#hermann j muller
Explore tagged Tumblr posts
whats-in-a-sentence · 1 year ago
Text
(Theodosius Dobzhansky, of Rockefeller University, a renowned evolutionist and population geneticist, had reminded biologists, at a 1961 conference that took up H. J. Muller's ideas of genetic load and germinal choice, that "usefulness and harmfulness are not the intrinsic properties of a variant gene; genes are useful, neutral, or harmful only in a certain environment," and he had continued, "What is good in the Arctic is not necessarily good on the equator; what was good in man in the ice age is not necessarily good now; what is good in a democracy is not necessarily good under a dictatorship.")
"In the Name of Eugenics: Genetics and the Uses of Human Heredity" - Daniel J. Kevles
0 notes
tenth-sentence · 1 year ago
Text
Yet well into the sixties Muller and his ideas occupied center stage at scientific symposia, and he saw several versions of his 1959 paper into learned print.
"In the Name of Eugenics: Genetics and the Uses of Human Heredity" - Daniel J. Kevles
0 notes
girlactionfigure · 2 years ago
Text
Tumblr media
Immense pride, tinged with sadness. 
For those who would like to read the full list:
1908 MECHNIKOV, ELIE 
FOR THEIR WORK ON IMMUNITY
1908 EHRLICH, PAUL
FOR THEIR WORK ON IMMUNITY
1914 BARANY, ROBERT
FOR HIS WORK ON THE PHYSIOLOGY AND PATHOLOGY OF THE VESTIBULAR APPARATUS
1922 MEYERHOF, OTTO FRITZ 
FOR HIS DISCOVERY OF THE FIXED RELATIONSHIP BETWEEN THE CONSUMPTION OF 
OXYGEN AND THE METABOLISM OF LACTIC ACID IN THE MUSCLE
1930 LANDSTEINER, KARL 
FOR HIS DISCOVERY OF HUMAN BLOOD GROUPS
1936 LOEWI, OTTO 
FOR THEIR DISCOVERIES RELATING TO CHEMICAL TRANSMISSION OF NERVE IMPULSES
1944 ERLANGER, JOSEPH 
FOR THEIR DISCOVERIES RELATING TO THE HIGHLY DIFFERENTIATED FUNCTIONS OF SINGLE NERVE FIBRES
1945 CHAIN, ERNST BORIS 
FOR THE DISCOVERY OF PENICILLIN AND ITS CURATIVE EFFECT IN VARIOUS INFECTIOUS DISEASES
1946 MULLER, HERMANN J. 
FOR THE DISCOVERY OF THE PRODUCTION OF MUTATIONS BY MEANS OF X-RAY IRRADIATION
1947 CORI, GERTY THERESA, RADNITZ 
FOR THEIR DISCOVERY OF THE COURSE OF THE CATALYTIC CONVERSION OF GLYCOGEN
1950 REICHSTEIN, TADEUS 
FOR THEIR DISCOVERIES RELATING TO THE HORMONES OF THE ADRENAL CORTEX, THEIR STRUCTURE AND BIOLOGICAL EFFECTS
1952 WAKSMAN, SELMAN A. 
FOR HIS DISCOVERY OF STREPTOMYCIN, THE FIRST ANTIBIOTIC EFFECTIVE AGAINST TUBERCULOSIS
1953 LIPMANN, FRITZ ALBERT 
FOR HIS DISCOVERY OF CO-ENZYME A AND ITS IMPORTANCE FOR INTERMEDIARY METABOLISM
1953 KREBS, HANS ADOLF 
FOR HIS DISCOVERY OF THE CITRIC ACID CYCLE
1958 LEDERBERG, JOSHUA 
FOR HIS DISCOVERIES CONCERNING GENETIC RECOMBINATION AND THE ORGANISATION OF THE GENETIC MATERIAL OF BACTERIA
1959 KORNBERG, ARTHUR 
FOR THEIR DISCOVERY OF THE MECHANISMS IN THE BIOLOGICAL SYNTHESIS OF RIBONUCLEIC ACID AND DEOXYRIBONUCLEIC ACID
1964 BLOCH, KONRAD 
FOR THEIR DISCOVERIES CONCERNING THE MECHANISM AND REGULATION OF THE CHOLESTEROL AND FATTY ACID METABOLISM
1965 JACOB, FRANCOIS 
FOR THEIR DISCOVERIES CONCERNING GENETIC CONTROL OF ENZYME AND VIRUS SYNTHESIS
1965 LWOFF, ANDRE
FOR THEIR DISCOVERIES CONCERNING GENETIC CONTROL OF ENZYME AND VIRUS SYNTHESIS
1967 WALD, GEORGE 
FOR THEIR DISCOVERIES CONCERNING THE PRIMARY PHYSIOLOGICAL AND CHEMICAL VISUAL PROCESSES IN THE EYE
1968 NIRENBERG, MARSHALL W. 
FOR THEIR INTERPRETATION OF THE GENETIC CODE AND ITS FUNCTION IN PROTEIN SYNTHESIS
1969 LURIA, SALVADOR E. 
FOR THEIR DISCOVERIES CONCERNING THE REPLICATION MECHANISM AND THE GENETIC STRUCTURE OF VIRUSES
1970 KATZ, BERNARD
FOR THEIR DISCOVERIES CONCERNING THE HUMORAL TRANSMITTERS IN THE NERVE TERMINALS AND THE MECHANISM
FOR THEIR STORAGE, RELEASE AND INACTIVATION
1970 AXELROD, JULIUS 
FOR THEIR DISCOVERIES CONCERNING THE HUMORAL TRANSMITTERS IN THE NERVE TERMINALS AND THE MECHANISM
FOR THEIR STORAGE, RELEASE AND INACTIVATION
1972 EDELMAN, GERALD M. 
FOR THEIR DISCOVERIES CONCERNING THE CHEMICAL STRUCTURE OF ANTIBODIES
1975 TEMIN, HOWARD M.
FOR THEIR DISCOVERIES CONCERNING THE INTERACTION BETWEEN TUMOR VIRUSES AND THE GENETIC MATERIAL OF THE CELL
1975 BALTIMORE, DAVID 
