#spi flash programmer
Explore tagged Tumblr posts
jsms2itht · 10 months ago
Text
https://www.futureelectronics.com/p/semiconductors--memory--flash--norflash--nor/mx29f040cqi-70gtr-macronix-4058675
Flash memory storage, NOR Flash Memory, SPI flash programmer, flash memory speed
MX29F Series 5 V 4 Mb (512k x 8) 70 ns Surface Mount Flash Memory - PLCC-32
1 note · View note
clytn2ewws · 11 months ago
Text
https://www.futureelectronics.com/p/semiconductors--memory--flash--norflash--serial/s25fl256sagnfi001-infineon-7056191
USB flash memory storage, spi flash programmer software, memory chip
FL-S Series 256 Mb (32 M x 8) 3.6V 133MHz Non-Volatile SPI Flash Memory - WSON-8
1 note · View note
uvaldecomputerrepairsstuff · 2 months ago
Text
Troubleshooting BIOS Issues: When to Repair, Reflash, or Replace
Understanding BIOS Chips and When You Might Need a Replacement When it comes to troubleshooting computer issues, one of the components most people overlook is the BIOS (Basic Input/Output System) chip. This small, unassuming chip is vital for your computer’s operation, storing the essential firmware needed to start up your machine and manage the communication between your operating system and…
0 notes
jmie2cking · 1 year ago
Text
USB flash drives, Memory ICs, Flash Memory NOR Flash, USB flash memory storage
FL-S Series 256 Mb (32 M x 8) 3.6V 133MHz Non-Volatile SPI Flash Memory - WSON-8
1 note · View note
dish-download · 5 days ago
Text
CH347 Programmer Latest Update
CH347 Programmer New Software Free Download CH347 high-speed programmer module 24 EEPROM 25 SPI FALSH supports TTL. The new USB-to-UART/I2C/SPI/JTAG/SWD interface controller is from Nanjing Qinheng Microelectronics Co., Ltd. Building on the success of its predecessor. Download the Satellite Receiver Flash file and another programmer file. Latest Update about Digital receiver and TV channel Like…
0 notes
b2bcybersecurity · 5 months ago
Text
AMD Prozessoren mit Sicherheitslücken
Tumblr media
Nun scheint nach Intel auch AMD ein Problem mit Sicherheitslücken in Prozessoren zu haben. Eine AMD-Seite zählt 26 Prozessoren und Familien auf, die angreifbar sind. Der Schweregrad der Sicherheitslücke liegt nach CVSS bei 7.5 von 10 und ist somit hochgefährlich. Das erste Interview zum Thema Sicherheitslücken in aktuellen AMD-Prozessoren führte das Online-Magazin Wired. Sicherheitsforscher haben eine Sicherheitslücke entdeckt, die wohl seit Jahrzehnten in AMD-Prozessoren vorhanden ist. Diese Lücke kann es Malware ermöglichen ganz tief in den Speicher des PCs einzudringen und sich dort einzunisten. Laut den Forschern ist es dann günstiger die CPU auszutauschen oder den Rechner zu entsorgen, aber der Versuch ihn von der Malware zu reinigen. Dutzende Modelle von AMD-Prozessoren betroffen Auf der Hackerkonferenz Defcon wurde die Sicherheitslücke unter dem Namen "Sinkclose" vorgestellt. Dabei soll es möglich sein in einen bestimmten Speicherteil, der für die Firmware reserviert ist, Code zu platzieren. Die Forscher warnten zwar, dass alle AMD-Chips bis 2006 betroffen sein könnten, aber nun hat AMD eine eigene Liste veröffentlicht, auf der 26 Modelle und Familien genannt sind. Die Liste zählt neben alten Namen wie Athlon auch neuere Namen wie Threadripper und sehr viele Ryzen-Modelle auf. Kriminologen und Forscher haben die schlimme Befürchtung, dass insbesondere staatliche Hacker die Sicherheitslücke ausnutzen werden. Einige Prozessoren, wie AMD EPYC sind Rechenzentrumsprodukte und arbeiten dort für viele Server. Die Experten meinten auch, dass eine Entfernung einer Malware nur noch per hardwarebasierten Programmiertool namens SPI Flash Programmer möglich sei. Aber viele der Prozessoren stecken auch in Mitarbeiter-PCs in Unternehmen und KMU. Daher empfiehlt AMD das Update der Firmware um die Lücke zu schließen. Bei einigen Prozessoren und Familien ist das Update aber noch nicht fertig und sind für Oktober angekündigt. Die Updates kommen aber nicht von AMD, sondern von den PC-Herstellern. Red./sel   Passende Artikel zum Thema Lesen Sie den ganzen Artikel
0 notes
ovaga-technologies · 5 months ago
Text
ATMEGA128-16AI Datasheet, Features, Pinout, and Applications
Update Time: Jun 20, 2024      Readership: 321
Overview of the ATMEGA128-16AI
The ATMEGA128-16AI is a highly integrated microcontroller, equipped with a rich set of peripherals and a robust instruction set, making it suitable for a wide range of applications from industrial automation to consumer electronics.
