, Democritus, Greece, c. 500 B.C.; Lucretius, Rome c.100 B.C.; (modern) John Dalton, England, 1808.
Atomic structure: (formulated nuclear model of atom, Rutherford model) Ernest Rutherford, England, 1911; (proposed current concept of atomic structure, the Bohr model) Niels Bohr, Denmark, 1913.
Automobile: (first with internal combustion engine, 250 rpm) Karl Benz, Germany, 1885; (first with practical high-speed internal combustion engine, 900 rpm) Gottlieb Daimler, Germany, 1885; (first true automobile, not carriage with motor) René Panhard, Emile Lavassor, France, 1891; (carburetor, spray) Charles E. Duryea, U.S., 1892.
Autopilot: (for aircraft) Elmer A. Sperry, U.S., c.1910, first successful test, 1912, in a Curtiss flying boat.
Avogadro’s law: (equal volumes of all gases at the same temperature and pressure contain equal number of molecules) Amedeo Avogadro, Italy, 1811.
Bacteria: Anton van Leeuwenhoek, The Netherlands, 1683.
Balloon, hot-air: Joseph and Jacques Montgolfier, France, 1783.
Barbed wire: (most popular) Joseph E. Glidden, U.S., 1873.
Bar codes: (computer-scanned binary signal code):
(retail trade use) Monarch Marking, U.S. 1970; (industrial use) Plessey Telecommunications, England, 1970.
Barometer: Evangelista Torricelli, Italy, 1643.
Bicycle: Karl D. von Sauerbronn, Germany, 1816; (first modern model) James Starley, England, 1884.
Big Bang theory: (the universe originated with a huge explosion) George LeMaitre, Belgium, 1927; (modified LeMaitre theory labeled “Big Bang”) George A. Gamow, U.S., 1948; (cosmic microwave background radiation discovered, confirms theory) Arno A. Penzias and Robert W. Wilson, U.S., 1965.
Blood, circulation of: William Harvey, England, 1628.
Boyle’s law: (relation between pressure and volume in gases) Robert Boyle, Ireland, 1662.
Braille: Louis Braille, France, 1829.
Bridges: (suspension, iron chains) James Finley, Pa., 1800; (wire suspension) Marc Seguin, Lyons, 1825; (truss) Ithiel Town, U.S., 1820.
Bullet: (conical) Claude Minié, France, 1849.
Calculating machine: (logarithms: made multiplying easier and thus calculators practical) John Napier, Scotland, 1614; (slide rule) William Oughtred, England, 1632; (digital calculator) Blaise Pascal, 1642; (multiplication machine) Gottfried Leibniz, Germany, 1671; (important 19th-century contributors to modern machine) Frank S. Baldwin, Jay R. Monroe, Dorr E. Felt, W. T. Ohdner, William Burroughs, all U.S.; (“analytical engine” design, included concepts of programming, taping) Charles Babbage, England, 1835.
Calculus: Isaac Newton, England, 1669; (differential calculus) Gottfried Leibniz, Germany, 1684.
Camera: (hand-held) George Eastman, U.S., 1888; (Polaroid Land) Edwin Land, U.S., 1948.
“Canals” of Mars:Giovanni Schiaparelli, Italy, 1877.
Carpet sweeper: Melville R. Bissell, U.S., 1876.
Car radio: William Lear, Elmer Wavering, U.S., 1929, manufactured by Galvin Manufacturing Co., “Motorola.”
Cells: (word used to describe microscopic examination of cork) Robert Hooke, England, 1665; (theory: cells are common structural and functional unit of all living organisms) Theodor Schwann, Matthias Schleiden, 1838–1839.
Cement, Portland: Joseph Aspdin, England, 1824.
Chewing gum: (spruce-based) John Curtis, U.S., 1848; (chicle-based) Thomas Adams, U.S., 1870.
Cholera bacterium: Robert Koch, Germany, 1883.
Circuit, integrated: (theoretical) G.W.A. Dummer, England, 1952; (phase-shift oscillator) Jack S. Kilby, Texas Instruments, U.S., 1959.
Classification of plants: (first modern, based on comparative study of forms) Andrea Cesalpino, Italy, 1583; (classification of plants and animals by genera and species) Carolus Linnaeus, Sweden, 1737–1753.
Clock, pendulum: Christian Huygens, The Netherlands, 1656.
Coca-Cola: John Pemberton, U.S., 1886.
Combustion: (nature of) Antoine Lavoisier, France, 1777.
Compact disk: RCA, U.S., 1972.
Computers: (first design of analytical engine) Charles Babbage, 1830s; (ENIAC, Electronic Numerical Integrator and Calculator, first all-electronic, completed) 1945; (dedicated at University of Pennsylvania) 1946; (UNIVAC, Universal Automatic Computer, handled both numeric and alphabetic data) 1951.
Concrete: (reinforced) Joseph Monier, France, 1877.
Condensed milk: Gail Borden, U.S., 1853.
Conditioned reflex: Ivan Pavlov, Russia, c.1910.
Conservation of electric charge: (the total electric charge of the universe or any closed system is constant) Benjamin Franklin, U.S., 1751–1754.
Contagion theory: (infectious diseases caused by living agent transmitted from person to person) Girolamo Fracastoro, Italy, 1546.
Continental drift theory: (geographer who pieced together continents into a single landmass on maps) Antonio Snider-Pellegrini, France, 1858; (first proposed in lecture) Frank Taylor, U.S.; (first comprehensive detailed theory) Alfred Wegener, Germany, 1912.
Contraceptive, oral: Gregory Pincus, Min Chuch Chang, John Rock, Carl Djerassi, U.S., 1951.
Converter, Bessemer: William Kelly, U.S., 1851.
Cosmetics: Egypt, c. 4000 B.C.
Cosamic string theory: (first postulated) Thomas Kibble, 1976.
Cotton gin: Eli Whitney, U.S., 1793.
Crossbow: China, c. 300 B.C.
Cyclotron: Ernest O. Lawrence, U.S., 1931.
Deuterium: (heavy hydrogen) Harold Urey, U.S., 1931.
Disease: (chemicals in treatment of) crusaded by Philippus Paracelsus, 1527–1541; (germ theory) Louis Pasteur, France, 1862–1877.
DNA: (deoxyribonucleic acid) Friedrich Meischer, Germany, 1869; (determination of double-helical structure) Rosalind Elsie Franklin, F. H. Crick, England, James D. Watson, U.S., 1953.
Dye: (aniline, start of synthetic dye industry) William H. Perkin, England, 1856.
Dynamite: Alfred Nobel, Sweden, 1867.
Electric cooking utensil: (first) patented by St. George Lane-Fox, England, 1874.
Electric generator (dynamo): (laboratory model) Michael Faraday, England, 1832; Joseph Henry, U.S., c.1832; (hand-driven model) Hippolyte Pixii, France, 1833; (alternating-current generator) Nikola Tesla, U.S., 1892.
Electric lamp: (arc lamp) Sir Humphrey Davy, England, 1801; (fluorescent lamp) A.E. Becquerel, France, 1867; (incandescent lamp) Sir Joseph Swann, England, Thomas A. Edison, U.S., contemporaneously, 1870s; (carbon arc street lamp) Charles F. Brush, U.S., 1879; (first widely marketed incandescent lamp) Thomas A. Edison, U.S., 1879; (mercury vapor lamp) Peter Cooper Hewitt, U.S., 1903; (neon lamp) Georges Claude, France, 1911; (tungsten filament) Irving Langmuir, U.S., 1915.
Electrocardiography: Demonstrated by Augustus Waller, 1887; (first practical device for recording activity of heart) Willem Einthoven, 1903, Dutch physiologist.
Electromagnet: William Sturgeon, England, 1823.
Electron: Sir Joseph J. Thompson, England, 1897.
Elevator, passenger: (safety device permitting use by passengers) Elisha G. Otis, U.S., 1852; (elevator utilizing safety device) 1857.
E = mc2: (equivalence of mass and energy) Albert Einstein, Switzerland, 1907.
Engine, internal combustion: No single inventor. Fundamental theory established by Sadi Carnot, France, 1824; (two-stroke) Etienne Lenoir, France, 1860; (ideal operating cycle for four-stroke) Alphonse Beau de Roche, France, 1862; (operating four-stroke) Nikolaus Otto, Germany, 1876; (diesel) Rudolf Diesel, Germany, 1892; (rotary) Felix Wankel, Germany, 1956.
Evolution: (organic) Jean-Baptiste Lamarck, France, 1809; (by natural selection) Charles Darwin, England, 1859.
Exclusion principle: (no two electrons in an atom can occupy the same energy level) Wolfgang Pauli, Germany, 1925.
Expanding universe theory: (first proposed) George LeMaitre, Belgium, 1927; (discovered first direct evidence that the universe is expanding) Edwin P. Hubble, U.S., 1929; (Hubble constant: a measure of the rate at which the universe is expanding) Edwin P. Hubble, U.S., 1929.
Falling bodies, law of: Galileo Galilei, Italy, 1590.
Fermentation: (microorganisms as cause of) Louis Pasteur, France, c.1860.
Fiber optics: Narinder Kapany, England, 1955.
Fibers, man-made: (nitrocellulose fibers treated to change flammable nitrocellulose to harmless cellulose, precursor of rayon) Sir Joseph Swann, England, 1883; (rayon) Count Hilaire de Chardonnet, France, 1889; (Celanese) Henry and Camille Dreyfuss, U.S., England, 1921; (research on polyesters and polyamides, basis for modern man-made fibers) U.S., England, Germany, 1930s; (nylon) Wallace H. Carothers, U.S., 1935.
Frozen food: Clarence Birdseye, U.S., 1924.
Gene transfer: (human) Steven Rosenberg, R. Michael Blaese, W. French Anderson, U.S., 1989.
Geometry, elements of: Euclid, Alexandria, Egypt, c. 300 B.C.; (analytic) René Descartes, France; and Pierre de Fermat, Switzerland, 1637.
Gravitation, law of: Sir Isaac Newton, England, c.1665 (published 1687).
Gunpowder: China, c.700.