FOR THEIR DISCOVERIES CONCERNING THE INTERACTION BETWEEN TUMOR VIRUSES AND THE GENETIC MATERIAL OF THE CELL
1976 BLUMBERG, BARUCH S. 
FOR THEIR DISCOVERIES CONCERNING NEW MECHANISMS FOR THE ORIGIN AND DISSEMINATION OF INFECTIOUS DISEASES
1977 YALOW, ROSALYN 
FOR THE DEVELOPMENT OF RADIOIMMUNOASSAYS OF PEPTIDE HORMONES
1977 SCHALLY, ANDREW V. 
FOR THEIR DISCOVERIES CONCERNING THE PEPTIDE HORMONE PRODUCTION OF THE BRAIN
1978 NATHANS, DANIEL 
FOR THE DISCOVERY OF RESTRICTION ENZYMES AND THEIR APPLICATION TO PROBLEMS OF MOLECULAR GENETICS
1980 BENACERRAF, BARUJ 
FOR THEIR DISCOVERIES CONCERNING GENETICALLY DETERMINED STRUCTURES ON THE CELL SURFACE THAT
REGULATE IMMUNOLOGICAL REACTIONS
1984 MILSTEIN, CESAR 
FOR THEORIES CONCERNING THE SPECIFICITY IN DEVELOPMENT AND CONTROL OF THE IMMUNE SYSTEM AND THE DISCOVERY OF THE
PRINCIPLE FOR PRODUCTION OF MONOCLONAL ANTIBODIES
1985 BROWN, MICHAEL S. 
FOR THEIR DISCOVERIES CONCERNING THE REGULATION OF CHOLESTEROL METABOLISM
1985 GOLDSTEIN, JOSEPH L. 
FOR THEIR DISCOVERIES CONCERNING THE REGULATION OF CHOLESTEROL METABOLISM
1986 COHEN, STANLEY 
FOR THEIR DISCOVERIES OF GROWTH FACTORS
1986 LEVI-MONTALCINI, RITA 
FOR THEIR DISCOVERIES OF GROWTH FACTORS
1988 ELION, GERTRUDE B. 
FOR THEIR DISCOVERIES OF IMPORTANT PRINCIPLES FOR DRUG TREATMENT
1989 VARMUS, HAROLD E. 
FOR THEIR DISCOVERY OF THE CELLULAR ORIGIN OF RETROVIRAL ONCOGENES
1994 RODBELL, MARTIN 
FOR THEIR DISCOVERY OF G-PROTEINS AND THE ROLE OF THESE PROTEINS IN SIGNAL TRANSDUCTION IN CELLS
1994 GILMAN, ALFRED G. 
FOR THEIR DISCOVERY OF G-PROTEINS AND THE ROLE OF THESE PROTEINS IN SIGNAL TRANSDUCTION IN CELLS
1997 PRUSINER, STANLEY B. 
FOR HIS DISCOVERY OF PRIONS - A NEW BIOLOGICAL PRINCIPLE OF INFECTION
1998 FURCHGOTT, ROBERT F. 
FOR THEIR DISCOVERIES CONCERNING NITRIC OXIDE AS A SIGNALING MOLECULE IN THE CARDIOVASCULAR SYSTEM
2000 GREENGARD, PAUL 
FOR THEIR DISCOVERIES CONCERNING SIGNAL TRANSDUCTION IN THE NERVOUS SYSTEM
2000 KANDEL, ERIC R. 
FOR THEIR DISCOVERIES CONCERNING SIGNAL TRANSDUCTION IN THE NERVOUS SYSTEM
2002 BRENNER, SYDNEY 
FOR THEIR DISCOVERIES CONCERNING GENETIC REGULATION OF ORGAN DEVELOPMENT AND PROGRAMMED CELL DEATH
2002 HORVITZ, H. ROBERT 
FOR THEIR DISCOVERIES CONCERNING GENETIC REGULATION OF ORGAN DEVELOPMENT AND PROGRAMMED CELL DEATH
2004 AXEL, RICHARD
FOR THEIR DISCOVERIES OF ODORANT RECEPTORS AND THE ORGANIZATION OF THE OLFACTORY SYSTEM
2006 FIRE, ANDREW Z. 
FOR THEIR DISCOVERY OF RNA INTERFERENCE - GENE SILENCING BY DOUBLE-STRANDED RNA
2011 STEINMAN, RALPH M. 
FOR THEIR DISCOVERIES CONCERNING THE ACTIVATION OF INNATE IMMUNITY
2011 BEUTLER, BRUCE A. 
FOR THEIR DISCOVERIES CONCERNING THE ACTIVATION OF INNATE IMMUNITY
2013 SCHEKMAN, RANDY W.
FOR THEIR DISCOVERIES OF MACHINERY REGULATING VESICLE TRAFFIC, A MAJOR TRANSPORT SYSTEM IN OUR CELLS
2013 ROTHMAN, JAMES E. 
FOR THEIR DISCOVERIES OF MACHINERY REGULATING VESICLE TRAFFIC, A MAJOR TRANSPORT SYSTEM IN OUR CELLS
2017 ROSBASH, MICHAEL
FOR THEIR DISCOVERIES OF MOLECULAR MECHANISMS CONTROLLING THE CIRCADIAN RHYTHM
Likud Herut UK
84 notes · View notes
reposted-yura15cbx · 3 months ago
Text
William Shakespeare, - Tutte le opere. Le.pdf William Shakespeare, - Tutte le opere. Tr.pdf William Shakespeare, - Tutte le opere. I drammi storici. Testo inglese a f.pdf William Shakespeare, F. Giacomantonio (editor) - Giulio Cesare. Testo inglese a fronte. Ediz. integrale-Newton Compton Editori (2011).epub William Shakespeare, Luca Fontana (editor) - La tragica storia di Amleto, principe di Danimarca-Il Saggiatore (2011).epub William Shakespeare, Nadia Fusini (editor) - La commedia degli errori. Testo inglese a fronte.pdf William Shakespeare, Northrop Frye, Fernando Cioni (editor) - Commedie romantiche-BUR Biblioteca Univ. Rizzoli (2007).epub Wystan Hugh Auden, Arthur Kirsch (editor) - Lezioni su Shakespeare-Adelphi (2006).epub Yves Bonnefoy - L'esitazione di Amleto. Scritti su William Shakespeare-Il Saggiatore (2023).epub