Specifications and Features
ATMEGA128-16AI Specifications
Core: 8-bit AVR
Flash Memory: 128 KB
SRAM: 4 KB
EEPROM: 4 KB
Clock Speed: Up to 16 MHz
Operating Voltage: 4.5V to 5.5V
Package: 64-pin TQFP
Operating Temperature Range: -40°C to 85°C
ATMEGA128-16AI Features
High-Performance AVR RISC Architecture: 133 Powerful Instructions
Peripheral Features: 53 Programmable I/O Lines, 8-channel 10-bit ADC, 4 PWM Channels
Timers: 4 Timer/Counters
Communication Interfaces: USART, SPI, TWI (I2C)
Power Management: Multiple Sleep Modes, Power-on Reset, Brown-out Detection
Development Support: JTAG Interface for On-Chip Debugging
ATMEGA128-16AI Pinout
Pin NameDescriptionFunctionVCCPower SupplyPowers the microcontrollerGNDGroundGround reference for the microcontrollerPORTAPA[0:7]Port A: Analog Inputs/General Purpose I/OPORTBPB[0:7]Port B: General Purpose I/OPORTCPC[0:7]Port C: General Purpose I/OPORTDPD[0:7]Port D: General Purpose I/OPORTEPE[0:7]Port E: General Purpose I/OPORTFPF[0:7]Port F: General Purpose I/OPORTGPG[0:4]Port G: General Purpose I/ORESETResetResets the microcontrollerXTAL1Crystal OscillatorExternal clock inputXTAL2Crystal OscillatorExternal clock outputAVCCAnalog SupplyPowers the ADCAREFAnalog ReferenceReference voltage for the ADCADC[0:7]Analog InputsInputs for the Analog-to-Digital ConverterJTAGJTAG InterfaceFor debugging and programmingTWISCL, SDAI2C Communication LinesUSARTTXD, RXDUART Communication LinesSPIMISO, MOSI, SCK, SSSPI Communication Lines
ATMEGA128-16AI Applications
Embedded Systems
The ATMEGA128-16AI is widely used in embedded systems for applications such as robotics, automation, and control systems, thanks to its rich set of peripherals and robust performance.
Industrial Automation
In industrial automation, the ATMEGA128-16AI provides the processing power and flexibility needed for controlling machinery, monitoring processes, and interfacing with sensors and actuators.
Consumer Electronics
This microcontroller is also found in consumer electronics, where it helps manage functions in devices like remote controls, home automation systems, and portable gadgets.
Automotive Systems
In automotive applications, the ATMEGA128-16AI can be used for engine control units (ECUs), infotainment systems, and other in-vehicle electronics requiring reliable and efficient operation.
Communication Systems
The ATMEGA128-16AI supports multiple communication protocols, making it suitable for use in networking and communication systems where reliable data transfer is crucial.
ATMEGA128-16AI Package
The ATMEGA128-16AI is available in a 64-pin TQFP package, which supports surface-mount technology (SMT). This package facilitates high-density PCB designs and efficient use of board space.
ATMEGA128-16AI Manufacturer
The ATMEGA128-16AI is manufactured by Microchip Technology, a leading provider of microcontroller, mixed-signal, analog, and Flash-IP solutions. Microchip offers extensive support and documentation for the ATMEGA128-16AI, ensuring ease of use and integration into electronic designs.
ATMEGA128-16AI Datasheet
Download ATMEGA128-16AI datasheet.
Conclusion
The ATMEGA128-16AI is a versatile and efficient microcontroller, suitable for a wide range of applications, from embedded systems to industrial automation and consumer electronics. Its combination of high performance, rich peripheral set, and robust development support makes it a valuable component in electronic designs. Microchip's commitment to quality ensures the ATMEGA128-16AI provides consistent and dependable results in various environments.