Gyrocompass: Elmer A. Sperry, U.S., 1905.
Gyroscope: Léon Foucault, France, 1852.
Halley’s Comet: Edmund Halley, England, 1705.
Heart implanted in human, permanent artificial:Dr. Robert Jarvik, U.S., 1982.
Heart, temporary artificial: Willem Kolft, 1957.
Helicopter: (double rotor) Heinrich Focke, Germany, 1936; (single rotor) Igor Sikorsky, U.S., 1939.
Helium first observed on sun: Sir Joseph Lockyer, England, 1868.
Heredity, laws of: Gregor Mendel, Austria, 1865.
Holograph: Dennis Gabor, England, 1947.
Home videotape systems (VCR): (Betamax) Sony, Japan, 1975; (VHS) Matsushita, Japan, 1975.
Ice age theory: Louis Agassiz, Swiss-American, 1840.
Induction, electric: Joseph Henry, U.S., 1828.
Insulin: (first isolated) Sir Frederick G. Banting and Charles H. Best, Canada, 1921; (discovery first published) Banting and Best, 1922; (Nobel Prize awarded for purification for use in humans) John Macleod and Banting, 1923; (first synthesized), China, 1966.
Intelligence testing: Alfred Binet, Theodore Simon, France, 1905.
Interferon: Alick Isaacs, Jean Lindemann, England, Switzerland, 1957.
Isotopes: (concept of) Frederick Soddy, England, 1912; (stable isotopes) J. J. Thompson, England, 1913; (existence demonstrated by mass spectrography) Francis W. Ashton, 1919.
Jet propulsion: (engine) Sir Frank Whittle, England, Hans von Ohain, Germany, 1936; (aircraft) Heinkel He 178, 1939.
Kinetic theory of gases: (molecules of a gas are in a state of rapid motion) Daniel Bernoulli, Switzerland, 1738.
Laser: (theoretical work on) Charles H. Townes, Arthur L. Schawlow, U.S., N. Basov, A. Prokhorov, U.S.S.R., 1958; (first working model) T. H. Maiman, U.S., 1960.
Lawn mower: Edwin Budding, John Ferrabee, England, 1830–1831.
LCD (liquid crystal display): Hoffmann-La Roche, Switzerland, 1970.
Lens, bifocal: Benjamin Franklin, U.S., c.1760.
Leyden jar: (prototype electrical condenser) Canon E. G. von Kleist of Kamin, Pomerania, 1745; independently evolved by Cunaeus and P. van Musschenbroek, University of Leyden, Holland, 1746, from where name originated.
Light, nature of: (wave theory) Christian Huygens, The Netherlands, 1678; (electromagnetic theory) James Clerk Maxwell, England, 1873.
Light, speed of: (theory that light has finite velocity) Olaus Roemer, Denmark, 1675.
Lightning rod: Benjamin Franklin, U.S., 1752.
Locomotive: (steam powered) Richard Trevithick, England, 1804; (first practical, due to multiple-fire-tube boiler) George Stephenson, England, 1829; (largest steam-powered) Union Pacific’s “Big Boy,” U.S., 1941.
Lock, cylinder: Linus Yale, U.S., 1851.
Loom: (horizontal, two-beamed) Egypt, c. 4400 B.C.; (Jacquard drawloom, pattern controlled by punch cards) Jacques de Vaucanson, France, 1745, Joseph-Marie Jacquard, 1801; (flying shuttle) John Kay, England, 1733; (power-driven loom) Edmund Cartwright, England, 1785.
Machine gun: (hand-cranked multibarrel) Richard J. Gatling, U.S., 1862; (practical single barrel, belt-fed) Hiram S. Maxim, Anglo-American, 1884.
Magnet, Earth is: William Gilbert, England, 1600.
Match: (phosphorus) François Derosne, France, 1816; (friction) Charles Sauria, France, 1831; (safety) J. E. Lundstrom, Sweden, 1855.
Measles vaccine: John F. Enders, Thomas Peebles, U.S., 1953.
Metric system: revolutionary government of France, 1790–1801.
Microphone: Charles Wheatstone, England, 1827.
Microscope: (compound) Zacharias Janssen, The Netherlands, 1590; (electron) Vladimir Zworykin et al., U.S., Canada, Germany, 1932–1939.
Microwave oven: Percy Spencer, U.S., 1947.
Motion, laws of: Isaac Newton, England, 1687.
Motion pictures: Thomas A. Edison, U.S., 1893.
Motion pictures, sound: Product of various inventions. First picture with synchronized musical score: Don Juan, 1926; with spoken dialogue: The Jazz Singer, 1927; both Warner Bros.
Motor, electric: Michael Faraday, England, 1822; (alternating-current) Nikola Tesla, U.S., 1892.
Motorcycle: (motor tricycle) Edward Butler, England, 1884; (gasoline-engine motorcycle) Gottlieb Daimler, Germany, 1885.
Moving assembly line: Henry Ford, U.S., 1913.
Neptune: (discovery of) Johann Galle, Germany, 1846.
Neptunium: (first transuranic element, synthesis of) Edward M. McMillan, Philip H. Abelson, U.S., 1940.
Neutron: James Chadwick, England, 1932.
Neutron-induced radiation: Enrico Fermi et al., Italy, 1934.
Nitroglycerin: Ascanio Sobrero, Italy, 1846.
Nuclear fission: Otto Hahn, Fritz Strassmann, Germany, 1938.
Nuclear reactor: Enrico Fermi, Italy, et al., 1942.
Ohm’s law: (relationship between strength of electric current, electromotive force, and circuit resistance) Georg S. Ohm, Germany, 1827.
Oil well: Edwin L. Drake, U.S., 1859.
Oxygen: (isolation of) Joseph Priestley, 1774; Carl Scheele, 1773.
Ozone: Christian Schönbein, Germany, 1839.
Pacemaker: (internal) Clarence W. Lillehie, Earl Bakk, U.S., 1957.
Paper China, c.100 A.D.
Parachute: Louis S. Lenormand, France, 1783.
Pen: (fountain) Lewis E. Waterman, U.S., 1884; (ball-point, for marking on rough surfaces) John H. Loud, U.S., 1888; (ball-point, for handwriting) Lazlo Biro, Argentina, 1944.
Periodic law: (that properties of elements are functions of their atomic weights) Dmitri Mendeleev, Russia, 1869.
Periodic table: (arrangement of chemical elements based on periodic law) Dmitri Mendeleev, Russia, 1869.
Phonograph: Thomas A. Edison, U.S., 1877.
Photography: (first paper negative, first photograph, on metal) Joseph Nicéphore Niepce, France, 1816–1827; (discovery of fixative powers of hyposulfite of soda) Sir John Herschel, England, 1819; (first direct positive image on silver plate, the daguerreotype) Louis Daguerre, based on work with Niepce, France, 1839; (first paper negative from which a number of positive prints could be made) William Talbot, England, 1841. Work of these four men, taken together, forms basis for all modern photography. (First color images) Alexandre Becquerel, Claude Niepce de Saint-Victor, France, 1848–1860; (commercial color film with three emulsion layers, Kodachrome) U.S., 1935.
Photovoltaic effect: (light falling on certain materials can produce electricity) Edmund Becquerel, France, 1839.
Piano: (Hammerklavier) Bartolommeo Cristofori, Italy, 1709; (pianoforte with sustaining and damper pedals) John Broadwood, England, 1873.
Planetary motion, laws of: Johannes Kepler, Germany, 1609, 1619.
Plant respiration and photosynthesis: Jan Ingenhousz, Holland, 1779.
Plastics: (first material, nitrocellulose softened by vegetable oil, camphor, precursor to Celluloid) Alexander Parkes, England, 1855; (Celluloid, involving recognition of vital effect of camphor) John W. Hyatt, U.S., 1869; (Bakelite, first completely synthetic plastic) Leo H. Baekeland, U.S., 1910; (theoretical background of macromolecules and process of polymerization on which modern plastics industry rests) Hermann Staudinger, Germany, 1922.
Plate tectonics: Alfred Wegener, Germany, 1912–1915.
Plow, forked: Mesopotamia, before 3000 B.C.
Plutonium, synthesis of: Glenn T. Seaborg, Edwin M. McMillan, Arthur C. Wahl, Joseph W. Kennedy, U.S., 1941.
Polio, vaccine: (experimentally safe dead-virus vaccine) Jonas E. Salk, U.S., 1952; (effective large-scale field trials) 1954; (officially approved) 1955; (safe oral live-virus vaccine developed) Albert B. Sabin, U.S., 1954; (available in the U.S.) 1960.
Positron: Carl D. Anderson, U.S., 1932.
Pressure cooker: (early version) Denis Papin, France, 1679.
Printing: (block) Japan, c.700; (movable type) Korea, c.1400; Johann Gutenberg, Germany, c.1450 (lithography, offset) Aloys Senefelder, Germany, 1796; (rotary press) Richard Hoe, U.S., 1844; (linotype) Ottmar Mergenthaler, U.S., 1884.
Probability theory: René Descartes, France; and Pierre de Fermat, Switzerland, 1654.
Proton: Ernest Rutherford, England, 1919.
Prozac: (antidepressant fluoxetine) Bryan B. Malloy, Scotland, and Klaus K. Schmiegel, U.S., 1972; (released for use in U.S.) Eli Lilly & Company, 1987.
Psychoanalysis: Sigmund Freud, Austria, c.1904.
Pulsars: Antony Hewish and Jocelyn Bell Burnel, England, 1967.
Quantum theory: (general) Max Planck, Germany, 1900; (sub-atomic) Niels Bohr, Denmark, 1913; (quantum mechanics) Werner Heisenberg, Erwin Schrödinger, Germany, 1925.
Quarks: Jerome Friedman, Henry Kendall, Richard Taylor, U.S., 1967.
Quasars: Marten Schmidt, U.S., 1963.
Rabies immunization: Louis Pasteur, France, 1885.
Radar: (limited to one-mile range) Christian Hulsmeyer, Germany, 1904; (pulse modulation, used for measuring height of ionosphere) Gregory Breit, Merle Tuve, U.S., 1925; (first practical radar—radio detection and ranging) Sir Robert Watson-Watt, England, 1934–1935.