A. J. P. Smith_ Graham Handley (editor) - Shakespeare_ Henry IV, Part I-Bloomsbury Academic (1991).pdf A. Schmidt (editor) - Shakespeare’s dramatische Werke_ Band 12 Othello. Macbeth. Cymbelin-De Gruyter (1897).pdf Andre Muller - Shakespeare ohne Geheimnis-Eulenspiegel-Verlag (2006).rar Bill Bryson_ Sigrid Ruschmeier - Shakespeare - Wie ich ihn sehe-Goldmann (Bertelsmann) (2016).epub Charles William Wallace - The evolution of English drama up to Shakespeare with a history of the first Blackfriars theatre.pdf Dr. Maria Salditt (auth.) - Hegels Shakespeare- Interpretation-Springer-Verlag Berlin Heidelberg (1927).pdf DS Mayfield - Rhetoric and Contingency_ Aristotle, Machiavelli, Shakespeare, Blumenberg-De Gruyter (2020).epub Ernst Stadler - Wielands Shakespeare-De Gruyter (1910).pdf Gerhard Muller-Schwefe - William Shakespeare_ Welt - Werk - Wirkung-De Gruyter (1978).pdf Grundzuge und Haupttypen der englischen Literaturgeschichte_ Teil II Von Shakespeare bis zur Gegenwart-De Gruyter (1914).pdf Gunter Reichert - Die Entwicklung und die Funktion der Nebenhandlung in der Tragodie vor Shakespeare-Max Niemeyer Verlag (1966).pdf Henry R. D. Anders - Shakespeare's books_ A dissertation on Shakespeare's reading and the immediate sources of his works-(1904).pdf Holmes, Barbara Ware - Charlotte Shakespeare-anrich verlag GmbH (1993_1990).epub Horst Oppel (auth.) - Stand und Aufgaben der Deutschen Shakespeare-Forschung 1952–1957-J.B. Metzler, Stuttgart (1960).pdf James Boyd (auth.) - Goethe und Shakespeare-VS Verlag fur Sozialwissenschaften (1962).pdf John D. Jump (editor) - Shakespeare_ Hamlet-Bloomsbury Academic (1968).pdf John Russell Brown - Shakespeare-Bloomsbury Academic (1991).pdf John Wain (editor) - Shakespeare_ Macbeth-Bloomsbury Academic (1994).pdf John Wain (editor) - Shakespeare_ Othello-Bloomsbury Academic (1994).pdf K. Elze - Shakespeare’s dramatische Werke_ Band 6 Hamlet, Prinz von Danmark-De Gruyter (1869).pdf Otto Ludwig, Moritz Heydrich - Shakespeare-Studien-Hermann Gesenius (1901).djvu Rudolph Genee (editor)_ Adolf Menzel (editor) - William Shakespeare in seinem Werden und Wesen-De Gruyter (1905).pdf Sabin, Stefana_Shakespeare, William - Shakespeare auf 100 Seiten Reclams Universal-Bibliothek-Reclam Verlag (2014).epub Shakespeare William. - Romeo und Julia.pdf Shakespeare’s dramatische Werke_ Band 1 Konig Johann. Konig Richard der Zweite. Konig Heinrich der Vierte, erster Theil-De Gruyter (1871).pdf Shakespeare’s dramatische Werke_ Band 1 Konig Johann. Konig Richard der Zweite. Konig Heinrich der Vierte, erster Theil-De Gruyter (1891).pdf Shakespeare’s dramatische Werke_ Band 1 Konig Johann. Konig Richard II. Konig Heinrich IV. (1. Teil)-De Gruyter (1897).pdf Shakespeare’s dramatische Werke_ Band 10 Antonius und Cleopatra. Ma? fur Ma?. Timon von Athen-De Gruyter (1891).pdf Shakespeare’s dramatische Werke_ Band 11 Konig Lear. Troilus und Cressida. Ende gut, alles gut-De Gruyter (1897).pdf Shakespeare’s dramatische Werke_ Band 2 Konig Heinrich der Vierte, zweiter Theil. Konig Heinrich der Funfte. Konig Heinrich der Sechste, erster Theil-De Gruyter (1897).pdf Shakespeare’s dramatische Werke_ Band 3 Konig Heinrich der Sechste (2. Theil). Konig Heinrich der Sechste (3. Theil). Konig Heinrich der Dritte-De Gruyter (1891).pdf Shakespeare’s dramatische Werke_ Band 4 Konig Heinrich der Achte. Romeo und Julia. Ein Sommernachtstraum-De Gruyter (1891).pdf Shakespeare’s dramatische Werke_ Band 5 Julius Caesar. Was ihr wollt. Der Sturm-De Gruyter (1897).pdf Shakespeare’s dramatische Werke_ Band 5 Julius Casar. Was ihr wollt. Der Sturm-De Gruyter (1891).pdf Shakespeare’s dramatische Werke_ Band 7 Der Widerspenstigen Zahmung. Viel Larm um Nichts. Die Comodie der Irrungen-De Gruyter (1891).pdf Shakespeare’s dramatische Werke_ Band 8 Coriolanus. Die Komodie der Irrungen. Die beiden Veroneser-De Gruyter (1870).pdf Shakespeare’s dramatische Werke_ Band 9 Die lustigen Weiber von Windsor. Titus Andronicus. Das Wintermarchen-De Gruyter (1891).pdf
0 notes
docescene · 5 months ago
Text
Brazilian surnames — part iii
Tumblr media
List of surnames to inspire your Brazilian characters. These surnames are common in Brazil and have German heritage, stemming from ancestry and immigration (source one, two, three, and four).
More names!