0 notes
uvaldecomputerrepairsstuff · 2 months ago
Text
EZP2023+ High-speed SPI FLASH Programmer 24/25/93 bios 25T80 Burning Offline Reset Kit
Model Number: EZP2023 Operating Temperature: -40-80 Dissipation Power: W Supply Voltage: V Condition: New Type: Voltage Regulator Brand Name: Roarkit Origin: Mainland China Field of application:This programmer can read and write the bios chips of Router, LCD,Car,DVD,TV,PC,harddisk,etc. Features:1. USB 2.0 interface, the speed is 12Mbps.2. The speed of reading and writing is fast.3. Auto…
0 notes
atoquarks · 7 months ago
Text
Tumblr media
0 notes
g-nicerf · 8 months ago
Text
New Product: LoRa Spread Spectrum Modulation SOC Wireless Module - Built-in ARM, Industrial Grade Crystal Oscillator
LoRa-STM32WLE5 is the latest SOC wireless module developed by NiceRF, The main chip of this module uses STM32WLE5 chip from ST. The module uses LoRa® modulation, has a built-in industrial-grade crystal oscillator, and is based on the high-performance Arm® Cortex®-m4 32-bit RISC core with an operating frequency of up to 48 MHz. This core implements a complete set of DSP instructions and an independent memory protection unit (MPU), providing 256KB flash memory and 64KB operational memory, thereby improving application security. This module is mainly used in ultra-long-range wireless and ultra-low-power radio applications, and can be widely used in security systems, smart agriculture, industrial manufacturing, smart homes and other places..
STM32WLE module MPU features:
Operating Temperature: -40°C to 105°C
Frequency range: 150MHz to 960MHz
256KB flash memory, 64KB SRAM
True Random Number Generator (RNG), hardware encryption AES 256-bit
Sector Protection against Readout and Write (PCROP),
Hardware Public Key Accelerator (KPA)
High-efficiency Embedded SMPS Buck Converter
SMPS to LDO Intelligent Switch
Low Power BOR Power-Down Reset
Ultra-Low Power POR/PDR
Programmable Voltage Detector
Tumblr media
Ultra-small size, built-in ARM, industrial grade crystal oscillator
The SOC wireless module has a volume of 17*14 (unit mm) and an ultra-small stamp hole design to facilitate secondary development by users. Built-in Arm® Cortex®-m4 32-bit RISC core Arm, coupled with an industrial-grade crystal oscillator with a temperature of 40-85°C, it can be used in industrial-grade applications.
LoRaA spread spectrum modulation low power consumption long distance transmission
In terms of communication technology, LoRa-STM32WLE5 uses LoRa spread spectrum modulation technology, which has the characteristics of low power consumption and long-distance transmission, making the module perform well in ultra-long-range wireless communications. Its receiving sensitivity is as high as -141dBm@BW=125KHz, the transmitting power is adjustable, up to 22dBm, and the transmission distance can reach more than 5000 meters. In terms of power consumption, its sleep current is less than 2uA, and its receiving current is less than 10mA. It is suitable for scenarios with high requirements on battery life and energy efficiency. These features provide ample opportunities for applications in areas such as security systems, smart agriculture, and industrial manufacturing.
Security encryption, read/write protection.
it supports 256-bit hardware encryption, PCROP read/write protection, ensuring the security and integrity of the data.
Supports multiple interface types
Support for multiple interface types, including UART, SPI, I2C, GPIO, and ADC, enables it to meet the interface requirements of different application scenarios, providing excellent scalability and flexibility.
For details, please click:https://www.nicerf.com/products/ Or click:https://nicerf.en.alibaba.com/productlist.html?spm=a2700.shop_index.88.4.1fec2b006JKUsd For consultation, please contact NiceRF (Email: [email protected]).
0 notes
quartz-components · 1 year ago
Text
You can purchase the SPI BIOS Flash Program Clip for just Rs. 158.00 on quartzcomponents.com. This cost-effective solution enables easy BIOS flashing and programming, making it a valuable tool for computer enthusiasts and technicians. Don't miss out on this affordable and essential device for your hardware needs.
Product Link - https://quartzcomponents.com/products/programmer-testing-clip-sop16-to-dip8
0 notes
lanshengic · 1 year ago
Text
Microchip SAM9X70 ultra-low power MPU for high-performance connectivity and user interface applications
Tumblr media
【Lansheng Technology News】On September 15, Microchip Technology released the SAM9X70 series MPU, which combines high performance, low power consumption, low system cost and high value. With the support of the powerful 800MHz Arm Thumb® processor, it provides a range of impressive connectivity options, rich user interface features and outstanding security features.
Microchip Technology SAM9X70 MPU is equipped with the ARM926EJ-S core, the CPU operating frequency is up to 800 MHz, and the system processing frequency is up to 266 MHz. On-chip memory includes 176-KB internal ROM, 64-KB internal SRAM, DDR3(L)/DDR2 controller and external bus interface (EBI). This MPU also supports various non-volatile memory (NVM) interfaces, including NAND flash, Quad SPI and eMMC flash. The SAM9X70 MPU achieves ultra-low power consumption through a real-time clock (RTC), 32-bit GP register, clock generator, power management controller, and software-programmable ultra-low power modes and optimization features.