Radio: (electromagnetism, theory of) James Clerk Maxwell, England, 1873; (spark coil, generator of electromagnetic waves) Heinrich Hertz, Germany, 1886; (first practical system of wireless telegraphy) Guglielmo Marconi, Italy, 1895; (first long-distance telegraphic radio signal sent across the Atlantic) Marconi, 1901; (vacuum electron tube, basis for radio telephony) Sir John Fleming, England, 1904; (triode amplifying tube) Lee de Forest, U.S., 1906; (regenerative circuit, allowing long-distance sound reception) Edwin H. Armstrong, U.S., 1912; (frequency modulation—FM) Edwin H. Armstrong, U.S., 1933.
Radioactivity: (X-rays) Wilhelm K. Roentgen, Germany, 1895; (radioactivity of uranium) Henri Becquerel, France, 1896; (radioactive elements, radium and polonium in uranium ore) Marie Sklodowska-Curie, Pierre Curie, France, 1898; (classification of alpha and beta particle radiation) Pierre Curie, France, 1900; (gamma radiation) Paul-Ulrich Villard, France, 1900.
Radiocarbon dating, carbon-14 method: (discovered) 1947, Willard F. Libby, U.S.; (first demonstrated) U.S., 1950.
Radio signals, extraterrestrial: first known radio noise signals were received by U.S. engineer, Karl Jansky, originating from the Galactic Center, 1931.
Radio waves: (cosmic sources, led to radio astronomy) Karl Jansky, U.S., 1932.
Razor: (safety, successfully marketed) King Gillette, U.S., 1901; (electric) Jacob Schick, U.S., 1928, 1931.
Reaper: Cyrus McCormick, U.S., 1834.
Refrigerator: Alexander Twining, U.S., James Harrison, Australia, 1850; (first with a compressor device) the Domelse, Chicago, U.S., 1913.
Refrigerator ship: (first) the Frigorifique, cooling unit designed by Charles Teller, France, 1877.
Relativity: (special and general theories of) Albert Einstein, Switzerland, Germany, U.S., 1905–1953.
Revolver: Samuel Colt, U.S., 1835.
Richter scale: Charles F. Richter, U.S., 1935.
Rifle: (muzzle-loaded) Italy, Germany, c.1475; (breech-loaded) England, France, Germany, U.S., c.1866; (bolt-action) Paul von Mauser, Germany, 1889; (automatic) John Browning, U.S., 1918.
Rocket: (liquid-fueled) Robert Goddard, U.S., 1926.
Roller bearing: (wooden for cartwheel) Germany or France, c.100 B.C.
Rotation of Earth: Jean Bernard Foucault, France, 1851.
Royal Observatory, Greenwich: established in 1675 by Charles II of England; John Flamsteed first Astronomer Royal.
Rubber: (vulcanization process) Charles Goodyear, U.S., 1839.
Saccharin: Constantine Fuhlberg, Ira Remsen, U.S., 1879.
Safety pin: Walter Hunt, U.S., 1849.
Saturn, ring around: Christian Huygens, The Netherlands, 1659.
“Scotch” tape:Richard Drew, U.S., 1929.
Screw propeller: Sir Francis P. Smith, England, 1836; John Ericsson, England, worked independently of and simultaneously with Smith, 1837.
Seismograph: (first accurate) John Milne, England, 1880.
Sewing machine: Elias Howe, U.S., 1846; (continuous stitch) Isaac Singer, U.S., 1851.
Solar energy: First realistic application of solar energy using parabolic solar reflector to drive caloric engine on steam boiler, John Ericsson, U.S., 1860s.
Solar system, universe: (Sun-centered universe) Nicolaus Copernicus, Warsaw, 1543; (establishment of planetary orbits as elliptical) Johannes Kepler, Germany, 1609; (infinity of universe) Giordano Bruno, Italian monk, 1584.
Spectrum: (heterogeneity of light) Sir Isaac Newton, England, 1665–1666.
Spectrum analysis: Gustav Kirchhoff, Robert Bunsen, Germany, 1859.
Spermatozoa: Anton van Leeuwenhoek, The Netherlands, 1683.
Spinning: (spinning wheel) India, introduced to Europe in Middle Ages; (Saxony wheel, continuous spinning of wool or cotton yarn) England, c.1500–1600; (spinning jenny) James Hargreaves, England, 1764; (spinning frame) Sir Richard Arkwright, England, 1769; (spinning mule, completed mechanization of spinning, permitting production of yarn to keep up with demands of modern looms) Samuel Crompton, England, 1779.
Star catalog: (first modern) Tycho Brahe, Denmark, 1572.
Steam engine: (first commercial version based on principles of French physicist Denis Papin) Thomas Savery, England, 1639; (atmospheric steam engine) Thomas Newcomen, England, 1705; (steam engine for pumping water from collieries) Savery, Newcomen, 1725; (modern condensing, double acting) James Watt, England, 1782.
Steamship: Claude de Jouffroy d’Abbans, France, 1783; James Rumsey, U.S., 1787; John Fitch, U.S., 1790. All preceded Robert Fulton, U.S., 1807, credited with launching first commercially successful steamship.
Stethoscope: René Laënnec, France, 1819.
Sulfa drugs: (parent compound, para-aminobenzenesulfanomide) Paul Gelmo, Austria, 1908; (antibacterial activity) Gerhard Domagk, Germany, 1935.
Superconductivity: (theory) Bardeen, Cooper, Scheiffer, U.S., 1957.
Symbolic logic: George Boule, 1854; (modern) Bertrand Russell, Alfred North Whitehead, England, 1910–1913.
Tank, military: Sir Ernest Swinton, England, 1914.
Tape recorder: (magnetic steel tape) Valdemar Poulsen, Denmark, 1899.
Teflon: DuPont, U.S., 1943.
Telegraph: Samuel F. B. Morse, U.S., 1837.
Telephone: Alexander Graham Bell, U.S., 1876.
Telescope: Hans Lippershey, The Netherlands, 1608; (astronomical) Galileo Galilei, Italy, 1609; (reflecting) Isaac Newton, England, 1668.
Television: (Iconoscope–T.V. camera table), Vladimir Zworkin, U.S., 1923, and also kinescope (cathode ray tube), 1928; (mechanical disk-scanning method) successfully demonstrated by J.K. Baird, England, C.F. Jenkins, U.S., 1926; (first all-electric television image), 1927, Philo T. Farnsworth, U.S; (color, mechanical disk) Baird, 1928; (color, compatible with black and white) George Valensi, France, 1938; (color, sequential rotating filter) Peter Goldmark, U.S., first introduced, 1951; (color, compatible with black and white) commercially introduced in U.S., National Television Systems Committee, 1953.
Thermodynamics: (first law: energy cannot be created or destroyed, only converted from one form to another) Julius von Mayer, Germany, 1842; James Joule, England, 1843; (second law: heat cannot of itself pass from a colder to a warmer body) Rudolph Clausius, Germany, 1850; (third law: the entropy of ordered solids reaches zero at the absolute zero of temperature) Walter Nernst, Germany, 1918.
Thermometer: (open-column) Galileo Galilei, c.1593; (clinical) Santorio Santorio, Padua, c.1615; (mercury, also Fahrenheit scale) Gabriel D. Fahrenheit, Germany, 1714; (centigrade scale) Anders Celsius, Sweden, 1742; (absolute-temperature, or Kelvin, scale) William Thompson, Lord Kelvin, England, 1848.
Tire, pneumatic: Robert W. Thompson, England, 1845; (bicycle tire) John B. Dunlop, Northern Ireland, 1888.
Toilet, flush: Product of Minoan civilization, Crete, c. 2000 B.C. Alleged invention by “Thomas Crapper” is untrue.
Tractor: Benjamin Holt, U.S., 1900.
Transformer, electric: William Stanley, U.S., 1885.
Transistor: John Bardeen, Walter H. Brattain, William B. Shockley, U.S., 1947.
Tuberculosis bacterium: Robert Koch, Germany, 1882.
Typewriter: Christopher Sholes, Carlos Glidden, U.S., 1867.
Uncertainty principle: (that position and velocity of an object cannot both be measured exactly, at the same time) Werner Heisenberg, Germany, 1927.
Uranus: (first planet discovered in recorded history) William Herschel, England, 1781.
Vaccination: Edward Jenner, England, 1796.
Vacuum cleaner: (manually operated) Ives W. McGaffey, 1869; (electric) Hubert C. Booth, England, 1901; (upright) J. Murray Spangler, U.S., 1907.
Van Allen (radiation) Belt: (around Earth) James Van Allen, U.S., 1958.
Video disk: Philips Co., The Netherlands, 1972.
Vitamins: (hypothesis of disease deficiency) Sir F. G. Hopkins, Casimir Funk, England, 1912; (vitamin A) Elmer V. McCollum, M. Davis, U.S., 1912–1914; (vitamin B) McCollum, U.S., 1915–1916; (thiamin, B1) Casimir Funk, England, 1912; (riboflavin, B2) D. T. Smith, E. G. Hendrick, U.S., 1926; (niacin) Conrad Elvehjem, U.S., 1937; (B6) Paul Gyorgy, U.S., 1934; (vitamin C) C. A. Hoist, T. Froelich, Norway, 1912; (vitamin D) McCollum, U.S., 1922; (folic acid) Lucy Wills, England, 1933.
Voltaic pile: (forerunner of modern battery, first source of continuous electric current) Alessandro Volta, Italy, 1800.
Wallpaper: Europe, 16th and 17th century.
Wassermann test: (for syphilis) August von Wassermann, Germany, 1906.
Wheel: (cart, solid wood) Mesopotamia, c.3800–3600 B.C.
Windmill: Persia, c.600.
World Wide Web: (developed while working at CERN) Tim Berners-Lee, England, 1989; (development of Mosaic browser makes WWW available for general use) Marc Andreeson, U.S., 1993.
Xerography: Chester Carlson, U.S., 1938.
Zero: India, c.600; (absolute zero temperature, cessation of all molecular energy) William Thompson, Lord Kelvin, England, 1848.