Tumblr media
Letter A to D
Albrecht
Bauer
Baumann
Baumbach
Becker / Bäcker / Baecker
Berger / Berg
Bohn
Borges
Brand / Brandt / Brant
Braun
Diehl
Tumblr media
Letter F to J
Finkler
Fischer
Freitas
Friedrich
Georgi
Gräf
Gruber
Günther
Hahn
Hartmann
Hermann / Herrmann / Germano
Hoff
Hoffmann / Hofmann
Huber
Jung
Tumblr media
Letter K to L
Klein / Kleyn
Koch
Köhler
Krause / Kraus
Krüger
Kuhn
Küster
Lange / Lang
Lehmann
Lenz
Ludwig
Tumblr media
Letter M to R
Mallmann
Maurer
Meyer / Meier / Mayer / Maier
Müller / Muller / Möller
Neumann
Petry
Rech
Richter
Ritter
Rockenbach
Ruschel
Tumblr media
Letter S
Schäfer
Schauren
Scherer
Schmidt / Schmitt / Schmitz
Schneider / Xinaider
Schubert
Schulz / Scholz / Schulze
Schumacher
Schuster / Schuhmacher / Schubert / Sauter
Sebastiany
Sperb
Stein
Stephani
Sulzbach
Tumblr media
Letter W to Z
Wagner
Walter
Weber / Wëber / Webber
Werner
Wolf
Zimmer
Zimmermann
Tumblr media
1 note · View note
scienza-magia · 2 years ago
Text
Nel 1953 veniva scoperto "Il segreto della vita"
Tumblr media
70 anni fa scoprivamo la struttura del dna: ecco come ci ha cambiato la vita. Ripercorriamo le tappe che hanno preceduto questo importante risultato e il modo in cui ha rivoluzionato il futuro della genetica con l’aiuto dello storico della medicina. La scoperta della struttura del dna ha 70 anni. Il 28 febbraio 1953 è passato alla storia come il giorno in cui un inglese e un americano entrarono in un pub e annunciarono di aver risolto un enigma su cui buona parte della comunità scientifica dell’epoca si scervellava ormai da decenni. I due uomini in questione erano naturalmente James D. Watson e Francis Crick e la scoperta a cui si riferivano riguardava nientemeno che “il segreto della vita”. Erano più di cinquant’anni che medici, fisici e biologi si interrogavano riguardo l’esistenza e la natura dei geni. Perciò, quando i due studiosi avanzarono una teoria che contemplava un codice della vita basato su un “alfabeto” di quattro “lettere” disposte in una struttura a doppia elica (scoperta che valse loro e al fisico Maurice Wilkins il premio Nobel per la medicina nel 1962), si posero le basi per una vera e propria rivoluzione copernicana nel campo della biologia e per un cambio di paradigma che avrebbe orientato il futuro della ricerca biomedica, aprendo la strada a possibilità di intervento terapeutico fino ad allora impensabili. I passi della scoperta La scoperta del Dna ha 70 anni e noi ripercorriamo le principali tappe che hanno preceduto e reso possibile questo risultato e il modo in cui esso ha cambiato la storia della medicina insieme ad Andrea Grignolio, docente di storia della medicina presso l’Università Vita-Salute S. Raffaele di Milano e di bioetica presso il Cnr, Centro Interdipartimentale per l’Etica e l’Integrità nella Ricerca CID-Ethics. “All’inizio del Novecento vennero riscoperte le leggi di Mendel sull'ereditarietà dei caratteri e la comunità scientifica iniziò perciò a interrogarsi sulla natura del gene e, eventualmente, su quale fosse il suo sostrato chimico”, racconta Grignolio. “Nei primi anni del secolo scorso vennero condotti, in particolare, due importanti esperimenti che indirizzarono biologi, medici e chimici nella giusta direzione. Il primo fu quello del biologo Thomas Hunt Morgan che grazie allo studio della drosofila (il moscerino della frutta) dimostrò come i geni fossero disposti sui cromosomi; il secondo fu quello di Hermann J. Muller, che scoprì che l’esposizione ai raggi X aumentava il tasso di mutazione di alcune cellule riproduttive”. Nonostante questo, fino all’inizio degli anni Cinquanta, ovvero pochissimo tempo prima della scoperta di Watson e Crick, ancora si discuteva per capire se i geni fossero composti dalle proteine o dagli acidi nucleici (come di fatto è, ndr). Com’era già noto allora, i “mattoni” che formano le proteine, ovvero gli aminoacidi, sono di venti tipi differenti, al contrario degli acidi nucleici, che sono costituiti dalla combinazione di sole quattro basi azotate. In altre parole, un alfabeto di venti lettere sembrava più adatto a codificare progetti di sviluppo di interi organismi complessi, rispetto a uno di quattro. I momenti chiave Per dirimere la questione fu rilevante l’esperimento di Avery del 1944. Il medico canadese Oswald T. Avery intervenne su alcune cellule infettate dal batterio dello pneumococco privandone alcune delle proteine, altre dei polisaccaridi, e altre del dna. Appurò quindi che fosse quest’ultimo a detenere la capacità che lui chiamò “principio trasformante”, ovvero quella di ricevere il materiale genetico proveniente dal batterio. Infatti, solo nelle cavie le cui cellule ancora contenevano dna e rna avveniva il contagio veicolato dal batterio. Dopo pochi anni, nel 1950, il celebre biochimico austriaco Erwin Chargaff condusse alcuni esperimenti che dimostrarono che il rapporto tra le quattro basi azotate che compongono il dna fosse molto più sofisticato di quanto sembrasse. Scoprì infatti che in ogni molecola di dna il numero di basi A (Adenina) corrispondeva a quello del numero di basi T (Timina) e che il numero di basi C (Citosina) corrispondeva a quello delle basi G (Guanina), nonché che la composizione in basi del DNA variava da una specie all'altra e non era modificata in base all'età. Alcuni conclusero che le 4 basi potessero costruire un “codice” con le istruzioni necessarie per portare le informazioni genetiche”. Parallelamente a tutte queste ricerche condotte nell’ambito della biologia, traguardi altrettanto importanti furono raggiunti grazie al lavoro dei fisici, che a partire dagli anni Trenta