In addition to its powerful processing capabilities and ultra-low power consumption features, what further enhances the performance of the SAM9X70 series is its rich on-chip peripheral interfaces. This series of MPUs feature 10/100/1000 Mbps Ethernet interfaces and support Time Sensitive Networking (TSN) connections, providing stable message delivery over standard Ethernet networks. The devices also offer MIPI-DSI, LVDS, RGB and 2D graphics interfaces, MIPI-CSI-2, Gigabit Ethernet with TSN and CAN-FD support for connectivity and user interface applications. Other connectivity options include an LCD controller, an image sensor controller, 13 FLEXCOMs, an ADC, a PWM controller, a Hi-Speed USB device/three Hi-Speed USB hosts, and more.
In addition to connecting peripherals, the SAM9X70 series also has powerful security features, such as secure boot using on-chip secure key storage (OTP), which can effectively prevent unauthorized users from stealing keys; high-performance encryption accelerators (SHA, AES and TDES) to protect confidential information and encrypt sensitive data. Additional security features include tamper protection and a Physical Unclonable Function (PUF) that generates keys on demand and clears them immediately after use.
Microchip Technology SAM9X70 MPU is available in a 240-ball BGA package. These MPUs are ideal for Internet of Things (IoT) applications, automotive, connected devices and user interfaces.
The SAM9X70 family is supported by Microchip MPLAB®-X development tools, Harmony, Linux® distributions and Ensemble Graphics Toolkit. When used with power management integrated circuits (PMICs) such as the MCP16501 and MCP16502, the SAM9X70's power-sequencing capabilities provide a fully tested power management solution.
Lansheng Technology Limited, which is a spot stock distributor of many well-known brands, we have price advantage of the first-hand spot channel, and have technical supports. 
Our main brands: STMicroelectronics, Toshiba, Microchip, Vishay, Marvell, ON Semiconductor, AOS, DIODES, Murata, Samsung, Hyundai/Hynix, Xilinx, Micron, Infinone, Texas Instruments, ADI, Maxim Integrated, NXP, etc
To learn more about our products, services, and capabilities, please visit our website at http://www.lanshengic.com
0 notes
draegerit · 2 years ago
Text
Der Arduino DUE im Fokus: Leistungsstärke und Vielseitigkeit für Maker
Tumblr media
Der Arduino DUE ist ein leistungsstarker Mikrocontroller, der sowohl Hobbybastlern als auch professionellen Entwicklern eine Fülle von Möglichkeiten bietet. Mit seinem robusten ARM Cortex-M3-Prozessor und einer Vielzahl von Ein- und Ausgangspins ermöglicht der Arduino DUE die Umsetzung anspruchsvoller Technikprojekte. Ob du ein Elektronikliebhaber bist, der seine eigenen Gadgets kreiert, oder ein erfahrener Entwickler, der komplexe Systeme entwickelt – der Arduino DUE ist ein zuverlässiger Partner. In diesem Artikel werden wir uns näher mit den Funktionen und Vorteilen des Arduino DUE befassen und sehen, warum er die erste Wahl für Projekte mit hohen Anforderungen ist.
Tumblr media
Technische Daten des Arduino DUE
Hier zunächst ein Auszug aus den technischen Daten des Mikrocontrollers: MikrocontrollerAT91SAM3X8ETaktgeschwindigkeit84 MHzSpeicher512 KB Flash Speicher 96 KB (zwei Bänke 64KB + 32 KB)Betriebsspannung3.3 VEingangsspannung7 bis 12 Vminimale / maximale Eingangsspannung6 V / 16 Vmaximale Stromaufnahme für alle Ein/Ausgänge130 mAmaximale Stromaufnahme am 3.3 V Pin800 mAmaximale Stromaufnahme am 5 V Pin800 mAdigitale Eingänge / Ausgänge54 davon 12 PWM Pinsanaloge Eingänge12analoge Ausgänge2 (DAC)Abmaße (L x B)101,52 mm x 53,3 mmGewicht36 gAuszug aus den technischen Daten des Mikrocontrollers Arduino DUE Dieses ist nur ein kleiner Auszug, welchen ich von der offiziellen Seite zum Mikrocontroller https://store.arduino.cc/collections/boards/products/arduino-due entnommen habe.
Tumblr media Tumblr media
Micro-USB Schnittstellen Der Mikrocontroller verfügt über diverse Schnittstelle, wovon als Erstes die beiden Micro-USB Schnittstellen ins Auge fallen. Diese beiden Schnittstellen sind auf der Rückseite mit NATIVE USB SAM3X und PROGRAMMING ATMEGA16U2 beschriftet.