Zipper: W. L. Judson, U.S., 1891.
7 notes
·
View notes
Text
dude-of-electricity replied to your post “Wolfgang and Wolfram are the coolest fucking names. Which only makes...”
I had a character names Tungsten/Wolfram who could turn into a big metal wolf so ye you're not wrong
:((((
1 note
·
View note
Text
Personalities of Shiny
Susano'o
Accuracy
Fizzy
Seth
Tungsten
Shimmer Courage
Weiss
Lina
Nova
Aoi
Maxwell
Glitter Lucky
John
Noel
Nadine
Akirimitsu
Ana
Alpha
Aegis
Issa
Mindy
Rei
HexyQueen
Kyoko
Clarisse
Hilda
Pavo
Pooka
Shiny Nega
Luna
Tota
Noczeal
B-dog
Oculus
Taiga
Stormblight
Master Wu
Spellslinger
Monza
Felix
Juane
Sandsweep
Vash
Kurea
Akane
Archen
Melissa
Sayaka
Aldo
Lonesome
Renmi
SB
Kombai
Yuuna
Mitch
Kim
Bubbles
Maine
Tobi
Ralph
Emily
Ken
Docile
Katylin
Sarena
Shimmer Ember
Frank
Rex
Shiny
Glitter Peace
Shimmer Crest
Alphonse
Kat
Soul
Doulgh
Itsuki
Yu
Chaos
Aki
Reina
Taxtise
Dillon
Ren
Lianna
Melvin
Yuki
Soma
Shimmer Justice
Sarah
Mitsuka
Mitsuru
Dracen
Tom
Lilypad Lily
Stormboss
Young Takazu
Naoto
Sanich
Rise
Dawn
Kuba
Lora
Bella
Ocye
Nana
Platinum
Nessiah
Amy
Jaio Zhou
Hikaru
Bethsella
Frair
Blade
Nickel
Mia
Flynt
Slave 12
Kaylin
Vastolorde
Ryder
Samantha
Hope
Momoka
Demay
Natalie
Shimmer Gaia
(Y)
METAL-182
Nightmare
Vasile
Takazu
Nomelle
Chie
Bailey
Sabrina
Renji
Yukari
Vulken
Tex
May
Tatsumi
Eddie
Rikka
Rika
Ains
Anandini
Teif
Bando
Claire
Mina
Rachel
Terror
Scourge
Lu
Mika
Necro
Yun
Cobalt
A-Town
Damien
Vera
Elizabeth
Allison
Millin
Blossom
Kanta
Sparrow
Crimson
Okam
Yang
Pathronax
Tito
Maddison
Kirl
Ian
Ceil
Shanks
Ruby
Glitter Sunny
Izumi
Satsuki
Wolfgang
Glitter Breeze
Matt
Chiko
Buttercup
Blake
Haruna
LastRabbit
King
Martyn
Enigma
Toma
Fuuka
Hel
Crackshot
Ace
Uri
Luciano
Carl
Glitter Spring
Torri
Josh
Fear
Ryoko
Maria
Milly
Queem
#multiple personalities#multiple personality disorder#list#introduction#psychology#science#diary#DID#disassociative Identity Disorder#Dawson Creek#mental health#mental illness
0 notes
Text
[SF] [HM] A New Way Forward
A New Way Forward
“I need to meet with you soon, stoopidmod” My alarm bells were already ringing, when the caller identified himself. “This is Ian, you know me as br0nytail” Great, another neckbeard incel wants to expound his ideas on how the world should work to me personally. Initially, I did not return the call, as I was far too busy sorting my collection of Pokemon cards. My name is Wolfgang, and my reddit id is stoopidmod. In addition to being an avid Pokemon card collector, I am the moderator for a few subreddits, namely; r/newworldorderdreaming r/pokemonnsfw r/pokemontrade Certain members of these subreddits have extensively searched me out, by analysing every post I have ever made. This, combined with serious web searching had enabled a few of them to pinpoint who I am. Unfortunately, I suspect my ‘for sale’ post on a popular website had alerted at least one of them to my phone number (Still for sale, by the way, 2008 unopened package of Hot Pockets – serious enquiries only). So, here we are. “I know you live nearby. We need to meet”. Ugh, no Let’s not. After spending many hours reviewing Br0nytails posts and comments in many subreddits, my initial impressions were confirmed, in an even deeper and more troubling way. His racist, misogynistic, protectionist, and clearly self-hating ideas and thoughts have come through quite clearly. The twenty-third message he had left me was a little more troubling: “I am dying, and I have something I need to tell you, and you only. You are my only friend”. Huh. Only friend. I guess my fifteen or so replies to his comments qualified me! I am a lucky man indeed.
My name is William J. Lynch, and I was appointed to the position of Assistant to the Deputy Director of the United States Space Force (USSF). I have since been seconded to the Department of Homeland Security; due to budget reallocation away from the USFF towards building the Wall (apparently our USSF business cards and snazzy uniforms consumed our operating budget for the fiscal year, rendering our department rather useless). Ian Walthorn, otherwise known as ‘Br0nytail’ on some silly website called Reddit, came to my attention when my new boss called me into his office. ‘We need you to find out what happened to this individual. There is evidence certain events related to this individual could pose a risk to national security. Assemble a team, and let me know what additional resources you require.” One of the first reports I received back from my analysts indicated that Ian had written an ‘application’ to become a member of the USSF, either as an intelligence analyst (citing his googling skills as experience) or volunteer to be one of the first to colonise the moon (according to Ian, extreme social isolation such as living on the moon can be equated to being a lifetime basement dweller from an experience standpoint.) Communication intercepts led me to an individual named Wolfgang McAllister, also known as stoopidmod, as we also discovered.
Ian buzzed me in, and I walked down the greasy carpeted flight of stairs to his basement apartment. The smell of microwaved fishsticks lingered heavily in the hallway. I knocked, and the door immediately swung open. “Come in quickly, Wolfgang”. Ian did not look well. That was obvious. Nor did his apartment, garbage strewn everywhere, evidence of his horrific diet which apparently consisted largely of Cheetohs Puffs and diet Coke . Dingy and dark, with the exception of the glow of two large LED displays identifying his primary connection with the outside world – or so I thought. I could feel a strange buzz permeate my body. “You need to hear this, and it’s going to sound weird” “You don’t look well Ian, do you need help? Are you sick?” “I am disconnecting”. At first I thought he meant he was having trouble with his internet connection. “I am coming apart, physically and mentally, I am literally disintegrating” I suppose he did look a little fuzzy, now that he mentioned it. “You know my ideas on women, politics and immigration, but what you don’t know is my power of prayer. I grew up in stifling religious family. I may have abandoned the religion, but I did not abandon prayer. I just applied it to my more modern thinking. About 6 years ago, I realized that what I was praying for was becoming reality. I truly started understanding that my power of prayer was influencing the world, at first in small ways, escalating to my stronger ideals. It was like a dream coming true. As Ian spoke, I had to keep adjusting my eyes. I could swear that he was getting blurrier. And that buzz I felt, it was getting more intense. What is going on? This all sounds a little incredulous. “I can’t prove to you that I have this power, but I know I won’t be here for long. If you know about it, maybe you can try and follow up on it, see if anything changes once I am gone? “My energy is running out, and I am fading. I can tell that you feel that buzzing sensation. It’s tearing me apart.”
I assembled a team to visit the basement apartment, not really knowing what to expect. The whole block had been cordoned off once the paramedics had called in the Department of Homeland Security. After donning our hazmat suits, we climbed down the stairs in the dim light. The place smelled vaguely of microwaved fish sticks, even through the mask filters. There he was. Or, what was left of Ian. A puddle of goo on the floor, reflecting the blue light of the computer displays. One of my team members, Dr. Lu Shuan, a physicist, poked a stick into the goo, and deposited it into a glass container, which was then placed into her tungsten briefcase. Dr Shuan then brandished her ionization detector to scan the basement apartment. She had a deeply troubled look in her eyes. I met Wolfgand Mcallister the next day. “Explain to me again why you called 911?” “At first I thought I was hallucinating, you know, there was this weird buzzing in the apartment. Then I could see Ian literally coming apart in front of me. Not like falling apart, but breaking up microscopically, with little bits sloughing off onto the floor. “I ran out of the apartment and called 911, they arrived in minutes, and took my name. I hung around outside for about an hour, but then the police arrived and cordoned off the whole area. They took my name and number, and they asked me to leave” Wolfgang indicated to me that Ian was a real jerk, who had a thing for prayer. A ‘neckbeard incel’ (I had to look that up) who believed he was controlling the world through his ‘prayer’. Wolfgang sensed that Ian just wanted to watch the world burn. Later that day, Dr. Shuan called me into her office. “We have some pretty startling news. What we have ascertained is that the deceased, Mr. Walthorn was being bombarded with high speed subatomic particles. The source of these particles came directly from beneath his apartment. Until we ascertain the cause of this, the area must remain cordoned off to all except those with the appropriate clearance. “We ran genetic testing on samples taken from the goo, and determined that specimens were complete enough to run a comparison against our national database. We found an interesting match.”