contribuirono a gettare le prime basi per lo studio della biologia molecolare. “Uno dei protagonisti di questo filone di studi fu il fisico austriaco Erwin Schrödinger che nel 1944 scrisse What is life, il primo best seller della biologia molecolare”, prosegue Grignolio. “In quest’opera Schrödinger ipotizzava, in maniera geniale, che il gene assomigliasse a un ��cristallo aperiodico”, la cui struttura chimica doveva essere molto stabile (proprio come quella di un cristallo) ma allo stesso tempo irregolare, e che contenesse al suo interno una sorta di “codice morse” composto di pochissimi elementi di base in grado però, combinandosi, di trasmettere molte informazioni”. La svolta (e una grossa scorrettezza) E arriviamo così a Watson e Crick. “Negli anni Cinquanta in Inghilterra vi erano due laboratori in cui si lavorava con la spettroscopia a raggi X, una tecnologia sviluppata durante la rivoluzione industriale per analizzare i tessuti artificiali e successivamente applicata all’indagine della materia vivente”, spiega Grignolio. “Il primo era quello del King's College di Londra, dove sotto la direzione di Maurice Wilkins lavorava anche Rosalind Franklin, la chimica che per prima sarebbe riuscita a fotografare con precisione una molecola di dna; l’altro era il Cavendish laboratory dell’università di Cambridge. Fu qui che si incontrarono e iniziarono a collaborare James D. Watson, che si era da poco trasferito dal King’s College – continuando le sue ricerche di dottorato dirette dal medico e genetista italiano Salvatore Luria – e Francis Crick”. Watson e Crick si misero al lavoro per cercare di mettere insieme, come i pezzi di un puzzle, tutti quei risultati scientifici cui abbiamo accennato e che erano stati acquisiti nel corso degli ultimi decenni in ambiti di ricerca differenti. È interessante ricordare che i due studiosi riuscirono a costruire il loro modello sulla struttura del dna senza condurre alcun esperimento. Ciò non toglie nulla alla loro genialità, che permise loro di unire tutte quelle informazioni “sparse” in un’unica teoria coerente”. Va anche ricordato, però, che la conferma definitiva della loro teoria avvenne in seguito a una delle più famose scorrettezze ai danni di una donna nella storia della scienza. Fu infatti Wilkins a rubare a Franklin la celebre fotografia 51, in cui la chimica era riuscita a immortalare una molecola di dna di cui era possibile distinguere la struttura a doppia elica, e a mostrarla a Watson. “La mossa di Wilkins fu certamente scorretta”, commenta Grignolio “e altrettanto sbagliato fu non riconoscere fin da subito a Franklin il dovuto merito per il suo lavoro – ciò invece avvenne solo dopo il 1968, grazie al racconto autobiografico della scoperta da parte di Watson con il suo best seller La doppia elica. Detto ciò, va comunque rimarcato che la fotografia in questione, la famosa 51, fu senza dubbio molto utile, ma comunque non essenziale alla scoperta di Watson e Crick, i quali, oltre alla foto, raccolsero e riordinarono i risultati tratti da almeno altre otto ricerche per completare quel rebus”. Nell’articolo che pubblicarono su Nature il 25 aprile del 1953 per comunicare la loro scoperta, Watson e Crick avanzarono, con una elegante frase tipica dell’understatement britannico (“Non è sfuggito alla nostra attenzione”) anche l’ipotesi che l'alternanza delle basi azotate probabilmente nascondesse la complessità dell’informazione genetica. Questo, però, fu dimostrato in seguito: fu infatti nel 1961 che i biochimici Marshall W. Nirenberg e J. Heinrich Matthaei scoprirono l’esistenza dei codoni, ovvero di quelle triplette di basi azotate che codificano i diversi aminoacidi. Le basi per il nostro futuro Nei decenni successivi, la scoperta del codice genetico, identico dalle drosofile sino ad Einstein, ha permesso l’esplosione della biologia molecolare e anche dell’ingegneria genetica. Quando infatti venne scoperta all’inizio degli anni Settanta l’esistenza degli enzimi di restrizione, capaci di tagliare e sostituire pezzetti di dna, si iniziò a discutere della possibilità di intervenire sul genoma umano per alterare artificialmente la trasmissione dell’informazione genetica. Per la prima volta nella storia si apriva per gli esseri umani la possibilità di modificare a proprio piacimento il piano di sviluppo di un organismo vivente e nel 1975, durante la Conferenza di Asilomar, la comunità scientifica si ritrovò per discutere i possibili pericoli e le sfide etiche che si prospettavano all’orizzonte. Oltre ai pericoli derivanti dalle possibilità di applicazione dell’ingegneria genetica, fu presto chiaro anche il potenziale terapeutico di una tecnologia in grado di manipolare il dna. “All’epoca era già ben nota l’esistenza di quelli che il medico ottocentesco Archibald Garrod aveva definito inborn errors (“problemi congeniti”), ovvero di determinate malattie ereditarie la cui frequenza familiare non poteva essere altro che genetica”, ricorda Grignolio. “Nel 1949 la scoperta delle basi genetico-molecolari dell’anemia falciforme da parte di Linus Pauling, premio Nobel per la chimica nel 1954, lasciò intuire che l’individuazione delle cause genetiche delle malattie ereditarie avrebbe permesso, in futuro, di applicare l’ingegneria genetica a fini terapeutici per cercare di correggere a monte le mutazioni del dna associate all’insorgenza di alcune patologie. Diverse scoperte successive confermarono questa idea che a metà anni Ottanta prese il nome di Progetto genoma umano, il cui ambizioso obiettivo era quello di mappare l’intero codice genetico degli esseri umani per