Tumblr media
Der Anschluss zum Programmieren des Mikrocontrollers PROGRAMMING ist über einen ATMEGA16U2 mit dem Chip SAM3X verbunden. Wenn du dein Programm über diesen Anschluss auf den Mikrocontroller hoch lädst, dann wird zuvor ein Hard-Reset ausgeführt und der Speicher geleert. Die Programmierung über diesen Anschluss ist meist zuverlässiger und funktioniert auch als Backup, wenn einmal die MCU SAM3X abgestürzt ist. Um die MCU direkt zu programmieren, wird der Anschluss mit der Bezeichnung NATIVE USB SAM3X verwendet. Wenn eine Verbindung mit 1200 baud hergestellt wird, dann wird zunächst der interne Speicher über ein Soft-Erase geleert und der Mikrocontroller neu gestartet. Der Soft-Erase Prozess ist rein Softwarebasiert und kann ggf. auch abstürzen, wenn dieses geschehen ist dann hilft die kleine Taste "ERASE" auf dem Board weiter.
Tumblr media Tumblr media
Weitere programmierbare Schnittstellen Der Mikrocontroller hat natürlich auch die bekannten programmierbaren Schnittstellen wie: - UART (3x), - SPI, - CAN, - I2C
Tumblr media
Arduino DUE - Übersicht der Schnittstellen
Schutz vor Kurzschluss & Überlast
Der Arduino DUE verfügt über eine selbst rücksetzende Sicherung, welche den USB-Port vor Überlast & Kurzschluss absichert. Wenn mehr als 500 mA an den USB-Anschluss angelegt werden, unterbricht die Sicherung automatisch die Verbindung, bis der Kurzschluss oder die Überlast beseitigt ist.
Tumblr media
Besondere Features des Arduino DUE
Der Mikrocontroller hat so einige Features welche der Arduino UNO, Mega oder Nano V3 nicht hat. Zum einen ist der Mikrocontroller der erste mit einem 32-bit SAM Mikrochip. CAN (Controller Area Network) Am Mikrocontroller findest du die Pins CAN-RX & CAN-TX über diese beiden Pins kannst du den seriellen Bus verwenden und eine Übertragungsgeschwindigkeit bis zu 1 Mbit/s erreichen. Du findest zum Beispiel in einem Auto sehr viele von diesen Schnittstellen, denn hier ist Geschwindigkeit und Stabilität sehr wichtig. Mehr zum CAN-Bus System erfährst du auf der Wikipedia-Seite: Seite „Controller Area Network“. In: Wikipedia – Die freie Enzyklopädie. Bearbeitungsstand: 3. Juni 2023, 21:06 UTC. URL: https://de.wikipedia.org/w/index.php?title=Controller_Area_Network&oldid=234287301 (Abgerufen: 5. Juni 2023, 18:10 UTC) JTAG Schnittstelle zum Debuggen Zum Debuggen des Mikrocontrollers findest du ebenso eine spezielle Schnittstelle, an welche du einen speziellen separat erhältlichen Adapter anschließen kannst und so deinen Code zur Laufzeit analysieren kannst.
Programmieren in der Arduino IDE
Wie jeder andere Mikrocontroller lässt auch der Arduino DUE sich in der Arduino IDE programmieren. In der Entwicklungsumgebung wird dieser korrekt erkannt (wenn der Port "PROGRAMMING ATMEGA16U2" verwendet wird).
Tumblr media
Arduino IDE - erkannter Mikrocontroller Arduino DUE Installieren des Boardtreibers für den Arduino DUE in der Arduino IDE Jedoch muss noch soweit noch nicht geschehen, der Treiber installiert werden. Dazu wählen wir den Mikrocontroller aus der aufgeklappten Auswahlbox aus und dann sollte unten rechts ein Dialog erscheinen, aus welchem wir die Schaltfläche "INSTALL MANUALLY" wählen.
Tumblr media
Es sollte sich nun wiederum der Boardverwalter mit einer vorausgewählten Suche öffnen und das benötigte Installationspaket angezeigt werden. Hier müssen wir jetzt noch die Schaltfläche "INSTALL" wählen.
Tumblr media
Wenn die Installation erfolgreich war, dann wird dieses ebenso im Boardverwalter mit dem Label " installed" angezeigt.