So, it turns out that Donald J. Trump is a pretty good guy, after all. After two years in office, at a time when the American people, and even his own party, have lost patience with his protectionist policies and backward-thinking, came a shocking change: Donald Trump announced a “New Way Forward” in his State of the Union Address. “I am a changed person, no longer grasping on to the archaic ideals” he said on National TV. And, as such, he quickly cancelled the construction of the wall, invoked new laws to provide support for immigrants and refugees, re-engaged with trading partners globally, appointed females to roles within his executive where seats had remained vacant for years. And this was just the beginning. Suddenly the USA became whole again, unemployment was at its lowest in history, global trade created opportunities for underdeveloped nations. And Trump became admired globally. In fact, over time he would be compared to the likes of Ghandi (ignoring Ghandi’s nasty parts) and Mother Theresa (also, disregarding the nasty bits). People were happy. What most people won’t know is this: Donald J Trump was indeed a puppet. But, not of a foreign power, like Russia or Saudi Arabia like everyone assumed, but of a neckbeard incel known as Br0nytail. Ian thought his power of prayer was manipulating the world towards his ideal. In reality, it was a little more complicated than that, and no coincidence that Donald Trump’s New Way Forward coincided with the demise of one Ian Walthorn. “Ian Walthorn was entangled with the President of the United States”, said Dr Shuan at the highly classified meeting. Einstein didn’t believe in ‘spooky action at a distance’, but apparently Ian and Donald had more than just a quantum entanglement. “Mr Walthorn lived above a geographic anomaly, a natural source of radiation , which was focused through his apartment. This radiation, when passed through the fine dust of Cheetoh Puffs, accelerated to collide and separate particles of Mr Walthorn himself. After determining through genetic match that Mr Walthorn was the unacknowledged child of President Trump, we now know that this genetic connection had a major impact on the quantity of entangled particles shared between the two men. Enough of these particles were entangled with the President, through genetic similarities, that we can ascertain that these two individuals were actually one from a subatomic comparison. What a mess. The fact that Ian Walthorn was now a puddle of goo had changed the world for the better. Wolfgang sat at his desk, reviewing posts in his subs. “You know, I have seen a big change in people’s attitudes, even in these toxic subreddits. Even when I follow the news, it’s less about global uncertainty, and more about new developments that are progressive. I mean, don’t get me wrong, there are still stabbings and stuff that get reported, but since guns have been banned, there just seems to be a lot less violence.” The world indeed was heading to a better place.
Except that there is this super angry pre-teen in North Korea, who happened to reside over a strange geographic anomaly, and who just may have a genetic link to another person in power.
submitted by /u/Stormywazoo [link] [comments] via Blogger https://ift.tt/30adq3z
0 notes
Text
Embedment of eutectic tungsten carbides in arc sprayed steel coatings
Publication date: 15 December 2017 Source:Surface and Coatings Technology, Volume 331 Author(s): Wolfgang Tillmann, Leif Hagen, David Kokalj Tungsten carbide reinforced deposits have already evolved into a predominant coating system in order to protect stressed surfaces against wear. Among thermal spraying processes, due to a high deposition rate, arc spraying is a promising process to manufacture cost-saving, wear resistant coatings. However, inherent process characteristics prevailing in arc spraying as well as the utilization of tungsten carbides, as a filling for cored wires, could lead to undesirable phase evolutions, which in turn provoke the degradation of the mechanical properties. The embedment of tungsten carbides into the surrounding metallic matrix is affected by metallurgical interactions with molten spray particles. Within the scope of this study, an external injection of tungsten carbides was applied in order to analyze the embedment of tungsten carbides in arc sprayed low alloyed steel. Accordingly, metallographic investigations were carried out, which address the reactive layer at the interface of embedded tungsten carbides to the surrounded iron-based matrix. Microstructural characteristics such as mechanical properties and phase composition were scrutinized by means of nanoindentation, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. It was found that the embedment of tungsten carbides, which have been externally injected into the arc burning zone, differs from that obtained from deposits produced with the use of cored wire with tungsten carbide as filling. Thus, externally injected tungsten carbides are less inclined to form eta carbides due to dissolution, which again results in differences in the mechanical properties across the reactive layer. Read more from Journal of Safety Research http://ift.tt/2xGZxZ3
0 notes
Text
Heinrich Rohrer and Gerd Binnig
respectively, (b. June 6, 1933, Buchs, Sankt Gallen canton, Switz.); (b. July 20, 1947, Frankfurt am Main, W.Ger.)
The scanning tunneling microscope (STM) appeared in 1981 when Swiss physicists Gerd Binnig and Heinrich Rohrer set out to build a tool for studying the local conductivity of surfaces. Its principle of operation is based on the quantum mechanical phenomenon known as tunneling, in which the wavelike properties of electrons permit them to “tunnel” beyond the surface of a solid into regions of space that are forbidden to them under the rules of classical physics. The probability of finding such tunneling electrons decreases exponentially as the distance from the surface increases. The STM makes use of this extreme sensitivity to distance. The sharp tip of a tungsten needle is positioned a few angstroms from the sample surface. A small voltage is applied between the probe tip and the surface, causing electrons to tunnel across the gap. As the probe is scanned over the surface, it registers variations in the tunneling current, and this information can be pro- cessed to provide a topographical image of the surface. Binnig and Rohrer chose the surface of gold for their first image. When the image was displayed on the screen of a television monitor, they saw rows of precisely spaced atoms and observed broad terraces separated by steps one atom in height. Binnig and Rohrer had discovered in the STM a simple method for creating a direct image of the atomic structure of surfaces. Their discovery opened a new era for surface science, and their impressive achieve- ment was recognized with the award of half the Nobel Prize for Physics in 1986. (Ernst Ruska, a German electrical engineer who invented the electron microscope, received the other half of the prize.)
Heinrich Rohrer
Heinrich Rohrer was educated at the Swiss Federal Institute of Technology in Zürich and received his Ph.D. there in 1960. In 1963, after a period of postdoctoral work at Rutgers University in New Jersey, he joined the IBM Zürich Research Laboratory, where he remained until his retirement in 1997. Binnig also joined the laboratory, and it was there that the two men designed and built the first STM. This instrument is equipped with a tiny tungsten probe whose tip, only about one or two atoms wide, is brought to within five or ten atoms’ distance of the surface of a conducting or semiconducting material. (An atom is equal to about one angstrom, or one ten-billionth of a metre.) When the electric potential of the tip is made to differ by a few volts from that of the surface, quantum mechanical effects cause a measurable electric current to cross the gap. The strength of this current is extremely sensitive to the distance between the probe and the surface, and as the probe’s tip scans the surface, it can be kept a fixed distance away by raising and lowering it so as to hold the current constant. A record of the elevation of the probe is a topographical map of the surface under study, on which the contour intervals are so small that the individual atoms making up the surface are clearly recognizable.
Gerd Binnig
The German-born Gerd Binnig graduated from Johann Wolfgang Goethe University in Frankfurt in 1973 and received a doctorate from the University of Frankfurt in 1978. He then joined the IBM Zürich Research Laboratory, where he and Rohrer designed and built the first STM. In 1985–86 Binnig joined a physics research group at IBM’s Almaden Research Center in San Jose, Calif., and in 1987– 95 he directed an IBM research group at the University of Munich. He then returned to Zürich. About the time Binnig shared the Nobel Prize with Rohrer for the invention of the STM, he developed the concept of atomic force microscopy. An atomic force microscope profiles a sample by dragging a stylus only a few atoms wide across the surface of the sample and measuring the force between the stylus and the surface. The resulting signal can be translated into a description of
the surface topography. This surface-force scan can be converted into a three-dimensional surface image. Binnig’s involvement in the invention of the STM stimulated an interest in the creative process. In 1989 he published the book Aus dem Nichts (“Out of Nothing”), which posited that creativity grows from disorder. Binnig went on to articulate what he called “fractal Darwinism,” a theory that new ideas or devices evolve through complex interactions on multiple scales, from the social group to the individual and from broad concepts to specific problems.
0 notes
Text
LEMONTOBER DAY 21: LEAST FAVORITE SONG
Yeah….character by the totally rad @ledeecity !!!
Oh and also
#lemon demon#lemontober#lemontober 2023#ledee city#mr. porta-potty man#tungsten wolfgang#LOVE WINS ‼️‼️‼️💯💯💯
8 notes
·
View notes
Text
What Year Was This Invented?
Adrenaline: (isolation of) John Jacob Abel, U.S., 1897.
Aerosol can: Erik Rotheim, Norway, 1926.
Air brake: George Westinghouse, U.S., 1868.
Air conditioning: Willis Carrier, U.S., 1911.
Airship: (non-rigid) Henri Giffard, France, 1852; (rigid) Ferdinand von Zeppelin, Germany, 1900.
ALS: NE1 Gene link to ALS - Landers and Jan Veldink of University Medical Center Utrecht led the study involving 11 countries, 2016
Aluminum manufacture: (by electrolytic action) Charles M. Hall, U.S., 1866.
Anatomy, human: (De fabrica corporis humani, an illustrated systematic study of the human body) Andreas Vesalius, Belgium, 1543; (comparative: parts of an organism are correlated to the functioning whole) Georges Cuvier, France, 1799–1805.
Anesthetic: (first use of anesthetic—ether—on humans) Crawford W. Long, U.S., 1842.
Antibiotics: (first demonstration of antibiotic effect) Louis Pasteur, Jules-François Joubert, France, 1887; (discovery of penicillin, first modern antibiotic) Alexander Fleming, England, 1928; (penicillin’s infection-fighting properties) Howard Florey, Ernst Chain, England, 1940.
Antiseptic: (surgery) Joseph Lister, England, 1867.
Antitoxin, diphtheria: Emil von Behring, Germany, 1890.
Appliances, electric: (fan) Schuyler Wheeler, U.S., 1882; (flatiron) Henry W. Seely, U.S., 1882; (stove) Hadaway, U.S., 1896; (washing machine) Alva Fisher, U.S., 1906.
Aqualung: Jacques-Yves Cousteau, Emile Gagnan, France, 1943.
Aspirin: Dr. Felix Hoffman, Germany, 1899.
Astronomical calculator: The Antikythera device, first century B.C., Greece. Found off island of Antikythera in 1900.
Atom: (nuclear model of) Ernest Rutherford, England, 1911.
Atomic theory: (ancient) Leucippus, Democritus, Greece, c. 500 B.C.; Lucretius, Rome c.100 B.C.; (modern) John Dalton, England, 1808.
Atomic structure: (formulated nuclear model of atom, Rutherford model) Ernest Rutherford, England, 1911; (proposed current concept of atomic structure, the Bohr model) Niels Bohr, Denmark, 1913.
Automobile: (first with internal combustion engine, 250 rpm) Karl Benz, Germany, 1885; (first with practical high-speed internal combustion engine, 900 rpm) Gottlieb Daimler, Germany, 1885; (first true automobile, not carriage with motor) René Panhard, Emile Lavassor, France, 1891; (carburetor, spray) Charles E. Duryea, U.S., 1892.