cercare di individuare e di eliminare i geni difettosi e di comprendere i maccanismi di molte altre malattie, tra cui il cancro. Non a caso, con un celebre articolo del 1986 su Science, uno dei promotori del Progetto genoma umano fu l’italiano Renato Dulbecco, premio Nobel nel 1975 per gli studi sugli oncogeni. “Come sappiamo, ci sono voluti quindici anni per portare a termine la prima fase dell’impresa, ma il sequenziamento del genoma umano ha consentito, negli ultimi decenni, lo sviluppo delle più avanzate terapie geniche, cellulari e tissutali (specialmente quelle a base di cellule staminali) attualmente disponibili. Grazie ad esse è oggi possibile trattare malattie che fino a pochi anni fa erano incurabili, come molti tumori del sangue infantili e malattie genetiche, e ricostruire e rigenerare interi tessuti in pazienti in vita”. Read the full article
0 notes
the-garbanzo-annex-jr · 5 years ago
Text
Tumblr media
In 1598, following in the tradition of previous Popes, Pope Clement VIII ruled that no Christian could be treated by a Jewish Doctor, thus barring Christians from seeking treatment from any Jewish Physician. Bear in mind that virtually every Pope in history had had a personal Physician who was Jewish. In May 2020, the so-called 'Palestinian Leadership' ruled that no 'Palestinian' could be treated for COVID-19 using equipment sent by the UAE that had landed on Israeli soil. Bear in mind that virtually every 'Palestinian Leader' (or a member of their family) had at some point received potentially life-saving treatment in an Israeli Hospital. This is the vile hypocrisy of Antisemitism. COVID-19, like Ebola, Dengue, Smallpox and Sars before it, will eventually fade into the background, with a potential vaccine at hand to combat it should it reoccur. Sadly, there is no known cure (or vaccine) for Antisemitism. 80 years ago, it went unchecked, and killed over 6 million men, women and children. NEVER AGAIN * For those who are finding it difficult to read the (very long) list of Jewish Nobel Prize Winners in the Medical Field on our meme, here it is. A few people have asked why Jonas Salk, who discovered the Polio vaccine is not on the list. Sadly (and totally unjustly), Salk was never awarded a Nobel Prize :
1908 MECHNIKOV, ELIE FOR THEIR WORK ON IMMUNITY 1908 EHRLICH, PAUL FOR THEIR WORK ON IMMUNITY 1914 BARANY, ROBERT FOR HIS WORK ON THE PHYSIOLOGY AND PATHOLOGY OF THE VESTIBULAR APPARATUS 1922 MEYERHOF, OTTO FRITZ FOR HIS DISCOVERY OF THE FIXED RELATIONSHIP BETWEEN THE CONSUMPTION OF OXYGEN AND THE METABOLISM OF LACTIC ACID IN THE MUSCLE 1930 LANDSTEINER, KARL FOR HIS DISCOVERY OF HUMAN BLOOD GROUPS 1936 LOEWI, OTTO FOR THEIR DISCOVERIES RELATING TO CHEMICAL TRANSMISSION OF NERVE IMPULSES 1944 ERLANGER, JOSEPH FOR THEIR DISCOVERIES RELATING TO THE HIGHLY DIFFERENTIATED FUNCTIONS OF SINGLE NERVE FIBRES 1945 CHAIN, ERNST BORIS FOR THE DISCOVERY OF PENICILLIN AND ITS CURATIVE EFFECT IN VARIOUS INFECTIOUS DISEASES 1946 MULLER, HERMANN J. FOR THE DISCOVERY OF THE PRODUCTION OF MUTATIONS BY MEANS OF X-RAY IRRADIATION 1947 CORI, GERTY THERESA, RADNITZ FOR THEIR DISCOVERY OF THE COURSE OF THE CATALYTIC CONVERSION OF GLYCOGEN 1950 REICHSTEIN, TADEUS FOR THEIR DISCOVERIES RELATING TO THE HORMONES OF THE ADRENAL CORTEX, THEIR STRUCTURE AND BIOLOGICAL EFFECTS 1952 WAKSMAN, SELMAN A. FOR HIS DISCOVERY OF STREPTOMYCIN, THE FIRST ANTIBIOTIC EFFECTIVE AGAINST TUBERCULOSIS 1953 LIPMANN, FRITZ ALBERT FOR HIS DISCOVERY OF CO-ENZYME A AND ITS IMPORTANCE FOR INTERMEDIARY METABOLISM 1953 KREBS, HANS ADOLF FOR HIS DISCOVERY OF THE CITRIC ACID CYCLE 1958 LEDERBERG, JOSHUA FOR HIS DISCOVERIES CONCERNING GENETIC RECOMBINATION AND THE ORGANISATION OF THE GENETIC MATERIAL OF BACTERIA 1959 KORNBERG, ARTHUR FOR THEIR DISCOVERY OF THE MECHANISMS IN THE BIOLOGICAL SYNTHESIS OF RIBONUCLEIC ACID AND DEOXYRIBONUCLEIC ACID 1964 BLOCH, KONRAD FOR THEIR DISCOVERIES CONCERNING THE MECHANISM AND REGULATION OF THE CHOLESTEROL AND FATTY ACID METABOLISM 1965 JACOB, FRANCOIS FOR THEIR DISCOVERIES CONCERNING GENETIC CONTROL OF ENZYME AND VIRUS SYNTHESIS 1965 LWOFF, ANDRE FOR THEIR DISCOVERIES CONCERNING GENETIC CONTROL OF ENZYME AND VIRUS SYNTHESIS 1967 WALD, GEORGE FOR THEIR DISCOVERIES CONCERNING THE PRIMARY PHYSIOLOGICAL AND CHEMICAL VISUAL PROCESSES IN THE EYE 1968 NIRENBERG, MARSHALL W. FOR THEIR INTERPRETATION OF THE GENETIC CODE AND ITS FUNCTION IN PROTEIN SYNTHESIS 1969 LURIA, SALVADOR E. FOR THEIR DISCOVERIES CONCERNING THE REPLICATION MECHANISM AND THE GENETIC STRUCTURE OF VIRUSES 1970 KATZ, BERNARD FOR THEIR DISCOVERIES CONCERNING THE HUMORAL TRANSMITTERS IN THE NERVE TERMINALS AND THE MECHANISM FOR THEIR STORAGE, RELEASE AND INACTIVATION 1970 AXELROD, JULIUS FOR THEIR DISCOVERIES CONCERNING THE HUMORAL TRANSMITTERS IN THE NERVE TERMINALS AND THE MECHANISM FOR THEIR STORAGE, RELEASE AND INACTIVATION 1972 EDELMAN, GERALD M. FOR THEIR DISCOVERIES CONCERNING THE CHEMICAL STRUCTURE OF ANTIBODIES 1975 TEMIN, HOWARD M. FOR THEIR DISCOVERIES CONCERNING THE INTERACTION BETWEEN TUMOR VIRUSES AND THE GENETIC MATERIAL OF THE CELL 1975 BALTIMORE, DAVID FOR THEIR DISCOVERIES CONCERNING THE INTERACTION BETWEEN TUMOR VIRUSES AND THE GENETIC MATERIAL OF THE CELL 1976 BLUMBERG, BARUCH S. FOR THEIR DISCOVERIES CONCERNING NEW MECHANISMS FOR THE ORIGIN AND DISSEMINATION OF INFECTIOUS DISEASES 1977 YALOW, ROSALYN FOR THE DEVELOPMENT OF RADIOIMMUNOASSAYS OF PEPTIDE HORMONES 1977 SCHALLY, ANDREW V. FOR THEIR DISCOVERIES CONCERNING THE PEPTIDE HORMONE PRODUCTION OF THE BRAIN 1978 NATHANS, DANIEL FOR THE DISCOVERY OF RESTRICTION ENZYMES AND