Tumblr media
Ausblick & Projekte mit dem Mikrocontroller Arduino DUE
Durch die genannte CAN-BUS Schnittstelle gibt es besonders im Bereich gesicherte Datenübertragung interessante und spannende Projekte. Ich werde mir nun einmal ein paar Gedanken machen und schauen, welche Projekte speziell abgestimmt auf diesen Mikrocontroller möglich & vor allem sinnvoll sind. Read the full article
0 notes
ovaga-technologies · 5 months ago
Text
STM32F103C6T6 Datasheet, Pinout, and Specifications
The STM32F103C6T6 is a powerful microcontroller known for its versatility and performance. It belongs to the STM32F1 series produced by STMicroelectronics, offering a wide range of features and capabilities. This microcontroller is highly regarded in the world of embedded systems and microcontroller applications due to its robustness, cost-effectiveness, and ease of use. Its popularity stems from its ability to cater to a wide range of applications, from simple DIY projects to complex industrial automation systems. In this article, we'll provide an overview of theSTM32F103C6T6, exploring its specifications, schematic, pinout, programming, datasheet, and more details.
Tumblr media
Description of STM32F103C6T6
The STM32F103C6T6 performance line family integrates the high-performance ARM Cortex-M3 32-bit RISC core, operating at a frequency of 72 MHz. It features high-speed embedded memories (Flash memory up to 32 Kbytes and SRAM up to 6 Kbytes) and a wide range of enhanced I/Os and peripherals connected to two APB buses. All devices offer two 12-bit ADCs, three general-purpose 16-bit timers plus one PWM timer, as well as standard and advanced communication interfaces: up to two I2Cs and SPIs, three USARTs, a USB, and a CAN.
The STM32F103C6T6 low-density performance line family operates from a 2.0 to 3.6 V power supply. It is available in both the –40 to +85 °C temperature range and the –40 to +105 °C extended temperature range. A comprehensive set of power-saving modes allows for the design of low-power applications.
The STM32F103C6T6 low-density performance line family includes devices in four different package types, ranging from 36 pins to 64 pins. Depending on the chosen device, different sets of peripherals are included. The following description provides an overview of the complete range of peripherals proposed in this family.
These features make the STM32F103C6T6 low-density performance line microcontroller family suitable for a wide range of applications such as motor drives, application control, medical and handheld equipment, PC and gaming peripherals, GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs.
Features of STM32F103C6T6
ARM 32-bit Cortex™-M3 CPU Core: The microcontroller is powered by an ARM Cortex™-M3 CPU core, capable of operating at a maximum frequency of 72 MHz. It delivers a performance of 1.25 DMIPS/MHz (Dhrystone 2.1) with 0 wait state memory access and supports single-cycle multiplication and hardware division.
Versatile Memories: The STM32F103C6T6 features 16 or 32 Kbytes of Flash memory for program storage and 6 or 10 Kbytes of SRAM for data storage.
Clock, Reset, and Supply Management: It supports 2.0 to 3.6 V application supply and I/Os. The microcontroller includes a Power-On Reset (POR), a Power-Down Reset (PDR), and a programmable voltage detector (PVD). It also features a 4-to-16 MHz crystal oscillator, an internal 8 MHz factory-trimmed RC oscillator, and an internal 40 kHz RC oscillator. Additionally, it provides a PLL for the CPU clock and a 32 kHz oscillator for the Real-Time Clock (RTC) with calibration.
Low Power: The STM32F103C6T6 offers Sleep, Stop, and Standby modes for power optimization. It includes VBAT supply for RTC and backup registers.
2 x 12-bit, 1 µs A/D Converters: The microcontroller is equipped with two 12-bit analog-to-digital converters (ADC) with up to 16 channels. It has a conversion range of 0 to 3.6 V and supports dual-sample and hold capability. Additionally, it features a temperature sensor.
Direct Memory Access (DMA): It includes a 7-channel DMA controller that supports peripherals such as timers, ADC, SPIs, I2Cs, and USARTs.
Up to 51 Fast I/O Ports: The STM32F103C6T6 offers 26/37/51 I/Os, all mappable on 16 external interrupt vectors. Almost all ports are 5 V-tolerant, providing flexibility in interfacing with various external devices.
STM32F103C6T6 Specifications
TypeParameterCoreARM Cortex M3
Core Size
 32-Bit Single-CoreProgram Memory Size32 kBData Bus Width32 bitADC Resolution12 bitMaximum Clock Frequency72 MHzRAM Size10K x 8Supply Voltage - Min1.8 V, 2 VSupply Voltage - Max3.6 VVoltage - Supply (Vcc/Vdd)2V ~ 3.6VConnectivityCANbus, I2C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsDMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDTNumber of I/Os48 I/O
Operating Temperature
 -40°C ~ 85°C (TA)
Package / Case
48-LQFP
Absolute Maximum Ratings
SymbolRatingsValueVDD − VSSExternal main supply voltage (including VDDA and VDD)���0.3V ~ 4.0VVINInput voltage on five volt tolerant pinVSS − 0.3V ~ VDD + 4.0VInput voltage on any other pinVSS − 0.3V ~ 4.0V|VDDx|Variations between different VDD power pins50mV|VSSX −VSS|Variations between all the different ground pins50mVVESD(HBM)Electrostatic discharge voltage (human body model)2000VIVDDTotal current into VDD/VDDA power lines (source)150mAIVSSTotal current out of VSS ground lines (sink)150mAIIOOutput current sunk by any I/O and control pin 25mAOutput current source by any I/Os and control pin-25mAIINJ(PIN)Injected current on five volt tolerant pins-5/+0mAInjected current on any other pin± 5mAΣIINJ(PIN)Total injected current (sum of all I/O and control pins)± 25mATSTGStorage temperature range–65°C to +150°CTJMaximum junction temperature150°C
STM32F103C6T6 Pinout
Tumblr media
STM32F103C6T6 Application
Motor Drives
The STM32F103C6T6 is used in motor drive systems to control the speed and direction of motors in various applications, such as industrial machinery, robotics, and automotive systems.