Automated Teller Machine (ATM): Long Island Branch of Chemical Bank
Autopilot: (for aircraft) Elmer A. Sperry, U.S., c.1910, first successful test, 1912, in a Curtiss flying boat.
Avogadro’s law: (equal volumes of all gases at the same temperature and pressure contain equal number of molecules) Amedeo Avogadro, Italy, 1811.
Bacteria: Anton van Leeuwenhoek, The Netherlands, 1683.
Balloon, hot-air: Joseph and Jacques Montgolfier, France, 1783.
Barbed wire: (most popular) Joseph E. Glidden, U.S., 1873.
Bar codes: (computer-scanned binary signal code):
(retail trade use) Monarch Marking, U.S. 1970; (industrial use) Plessey Telecommunications, England, 1970.
Barometer: Evangelista Torricelli, Italy, 1643.
Bicycle: Karl D. von Sauerbronn, Germany, 1816; (first modern model) James Starley, England, 1884.
Big Bang theory: (the universe originated with a huge explosion) George LeMaitre, Belgium, 1927; (modified LeMaitre theory labeled “Big Bang”) George A. Gamow, U.S., 1948; (cosmic microwave background radiation discovered, confirms theory) Arno A. Penzias and Robert W. Wilson, U.S., 1965.
Blackberry, 2002
Blood, circulation of: William Harvey, England, 1628.
Boyle’s law: (relation between pressure and volume in gases) Robert Boyle, Ireland, 1662.
Braille: Louis Braille, France, 1829.
Bridges: (suspension, iron chains) James Finley, Pa., 1800; (wire suspension) Marc Seguin, Lyons, 1825; (truss) Ithiel Town, U.S., 1820.
Bullet: (conical) Claude Minié, France, 1849.
Calculating machine: (logarithms: made multiplying easier and thus calculators practical) John Napier, Scotland, 1614; (slide rule) William Oughtred, England, 1632; (digital calculator) Blaise Pascal, 1642; (multiplication machine) Gottfried Leibniz, Germany, 1671; (important 19th-century contributors to modern machine) Frank S. Baldwin, Jay R. Monroe, Dorr E. Felt, W. T. Ohdner, William Burroughs, all U.S.; (“analytical engine” design, included concepts of programming, taping) Charles Babbage, England, 1835.
Calculus: Isaac Newton, England, 1669; (differential calculus) Gottfried Leibniz, Germany, 1684.
Camera: (hand-held) George Eastman, U.S., 1888; (Polaroid Land) Edwin Land, U.S., 1948.
“Canals” of Mars:Giovanni Schiaparelli, Italy, 1877.
Carpet sweeper: Melville R. Bissell, U.S., 1876.
Car radio: William Lear, Elmer Wavering, U.S., 1929, manufactured by Galvin Manufacturing Co., “Motorola.”
Cells: (word used to describe microscopic examination of cork) Robert Hooke, England, 1665; (theory: cells are common structural and functional unit of all living organisms) Theodor Schwann, Matthias Schleiden, 1838–1839.
Cement, Portland: Joseph Aspdin, England, 1824.
Chewing gum: (spruce-based) John Curtis, U.S., 1848; (chicle-based) Thomas Adams, U.S., 1870.
Cholera bacterium: Robert Koch, Germany, 1883.
Circuit, integrated: (theoretical) G.W.A. Dummer, England, 1952; (phase-shift oscillator) Jack S. Kilby, Texas Instruments, U.S., 1959.
Classification of plants: (first modern, based on comparative study of forms) Andrea Cesalpino, Italy, 1583; (classification of plants and animals by genera and species) Carolus Linnaeus, Sweden, 1737–1753.
Clock, pendulum: Christian Huygens, The Netherlands, 1656.
Coca-Cola: John Pemberton, U.S., 1886.
Combustion: (nature of) Antoine Lavoisier, France, 1777.
Compact disk: RCA, U.S., 1972.
Computers: (first design of analytical engine) Charles Babbage, 1830s; (ENIAC, Electronic Numerical Integrator and Calculator, first all-electronic, completed) 1945; (dedicated at University of Pennsylvania) 1946; (UNIVAC, Universal Automatic Computer, handled both numeric and alphabetic data) 1951.
Computer mouse: Doug Engelbart, 1962
Concrete: (reinforced) Joseph Monier, France, 1877.
Condensed milk: Gail Borden, U.S., 1853.
Conditioned reflex: Ivan Pavlov, Russia, c.1910.
Conservation of electric charge: (the total electric charge of the universe or any closed system is constant) Benjamin Franklin, U.S., 1751–1754.
Contagion theory: (infectious diseases caused by living agent transmitted from person to person) Girolamo Fracastoro, Italy, 1546.
Continental drift theory: (geographer who pieced together continents into a single landmass on maps) Antonio Snider-Pellegrini, France, 1858; (first proposed in lecture) Frank Taylor, U.S.; (first comprehensive detailed theory) Alfred Wegener, Germany, 1912.
Contraceptive, oral: Gregory Pincus, Min Chuch Chang, John Rock, Carl Djerassi, U.S., 1951.
Converter, Bessemer: William Kelly, U.S., 1851.
Cordless Tools, 1961
Cosmetics: Egypt, c. 4000 B.C.
Cosamic string theory: (first postulated) Thomas Kibble, 1976.
Cotton gin: Eli Whitney, U.S., 1793.
Crossbow: China, c. 300 B.C.
Cyclotron: Ernest O. Lawrence, U.S., 1931.
Deuterium: (heavy hydrogen) Harold Urey, U.S., 1931.
Disease: (chemicals in treatment of) crusaded by Philippus Paracelsus, 1527–1541; (germ theory) Louis Pasteur, France, 1862–1877.
DNA: (deoxyribonucleic acid) Friedrich Meischer, Germany, 1869; (determination of double-helical structure) Rosalind Elsie Franklin, F. H. Crick, England, James D. Watson, U.S., 1953.
Dye: (aniline, start of synthetic dye industry) William H. Perkin, England, 1856.
Dynamite: Alfred Nobel, Sweden, 1867.
Ebola Vaccine: Canadian Government, 2016
Electric cooking utensil: (first) patented by St. George Lane-Fox, England, 1874.
Electric generator (dynamo): (laboratory model) Michael Faraday, England, 1832; Joseph Henry, U.S., c.1832; (hand-driven model) Hippolyte Pixii, France, 1833; (alternating-current generator) Nikola Tesla, U.S., 1892.
Electric lamp: (arc lamp) Sir Humphrey Davy, England, 1801; (fluorescent lamp) A.E. Becquerel, France, 1867; (incandescent lamp) Sir Joseph Swann, England, Thomas A. Edison, U.S., contemporaneously, 1870s; (carbon arc street lamp) Charles F. Brush, U.S., 1879; (first widely marketed incandescent lamp) Thomas A. Edison, U.S., 1879; (mercury vapor lamp) Peter Cooper Hewitt, U.S., 1903; (neon lamp) Georges Claude, France, 1911; (tungsten filament) Irving Langmuir, U.S., 1915.
Electrocardiography: Demonstrated by Augustus Waller, 1887; (first practical device for recording activity of heart) Willem Einthoven, 1903, Dutch physiologist.
Electromagnet: William Sturgeon, England, 1823.
Electron: Sir Joseph J. Thompson, England, 1897.
Elevator, passenger: (safety device permitting use by passengers) Elisha G. Otis, U.S., 1852; (elevator utilizing safety device) 1857.
E = mc2: (equivalence of mass and energy) Albert Einstein, Switzerland, 1907.
Engine, internal combustion: No single inventor. Fundamental theory established by Sadi Carnot, France, 1824; (two-stroke) Etienne Lenoir, France, 1860; (ideal operating cycle for four-stroke) Alphonse Beau de Roche, France, 1862; (operating four-stroke) Nikolaus Otto, Germany, 1876; (diesel) Rudolf Diesel, Germany, 1892; (rotary) Felix Wankel, Germany, 1956.
Evolution: (organic) Jean-Baptiste Lamarck, France, 1809; (by natural selection) Charles Darwin, England, 1859.
Exclusion principle: (no two electrons in an atom can occupy the same energy level) Wolfgang Pauli, Germany, 1925.
Expanding universe theory: (first proposed) George LeMaitre, Belgium, 1927; (discovered first direct evidence that the universe is expanding) Edwin P. Hubble, U.S., 1929; (Hubble constant: a measure of the rate at which the universe is expanding) Edwin P. Hubble, U.S., 1929.
Falling bodies, law of: Galileo Galilei, Italy, 1590.
Fermentation: (microorganisms as cause of) Louis Pasteur, France, c.1860.
Fiber optics: Narinder Kapany, England, 1955.
Fibers, man-made: (nitrocellulose fibers treated to change flammable nitrocellulose to harmless cellulose, precursor of rayon) Sir Joseph Swann, England, 1883; (rayon) Count Hilaire de Chardonnet, France, 1889; (Celanese) Henry and Camille Dreyfuss, U.S., England, 1921; (research on polyesters and polyamides, basis for modern man-made fibers) U.S., England, Germany, 1930s; (nylon) Wallace H. Carothers, U.S., 1935.
Frozen food: Clarence Birdseye, U.S., 1924.
Gene transfer: (human) Steven Rosenberg, R. Michael Blaese, W. French Anderson, U.S., 1989.
Geometry, elements of: Euclid, Alexandria, Egypt, c. 300 B.C.; (analytic) René Descartes, France; and Pierre de Fermat, Switzerland, 1637.
Gravitation, law of: Sir Isaac Newton, England, c.1665 (published 1687).
Gunpowder: China, c.700.
Gyrocompass: Elmer A. Sperry, U.S., 1905.
Gyroscope: Léon Foucault, France, 1852.
Halley’s Comet: Edmund Halley, England, 1705.
Heart implanted in human, permanent artificial:Dr. Robert Jarvik, U.S., 1982.
Heart, temporary artificial: Willem Kolft, 1957.
Helicopter: (double rotor) Heinrich Focke, Germany, 1936; (single rotor) Igor Sikorsky, U.S., 1939.