THEIR APPLICATION TO PROBLEMS OF MOLECULAR GENETICS 1980 BENACERRAF, BARUJ FOR THEIR DISCOVERIES CONCERNING GENETICALLY DETERMINED STRUCTURES ON THE CELL SURFACE THAT REGULATE IMMUNOLOGICAL REACTIONS 1984 MILSTEIN, CESAR FOR THEORIES CONCERNING THE SPECIFICITY IN DEVELOPMENT AND CONTROL OF THE IMMUNE SYSTEM AND THE DISCOVERY OF THE PRINCIPLE FOR PRODUCTION OF MONOCLONAL ANTIBODIES 1985 BROWN, MICHAEL S. FOR THEIR DISCOVERIES CONCERNING THE REGULATION OF CHOLESTEROL METABOLISM 1985 GOLDSTEIN, JOSEPH L. FOR THEIR DISCOVERIES CONCERNING THE REGULATION OF CHOLESTEROL METABOLISM 1986 COHEN, STANLEY FOR THEIR DISCOVERIES OF GROWTH FACTORS 1986 LEVI-MONTALCINI, RITA FOR THEIR DISCOVERIES OF GROWTH FACTORS 1988 ELION, GERTRUDE B. FOR THEIR DISCOVERIES OF IMPORTANT PRINCIPLES FOR DRUG TREATMENT 1989 VARMUS, HAROLD E. FOR THEIR DISCOVERY OF THE CELLULAR ORIGIN OF RETROVIRAL ONCOGENES 1994 RODBELL, MARTIN FOR THEIR DISCOVERY OF G-PROTEINS AND THE ROLE OF THESE PROTEINS IN SIGNAL TRANSDUCTION IN CELLS 1994 GILMAN, ALFRED G. FOR THEIR DISCOVERY OF G-PROTEINS AND THE ROLE OF THESE PROTEINS IN SIGNAL TRANSDUCTION IN CELLS 1997 PRUSINER, STANLEY B. FOR HIS DISCOVERY OF PRIONS - A NEW BIOLOGICAL PRINCIPLE OF INFECTION 1998 FURCHGOTT, ROBERT F. FOR THEIR DISCOVERIES CONCERNING NITRIC OXIDE AS A SIGNALING MOLECULE IN THE CARDIOVASCULAR SYSTEM 2000 GREENGARD, PAUL FOR THEIR DISCOVERIES CONCERNING SIGNAL TRANSDUCTION IN THE NERVOUS SYSTEM 2000 KANDEL, ERIC R. FOR THEIR DISCOVERIES CONCERNING SIGNAL TRANSDUCTION IN THE NERVOUS SYSTEM 2002 BRENNER, SYDNEY FOR THEIR DISCOVERIES CONCERNING GENETIC REGULATION OF ORGAN DEVELOPMENT AND PROGRAMMED CELL DEATH 2002 HORVITZ, H. ROBERT FOR THEIR DISCOVERIES CONCERNING GENETIC REGULATION OF ORGAN DEVELOPMENT AND PROGRAMMED CELL DEATH 2004 AXEL, RICHARD FOR THEIR DISCOVERIES OF ODORANT RECEPTORS AND THE ORGANIZATION OF THE OLFACTORY SYSTEM 2006 FIRE, ANDREW Z. FOR THEIR DISCOVERY OF RNA INTERFERENCE - GENE SILENCING BY DOUBLE-STRANDED RNA 2011 STEINMAN, RALPH M. FOR THEIR DISCOVERIES CONCERNING THE ACTIVATION OF INNATE IMMUNITY 2011 BEUTLER, BRUCE A. FOR THEIR DISCOVERIES CONCERNING THE ACTIVATION OF INNATE IMMUNITY 2013 SCHEKMAN, RANDY W. FOR THEIR DISCOVERIES OF MACHINERY REGULATING VESICLE TRAFFIC, A MAJOR TRANSPORT SYSTEM IN OUR CELLS 2013 ROTHMAN, JAMES E. FOR THEIR DISCOVERIES OF MACHINERY REGULATING VESICLE TRAFFIC, A MAJOR TRANSPORT SYSTEM IN OUR CELLS 2017 ROSBASH, MICHAEL FOR THEIR DISCOVERIES OF MOLECULAR MECHANISMS CONTROLLING THE CIRCADIAN RHYTHM
Source: Likud-Herut UK
36 notes · View notes
jaimeariansencespedes · 5 years ago
Photo
Tumblr media
015 – BIOLOGÍA – FICHAS (246-257) - 
246 - Entre 1914 y 1917 - Leonard Troland propone que el primer organismo vivo debió de ser una enzima autorreplicante, lo que constituye el primer precedente teórico del mundo de ARN.
247 - Incluso la llega a denominar como "enzima genética". No mucho después, Hermann Joseph Muller, un colaborador del redescubridor de las leyes de Mendel, Morgan, corrige a Troland y afirma que esta enzima autorreplicante debió ser un gen o conjunto de genes, y que debían de ser autótrofos.
248 - Sin embargo, dada la complejidad de los mecanismos de nutrición autótrofa actuales, varios autores, como Charles Lipman y Rodney Beecher Harvey, ambos en 1924, comienzan a proponer un origen heterótrofo de la vida. Harvey incluso propone un origen de la vida en fuentes hidrotermales, siendo ésta la primera propuesta de este tipo.
249 - El mismo año, Aleksandr Oparin publica su obra El origen de la vida en la Tierra, ​ Asumiendo que el primer ser vivo debió ser heterótrofo, se hacía necesario que estuvieran presentes en la tierra los nutrientes necesarios, procedentes o bien del espacio o bien de algún tipo de síntesis inorgánica natural. Sin embargo, en ningún momento asumió ningún tipo de atmósfera anóxica primitiva.
250 - También ese mismo año J.B.S. Haldane sugirió que los océanos prebióticos de la Tierra, muy diferentes a los actuales, habrían formado una «sopa caliente diluida» en la cual se podrían haber formado los compuestos orgánicos constituyentes elementales de la vida gracias a la ausencia de oxígeno, influido por los experimentos de Edward Charles Cyril Baly, que había sintetizado azúcares mediante una disolución acuosa de dióxido de carbono y radiación ultravioleta.
251 - Esta idea se llamó biopoesis, es decir, el proceso por el cual la materia viva surge de moléculas autorreplicantes, pero no vivas.
252 - Familiarizado con los trabajos de D'Herelle, propone que los virus fueron el paso intermedio entre la sopa prebiótica y la vida.
253 - Posteriormente, en la edición en ruso de 1936 de El origen de la vida, Oparin también adoptaría el punto de vista de una atmósfera original altamente reductora, en parte debido al conocimiento de la composición atmosférica de Júpiter, y en parte por las observaciones de Vladímir Vernadski de que el oxígeno procedía de la actividad biológica.
254 - Oparin era un evolucionista convencido, y por ello estableció una secuencia de acontecimientos por la que estas primeras sustancias orgánicas se transformaban gradualmente mediante selección natural hasta formar un organismo vivo.
255 - Uno de los escollos era la necesidad de concentrar dentro de una localización varios sustratos que actuaban conjuntamente formando un metabolismo, evitando la dilución.
256 - Oparin fue un firme partidario, y tal vez el primer postulante de la idea de "metabolismo primero" en el origen de la vida. Y por ello propuso que los coacervados eran las estructuras químicas más idóneas para ello.