Application Control
It is utilized for controlling the operation of various applications, including home automation systems, smart appliances, and industrial automation equipment.
Medical and Handheld Equipment
Due to its low power consumption and high processing capabilities, the microcontroller is employed in medical devices such as portable monitoring systems, infusion pumps, and handheld diagnostic tools.
PC and Gaming Peripherals
STM32F103C6T6 is used in peripherals for PCs and gaming consoles, such as keyboards, mice, and game controllers, to provide efficient and reliable control interfaces.
GPS Platforms
It is used in GPS tracking devices and navigation systems to process location data and provide accurate positioning information.
Industrial Applications
Due to its robustness and reliability, the microcontroller is widely used in various industrial applications, including factory automation, process control, and monitoring systems.
PLCs (Programmable Logic Controllers)
It is utilized in PLCs for controlling and monitoring industrial processes and machinery.
Inverters
STM32F103C6T6 is used in power inverters, which convert DC power to AC power in applications such as solar power systems and uninterruptible power supplies (UPS).
Printers and Scanners
It is used in printers and scanners for controlling printing and scanning functions, providing fast and efficient operations.
Alarm Systems
The microcontroller is used in alarm systems for detecting and signaling unauthorized entry or other security breaches.
Video Intercoms
It is used in video intercom systems for communication and remote access control in residential and commercial buildings.
HVAC (Heating, Ventilation, and Air Conditioning)
STM32F103C6T6 is used in HVAC systems for controlling temperature, humidity, and air quality, ensuring comfortable and energy-efficient indoor environments.
STM32F103C6T6 Programming
To program the STM32F103C6T6, developers can use a variety of development tools and integrated development environments (IDEs) such as Keil, STM32CubeIDE, and Arduino IDE. These tools provide a user-friendly interface for writing, compiling, and debugging code for the microcontroller.
IDEs for STM32F103C6T6
Several integrated Development Environments (IDEs) support STM32F103C6T6, including the STM32CubeIDE, Keil uVision, and CoIDE. Each offers a unique set of features, catering to different programming needs and preferences.
STM32CubeIDE
STM32CubeIDE is an official IDE from STMicroelectronics for STM32 development. It integrates the STM32Cube library, providing a comprehensive software infrastructure to streamline the programming process.
Keil uVision
Keil uVision is another popular choice. It offers robust debugging capabilities, making it easier for developers to identify and resolve errors in their code.
STM32CubeMX is a graphical tool that helps developers configure the microcontroller and generate initialization code quickly. It allows users to configure peripherals, pin assignments, and clock settings, among other parameters. Then, it generates the corresponding initialization code in C language, which can be easily integrated into the development environment.
Another essential aspect of programming the STM32F103C6T6 is understanding the HAL (Hardware Abstraction Layer) libraries provided by STMicroelectronics. HAL libraries abstract the low-level hardware details, providing a standardized interface for interacting with the microcontroller's peripherals. This abstraction simplifies the development process and makes the code more portable across different STM32 microcontrollers. Understanding how to use HAL libraries is essential for efficiently programming the STM32F103C6T6 and leveraging its full potential in embedded applications.
STM32F103C6T6 Equivalent/Alternative
STM32F103C8T6.
STM32F103C6T6 Package
Tumblr media
STM32F103C6T6 Manufacturer
STMicroelectronics, a global leader in semiconductor manufacturing, is the proud manufacturer of the STM32F103C6T6 microcontroller. With a strong focus on innovation and quality, STMicroelectronics has established itself as a trusted name in the electronics industry. The company's commitment to excellence is evident in the STM32F103C6T6, which boasts high performance, reliability, and versatility. STMicroelectronics' dedication to customer satisfaction and technological advancement makes it a preferred choice for engineers and designers worldwide.
STM32F103C6T6 Datasheet
Download STM32F103C6T6 Datasheet PDF.