Helium first observed on sun: Sir Joseph Lockyer, England, 1868.
Heredity, laws of: Gregor Mendel, Austria, 1865.
Holograph: Dennis Gabor, England, 1947.
Home videotape systems (VCR): (Betamax) Sony, Japan, 1975; (VHS) Matsushita, Japan, 1975.
Ice age theory: Louis Agassiz, Swiss-American, 1840.
Induction, electric: Joseph Henry, U.S., 1828.
Insulin: (first isolated) Sir Frederick G. Banting and Charles H. Best, Canada, 1921; (discovery first published) Banting and Best, 1922; (Nobel Prize awarded for purification for use in humans) John Macleod and Banting, 1923; (first synthesized), China, 1966.
Intelligence testing: Alfred Binet, Theodore Simon, France, 1905.
Interferon: Alick Isaacs, Jean Lindemann, England, Switzerland, 1957.
iPhone, 2007
iPod, 2001
Isotopes: (concept of) Frederick Soddy, England, 1912; (stable isotopes) J. J. Thompson, England, 1913; (existence demonstrated by mass spectrography) Francis W. Ashton, 1919.
Jet propulsion: (engine) Sir Frank Whittle, England, Hans von Ohain, Germany, 1936; (aircraft) Heinkel He 178, 1939.
Kinetic theory of gases: (molecules of a gas are in a state of rapid motion) Daniel Bernoulli, Switzerland, 1738.
Laser: (theoretical work on) Charles H. Townes, Arthur L. Schawlow, U.S., N. Basov, A. Prokhorov, U.S.S.R., 1958; (first working model) T. H. Maiman, U.S., 1960.
Lawn mower: Edwin Budding, John Ferrabee, England, 1830–1831.
LCD (liquid crystal display): Hoffmann-La Roche, Switzerland, 1970.
Lens, bifocal: Benjamin Franklin, U.S., c.1760.
Leyden jar: (prototype electrical condenser) Canon E. G. von Kleist of Kamin, Pomerania, 1745; independently evolved by Cunaeus and P. van Musschenbroek, University of Leyden, Holland, 1746, from where name originated.
Light, nature of: (wave theory) Christian Huygens, The Netherlands, 1678; (electromagnetic theory) James Clerk Maxwell, England, 1873.
Light, speed of: (theory that light has finite velocity) Olaus Roemer, Denmark, 1675.
Lightning rod: Benjamin Franklin, U.S., 1752.
Locomotive: (steam powered) Richard Trevithick, England, 1804; (first practical, due to multiple-fire-tube boiler) George Stephenson, England, 1829; (largest steam-powered) Union Pacific’s “Big Boy,” U.S., 1941.
Lock, cylinder: Linus Yale, U.S., 1851.
Loom: (horizontal, two-beamed) Egypt, c. 4400 B.C.; (Jacquard drawloom, pattern controlled by punch cards) Jacques de Vaucanson, France, 1745, Joseph-Marie Jacquard, 1801; (flying shuttle) John Kay, England, 1733; (power-driven loom) Edmund Cartwright, England, 1785.
Machine gun: (hand-cranked multibarrel) Richard J. Gatling, U.S., 1862; (practical single barrel, belt-fed) Hiram S. Maxim, Anglo-American, 1884.
Magnet, Earth is: William Gilbert, England, 1600.
Magnetic Resonance Imaging (MRI): Inventor not established, 1973
Match: (phosphorus) François Derosne, France, 1816; (friction) Charles Sauria, France, 1831; (safety) J. E. Lundstrom, Sweden, 1855.
Measles vaccine: John F. Enders, Thomas Peebles, U.S., 1953.
Metric system: revolutionary government of France, 1790–1801.
Microphone: Charles Wheatstone, England, 1827.
Microscope: (compound) Zacharias Janssen, The Netherlands, 1590; (electron) Vladimir Zworykin et al., U.S., Canada, Germany, 1932–1939.
Microwave oven: Percy Spencer, U.S., 1947.
Motion, laws of: Isaac Newton, England, 1687.
Motion pictures: Thomas A. Edison, U.S., 1893.
Motion pictures, sound: Product of various inventions. First picture with synchronized musical score: Don Juan, 1926; with spoken dialogue: The Jazz Singer, 1927; both Warner Bros.
Motor, electric: Michael Faraday, England, 1822; (alternating-current) Nikola Tesla, U.S., 1892.
Motorcycle: (motor tricycle) Edward Butler, England, 1884; (gasoline-engine motorcycle) Gottlieb Daimler, Germany, 1885.
Moving assembly line: Henry Ford, U.S., 1913.
Multiple Sclerosis genetic link: University of British Columbia, 2016
Music synthesizer: Robert Moog, 1964
Neptune: (discovery of) Johann Galle, Germany, 1846.
Neptunium: (first transuranic element, synthesis of) Edward M. McMillan, Philip H. Abelson, U.S., 1940.
Neutron: James Chadwick, England, 1932.
Neutron-induced radiation: Enrico Fermi et al., Italy, 1934.
Nitroglycerin: Ascanio Sobrero, Italy, 1846.
Nuclear fission: Otto Hahn, Fritz Strassmann, Germany, 1938.
Nuclear reactor: Enrico Fermi, Italy, et al., 1942.
Ohm’s law: (relationship between strength of electric current, electromotive force, and circuit resistance) Georg S. Ohm, Germany, 1827.
Oil well: Edwin L. Drake, U.S., 1859.
Oxygen: (isolation of) Joseph Priestley, 1774; Carl Scheele, 1773.
Ozone: Christian Schönbein, Germany, 1839.
Pacemaker: (internal) Clarence W. Lillehie, Earl Bakk, U.S., 1957.
Paper China, c.100 A.D.
Parachute: Louis S. Lenormand, France, 1783.
Pen: (fountain) Lewis E. Waterman, U.S., 1884; (ball-point, for marking on rough surfaces) John H. Loud, U.S., 1888; (ball-point, for handwriting) Lazlo Biro, Argentina, 1944.
Periodic law: (that properties of elements are functions of their atomic weights) Dmitri Mendeleev, Russia, 1869.
Periodic table: (arrangement of chemical elements based on periodic law) Dmitri Mendeleev, Russia, 1869.
Phonograph: Thomas A. Edison, U.S., 1877.
Photography: (first paper negative, first photograph, on metal) Joseph Nicéphore Niepce, France, 1816–1827; (discovery of fixative powers of hyposulfite of soda) Sir John Herschel, England, 1819; (first direct positive image on silver plate, the daguerreotype) Louis Daguerre, based on work with Niepce, France, 1839; (first paper negative from which a number of positive prints could be made) William Talbot, England, 1841. Work of these four men, taken together, forms basis for all modern photography. (First color images) Alexandre Becquerel, Claude Niepce de Saint-Victor, France, 1848–1860; (commercial color film with three emulsion layers, Kodachrome) U.S., 1935.
Photovoltaic effect: (light falling on certain materials can produce electricity) Edmund Becquerel, France, 1839.
Piano: (Hammerklavier) Bartolommeo Cristofori, Italy, 1709; (pianoforte with sustaining and damper pedals) John Broadwood, England, 1873.
Planetary motion, laws of: Johannes Kepler, Germany, 1609, 1619.
Plant respiration and photosynthesis: Jan Ingenhousz, Holland, 1779.
Plastics: (first material, nitrocellulose softened by vegetable oil, camphor, precursor to Celluloid) Alexander Parkes, England, 1855; (Celluloid, involving recognition of vital effect of camphor) John W. Hyatt, U.S., 1869; (Bakelite, first completely synthetic plastic) Leo H. Baekeland, U.S., 1910; (theoretical background of macromolecules and process of polymerization on which modern plastics industry rests) Hermann Staudinger, Germany, 1922.
Plate tectonics: Alfred Wegener, Germany, 1912–1915.
Plow, forked: Mesopotamia, before 3000 B.C.
Plutonium, synthesis of: Glenn T. Seaborg, Edwin M. McMillan, Arthur C. Wahl, Joseph W. Kennedy, U.S., 1941.
Polio, vaccine: (experimentally safe dead-virus vaccine) Jonas E. Salk, U.S., 1952; (effective large-scale field trials) 1954; (officially approved) 1955; (safe oral live-virus vaccine developed) Albert B. Sabin, U.S., 1954; (available in the U.S.) 1960.
Positron: Carl D. Anderson, U.S., 1932.
Pressure cooker: (early version) Denis Papin, France, 1679.
Printing: (block) Japan, c.700; (movable type) Korea, c.1400; Johann Gutenberg, Germany, c.1450 (lithography, offset) Aloys Senefelder, Germany, 1796; (rotary press) Richard Hoe, U.S., 1844; (linotype) Ottmar Mergenthaler, U.S., 1884.
Probability theory: René Descartes, France; and Pierre de Fermat, Switzerland, 1654.
Proton: Ernest Rutherford, England, 1919.
Prozac: (antidepressant fluoxetine) Bryan B. Malloy, Scotland, and Klaus K. Schmiegel, U.S., 1972; (released for use in U.S.) Eli Lilly & Company, 1987.
Psychoanalysis: Sigmund Freud, Austria, c.1904.
Pulsars: Antony Hewish and Jocelyn Bell Burnel, England, 1967.
Quantum theory: (general) Max Planck, Germany, 1900; (sub-atomic) Niels Bohr, Denmark, 1913; (quantum mechanics) Werner Heisenberg, Erwin Schrödinger, Germany, 1925.
Quarks: Jerome Friedman, Henry Kendall, Richard Taylor, U.S., 1967.
Quasars: Marten Schmidt, U.S., 1963.
Rabies immunization: Louis Pasteur, France, 1885.
Radar: (limited to one-mile range) Christian Hulsmeyer, Germany, 1904; (pulse modulation, used for measuring height of ionosphere) Gregory Breit, Merle Tuve, U.S., 1925; (first practical radar—radio detection and ranging) Sir Robert Watson-Watt, England, 1934–1935.