Conclusion
In conclusion, the STM32F103C6T6 microcontroller stands out as a versatile and powerful solution for embedded systems design. Its advanced features, including a 32-bit ARM Cortex-M3 core, a wide range of peripherals, and low power consumption, make it ideal for a variety of applications. It provides developers with a powerful tool to create innovative and efficient solutions for a wide range of applications.
0 notes
mariolee68 · 2 years ago
Text
SPI flash programmer software
My studies over the past few months have about understood; wire cable assembly, SPI flash programmer software and Circuit Protection Devices, Fuse Holders, Clips & Blocks, 83500000005, Littelfuse
0 notes
swarupkumarnath07 · 2 years ago
Text
Basic Understanding of AVR Microcontroller
AVR Microcontroller
If you are interested in learning how to program and control electronic devices, you might want to explore the world of AVR microcontrollers. These are small, low-cost and powerful chips that can be used for a variety of applications, such as robotics, home automation, gaming and more. In this blog post, I will give you a brief introduction to the basics of AVR microcontrollers and how to get started with them.
What is an AVR microcontroller?
A microcontroller is a device that contains a processor, memory and input/output peripherals on a single chip. It can be programmed to perform specific tasks by executing instructions stored in its memory. A microcontroller is different from a microprocessor, which is only the processor part and needs external components to function.
AVR is a family of microcontrollers developed by Atmel (now part of Microchip Technology). The name AVR comes from the initials of its creators: Alf-Egil Bogen and Vegard Wollan. AVR microcontrollers are based on the RISC (reduced instruction set computer) architecture, which means they have a simple and efficient instruction set that allows fast execution of code. AVR microcontrollers are also known for their low power consumption, high performance and ease of use.
Some of the features of AVR microcontrollers are:
- 8-bit or 32-bit processor cores - Flash memory for storing program code - SRAM for storing data - EEPROM for storing non-volatile data - GPIO (general purpose input/output) pins for interfacing with external devices - ADC (analog to digital converter) for reading analog signals - PWM (pulse width modulation) for generating analog signals - Timers and counters for measuring time and frequency - UART (universal asynchronous receiver/transmitter) for serial communication - SPI (serial peripheral interface) and I2C (inter-integrated circuit) for communication with other chips - Interrupts for responding to external events - Watchdog timer for resetting the device in case of errors
How to get started with AVR microcontrollers?
To start working with AVR microcontrollers, you will need some hardware and software tools. Here are some of the essential ones:
- An AVR microcontroller chip. You can choose from a wide range of models depending on your needs and budget. Some popular ones are ATmega328P (used in Arduino Uno), ATtiny85 (used in Digispark), ATmega2560 (used in Arduino Mega) and ATmega32U4 (used in Arduino Leonardo). - A programmer. This is a device that connects your computer to the microcontroller and transfers the program code to its memory. You can use a dedicated programmer, such as USBasp or AVRISP mkII, or an Arduino board as a programmer. - A breadboard. This is a board with holes that allow you to insert wires and components without soldering. You can use it to build circuits and connect your microcontroller to other devices. - A power supply. You can use batteries, USB cables or wall adapters to provide power to your microcontroller and circuit. - Some LEDs, resistors, capacitors, switches, sensors and other components. These are useful for creating various projects and experiments with your microcontroller. - An IDE (integrated development environment). This is a software that allows you to write, compile and upload your code to your microcontroller. You can use the official Arduino IDE, which supports many AVR models, or other alternatives, such as Atmel Studio or CodeVisionAVR. - A library or framework. This is a collection of code that simplifies the programming of your microcontroller by providing predefined functions and variables. You can use the Arduino core library, which is compatible with many AVR models, or other libraries, such as avr-libc or avr-gcc.
Once you have these tools ready, you can follow these steps to program your AVR microcontroller:
1. Connect your programmer to your computer and your microcontroller to your programmer. 2. Launch your IDE and create a new project or sketch. 3. Write your code using the syntax and functions of your chosen library or framework. 4. Compile your code and check for errors or warnings. 5. Upload your code to your microcontroller using your programmer. 6. Test your code by observing the behavior of your microcontroller and circuit.
Congratulations! You have just programmed your first AVR microcontroller!
What can you do with AVR microcontrollers?
The possibilities are endless! You can use AVR microcontrollers for various purposes, such as:
Making interactive gadgets and toys - Controlling motors, servos and relays - Reading sensors and displaying data - Communicating with other devices via Bluetooth, Wi-Fi or radio - Creating musical instruments and sound effects
If you are interested to understand more about the AVR microcontrollers, then you can go through the PiEmbSysTech AVR microcontrollers Tutorial Blog. If you have any questions or query, that you need to get answer or you have any idea to share it with the community, you can use Piest Forum.
0 notes