Radio: (electromagnetism, theory of) James Clerk Maxwell, England, 1873; (spark coil, generator of electromagnetic waves) Heinrich Hertz, Germany, 1886; (first practical system of wireless telegraphy) Guglielmo Marconi, Italy, 1895; (first long-distance telegraphic radio signal sent across the Atlantic) Marconi, 1901; (vacuum electron tube, basis for radio telephony) Sir John Fleming, England, 1904; (triode amplifying tube) Lee de Forest, U.S., 1906; (regenerative circuit, allowing long-distance sound reception) Edwin H. Armstrong, U.S., 1912; (frequency modulation—FM) Edwin H. Armstrong, U.S., 1933.
Radioactivity: (X-rays) Wilhelm K. Roentgen, Germany, 1895; (radioactivity of uranium) Henri Becquerel, France, 1896; (radioactive elements, radium and polonium in uranium ore) Marie Sklodowska-Curie, Pierre Curie, France, 1898; (classification of alpha and beta particle radiation) Pierre Curie, France, 1900; (gamma radiation) Paul-Ulrich Villard, France, 1900.
Radiocarbon dating, carbon-14 method: (discovered) 1947, Willard F. Libby, U.S.; (first demonstrated) U.S., 1950.
Radio signals, extraterrestrial: first known radio noise signals were received by U.S. engineer, Karl Jansky, originating from the Galactic Center, 1931.
Radio waves: (cosmic sources, led to radio astronomy) Karl Jansky, U.S., 1932.
Razor: (safety, successfully marketed) King Gillette, U.S., 1901; (electric) Jacob Schick, U.S., 1928, 1931.
Reaper: Cyrus McCormick, U.S., 1834.
Refrigerator: Alexander Twining, U.S., James Harrison, Australia, 1850; (first with a compressor device) the Domelse, Chicago, U.S., 1913.
Refrigerator ship: (first) the Frigorifique, cooling unit designed by Charles Teller, France, 1877.
Relativity: (special and general theories of) Albert Einstein, Switzerland, Germany, U.S., 1905–1953.
Revolver: Samuel Colt, U.S., 1835.
Richter scale: Charles F. Richter, U.S., 1935.
Rifle: (muzzle-loaded) Italy, Germany, c.1475; (breech-loaded) England, France, Germany, U.S., c.1866; (bolt-action) Paul von Mauser, Germany, 1889; (automatic) John Browning, U.S., 1918.
Rocket: (liquid-fueled) Robert Goddard, U.S., 1926.
Roller bearing: (wooden for cartwheel) Germany or France, c.100 B.C.
Rotation of Earth: Jean Bernard Foucault, France, 1851.
Royal Observatory, Greenwich: established in 1675 by Charles II of England; John Flamsteed first Astronomer Royal.
Rubber: (vulcanization process) Charles Goodyear, U.S., 1839.
Saccharin: Constantine Fuhlberg, Ira Remsen, U.S., 1879.
Safety pin: Walter Hunt, U.S., 1849.
Saturn, ring around: Christian Huygens, The Netherlands, 1659.
“Scotch” tape:Richard Drew, U.S., 1929.
Screw propeller: Sir Francis P. Smith, England, 1836; John Ericsson, England, worked independently of and simultaneously with Smith, 1837.
Seismograph: (first accurate) John Milne, England, 1880.
Sewing machine: Elias Howe, U.S., 1846; (continuous stitch) Isaac Singer, U.S., 1851.
Smoke detector: Randolph Smith and Kenneth House, 1969
Solar energy: First realistic application of solar energy using parabolic solar reflector to drive caloric engine on steam boiler, John Ericsson, U.S., 1860s.
Solar system, universe: (Sun-centered universe) Nicolaus Copernicus, Warsaw, 1543; (establishment of planetary orbits as elliptical) Johannes Kepler, Germany, 1609; (infinity of universe) Giordano Bruno, Italian monk, 1584.
Spectrum: (heterogeneity of light) Sir Isaac Newton, England, 1665–1666.
Spectrum analysis: Gustav Kirchhoff, Robert Bunsen, Germany, 1859.
Spermatozoa: Anton van Leeuwenhoek, The Netherlands, 1683.
Spinning: (spinning wheel) India, introduced to Europe in Middle Ages; (Saxony wheel, continuous spinning of wool or cotton yarn) England, c.1500–1600; (spinning jenny) James Hargreaves, England, 1764; (spinning frame) Sir Richard Arkwright, England, 1769; (spinning mule, completed mechanization of spinning, permitting production of yarn to keep up with demands of modern looms) Samuel Crompton, England, 1779.
Star catalog: (first modern) Tycho Brahe, Denmark, 1572.
Steam engine: (first commercial version based on principles of French physicist Denis Papin) Thomas Savery, England, 1639; (atmospheric steam engine) Thomas Newcomen, England, 1705; (steam engine for pumping water from collieries) Savery, Newcomen, 1725; (modern condensing, double acting) James Watt, England, 1782.
Steamship: Claude de Jouffroy d’Abbans, France, 1783; James Rumsey, U.S., 1787; John Fitch, U.S., 1790. All preceded Robert Fulton, U.S., 1807, credited with launching first commercially successful steamship.
Stethoscope: René Laënnec, France, 1819.
Sulfa drugs: (parent compound, para-aminobenzenesulfanomide) Paul Gelmo, Austria, 1908; (antibacterial activity) Gerhard Domagk, Germany, 1935.
Superconductivity: (theory) Bardeen, Cooper, Scheiffer, U.S., 1957.
Symbolic logic: George Boule, 1854; (modern) Bertrand Russell, Alfred North Whitehead, England, 1910–1913.
Tank, military: Sir Ernest Swinton, England, 1914.
Tape recorder: (magnetic steel tape) Valdemar Poulsen, Denmark, 1899.
Teflon: DuPont, U.S., 1943.
Telegraph: Samuel F. B. Morse, U.S., 1837.
Telephone: Alexander Graham Bell, U.S., 1876.
Telescope: Hans Lippershey, The Netherlands, 1608; (astronomical) Galileo Galilei, Italy, 1609; (reflecting) Isaac Newton, England, 1668.
Television: (Iconoscope–T.V. camera table), Vladimir Zworkin, U.S., 1923, and also kinescope (cathode ray tube), 1928; (mechanical disk-scanning method) successfully demonstrated by J.K. Baird, England, C.F. Jenkins, U.S., 1926; (first all-electric television image), 1927, Philo T. Farnsworth, U.S; (color, mechanical disk) Baird, 1928; (color, compatible with black and white) George Valensi, France, 1938; (color, sequential rotating filter) Peter Goldmark, U.S., first introduced, 1951; (color, compatible with black and white) commercially introduced in U.S., National Television Systems Committee, 1953.
Thermodynamics: (first law: energy cannot be created or destroyed, only converted from one form to another) Julius von Mayer, Germany, 1842; James Joule, England, 1843; (second law: heat cannot of itself pass from a colder to a warmer body) Rudolph Clausius, Germany, 1850; (third law: the entropy of ordered solids reaches zero at the absolute zero of temperature) Walter Nernst, Germany, 1918.
Thermometer: (open-column) Galileo Galilei, c.1593; (clinical) Santorio Santorio, Padua, c.1615; (mercury, also Fahrenheit scale) Gabriel D. Fahrenheit, Germany, 1714; (centigrade scale) Anders Celsius, Sweden, 1742; (absolute-temperature, or Kelvin, scale) William Thompson, Lord Kelvin, England, 1848.
Three point seat belt: Nils Bohlin, 1957
Tire, pneumatic: Robert W. Thompson, England, 1845; (bicycle tire) John B. Dunlop, Northern Ireland, 1888.
Toilet, flush: Product of Minoan civilization, Crete, c. 2000 B.C. Alleged invention by “Thomas Crapper” is untrue.
Tractor: Benjamin Holt, U.S., 1900.
Transformer, electric: William Stanley, U.S., 1885.
Transistor: John Bardeen, Walter H. Brattain, William B. Shockley, U.S., 1947.
Tuberculosis bacterium: Robert Koch, Germany, 1882.
Typewriter: Christopher Sholes, Carlos Glidden, U.S., 1867.
Uncertainty principle: (that position and velocity of an object cannot both be measured exactly, at the same time) Werner Heisenberg, Germany, 1927.
Uranus: (first planet discovered in recorded history) William Herschel, England, 1781.
Vaccination: Edward Jenner, England, 1796.
Vacuum cleaner: (manually operated) Ives W. McGaffey, 1869; (electric) Hubert C. Booth, England, 1901; (upright) J. Murray Spangler, U.S., 1907.
Van Allen (radiation) Belt: (around Earth) James Van Allen, U.S., 1958.
Video disk: Philips Co., The Netherlands, 1972.
Vitamins: (hypothesis of disease deficiency) Sir F. G. Hopkins, Casimir Funk, England, 1912; (vitamin A) Elmer V. McCollum, M. Davis, U.S., 1912–1914; (vitamin B) McCollum, U.S., 1915–1916; (thiamin, B1) Casimir Funk, England, 1912; (riboflavin, B2) D. T. Smith, E. G. Hendrick, U.S., 1926; (niacin) Conrad Elvehjem, U.S., 1937; (B6) Paul Gyorgy, U.S., 1934; (vitamin C) C. A. Hoist, T. Froelich, Norway, 1912; (vitamin D) McCollum, U.S., 1922; (folic acid) Lucy Wills, England, 1933.
Voltaic pile: (forerunner of modern battery, first source of continuous electric current) Alessandro Volta, Italy, 1800.
Wallpaper: Europe, 16th and 17th century.
Wassermann test: (for syphilis) August von Wassermann, Germany, 1906.
Wheel: (cart, solid wood) Mesopotamia, c.3800–3600 B.C.
Windmill: Persia, c.600.
World Wide Web: (developed while working at CERN) Tim Berners-Lee, England, 1989; (development of Mosaic browser makes WWW available for general use) Marc Andreeson, U.S., 1993.
Xerography: Chester Carlson, U.S., 1938.
Zero: India, c.600; (absolute zero temperature, cessation of all molecular energy) William Thompson, Lord Kelvin, England, 1848.
Zipper: W. L. Judson, U.S., 1891.
5 notes
·
View notes