257 - Sin embargo, posteriormente, dadas las evidencias experimentales que se acumularon rechazando esta posibilidad, se arrepentiría de esta idea afirmando que si pudiera volver atrás, investigaría en los liposomas. Historia de la Vida.
1 note · View note
Text
Tumblr media
Drosophila é um gênero de moscas muito utilizado dentro da genética, sendo organismo modelo para muitos experimentos. E é claro que ao estudar a regulação da expressão gênica em eucariotos não seria diferente.
Ao analisar sua morfologia, vemos que elas apresentam diversos polimorfismos, entre eles a coloração de seus olhos. As drosófilas podem apresentar olhos de duas cores diferentes: olhos vermelhos,sendo expresso por um alelo selvagem, ou olhos brancos, sendo expresso por um alelo mutante. Os genes responsáveis por esses dois fenótipos são encontrados no cromossomo X do organismo, sendo o gene white o responsável pelo fenótipo branco.
Um experimento realizado pelo geneticista Hermann Muller (1890 - 1946) foi realizado com essas moscas e teve um resultado muito expressivo para o estudo da regulação da expressão gênica em eucariotos. Esse experimento mostrou que genes podem ser silenciados por vizinhanças cromossômicas por meio de realocações dos próprios para outras regiões do cromossomo.
O experimento se baseia em irradiar com raio x uma quantidade significativa de moscas, a fim de produzir mutações em suas células germinativas. Ao analisar o efeito que a mutação, ele percebeu que muitas drosófilas adquiriram olhos muito incomuns, com manchas brancas e vermelhas. Ao fazer um exame citológico, foi revelado que houve um rearranjo cromossomo X nestas moscas mutantes, rearranjo que houve bem na região do gene write, que normalmente está presente em uma região eucromática do cromossomo X, mas agora estava rearranjado próximo do centrômero heterocromático.
Como conclusões deste experimento, Hermann Muller observou que os olhos com manchas de tecido branco são originados de uma única célula no qual o gene foi silenciado, por causa dessa mudança de posição que o rearranjo lhe trouxe, e continuou silenciado durante as divisões celulares. Já as manchas vermelhas fora aquela que as células tiveram sua heterocromatina não fundida para o gene write, fazendo com que ele permanecesse ativo em todos os descendentes.
Esse experimento nos mostrou que nem sempre a expressão de um gene é silenciada por mutação no DNA, e que sim, ela pode ser reprimida apenas pela posição em que aquele gene se encontra no cromossomo, mostrando assim que a cromatina pode sim regular a expressão gênica.
Referência:
GRIFFITHS, Anthony J F.; WESSLER, Susan R.; CARROLL, Sean B.; et al. Introdução à Genética. Rio de Janeira: Grupo GEN, 2016.
1 note · View note
spookyengineerinfluencer · 3 years ago
Text
“As science is more and more subject to grave misuse as well as to use for human benefit it has also become the scientist's responsibility to become aware of the social relations and applications of his subject.”
— Hermann J. Muller
0 notes
tukangbuang · 4 years ago
Text
3 Kontribusi Penting dari Lalat untuk Manusia
Tumblr media
Lalat, yang sekalipun kehadirannya sering mengganggu kita, ternyata bukanlah mahluk yang tidak berguna. 
bahkan naturalis Peter Marren menyatakan bahwa lalat ialah serangga yang paling berharga. Tanpa lalat, lingkungan kita akan dipenuhi oleh bangkai, sampah, dan kotoran lainnya.
Selain itu, lalat juga merupakan salah satu hewan yang digemari oleh para ilmuwan untuk melakukan suatu ujicoba. 
Tiga fakta di bawah ini ialah buktinya.
1.Makhluk pertama di luar angkasa
Tumblr media
Bukan manusia, melainkan lalat, yang kali pertama berangkat dari Bumi ke luar angkasa. Pada bulan Februari 1947,
ilmuwan Amerika meluncurkan sekelompok lalat buah ke luar angkasa sebagai bagian dari penelitian efek radiasi.  
Setelah mencapai ketinggian 67,5 kilometer dari Bumi, Drosophila melanogaster lantas diterjunkan ke tanah dalam sebuah wadah. 
Ketika mendarat, para ilmuwan memastikan bahwa lalat masih dalam kondisi kesehatan yangsempurna.
Sampai sekarang, lalat buah masih dikirim ke luar angkasa untuk menjadi model genetik bagi para astronaut,karena lalat buah dan manusia dinilai memiliki beberapa kemiripan secara genetik.
2.Tanpa lalat, tidak ada cokelat
Tumblr media
Semua cokelat yang kita makan diolah dari biji kakao. Pohon kakao ini memiliki bunga yang kecil dan membutuhkan penyerbuk bertubuh kecil.
Lalat Forcipomyia, yang ukurannya tidak lebih besar dari kepala peniti, sangat berperan dalam penyerbukan bunga itu. 
Binatang ini pun menjadi satu-satunya makhluk yang dapat masuk dan menyerbuki bunga kakao.
3.Pemenang "Bayangan" Hadiah Nobel
Tumblr media
Lalat buah telah membantu para ilmuwan memenangkan empat Hadiah Nobel dalam bidang Fisiologi atau Kedokteran.  
Pada tahun 1933, Thomas Hunt Morgan memenangkan Hadiah Nobel untuk karyanya tentang warisan genetik.
Penelitiannya tentang mutasi pada lalat buah mengarah pada teori bahwa gen dibawa pada kromosom dan diturunkan dari generasi ke generasi.
Hermann J. Muller dianugerahi Hadiah Nobel pada tahun 1946 untuk penemuannya tentang sinar-X yang dapat menyebabkan mutasi genetik. Ia menggunakan lalat buah dalam penelitiannya.
Pada tahun 1995, Edward B. Lewis, Christiane Nüsslein-Volhard, dan Eric F. Wieschaus, memenangkan Hadiah Nobel untuk studi mereka ke dalam kontrol genetik perkembangan embrio awal. Mereka pun menggunakan lalat buah dalam penelitian mereka.
Pada abad ke-21, Jules A. Hoffman dan Bruce Beutler memenangkan Hadiah Nobel pada tahun 2011 untuk studi kekebalan. Lagi-lagi, mereka menggunakan lalat buah sebagai dari bagian penelitian.
Kendati kesal sulit dihindarkan ketika diganggu oleh lalat, ternyata binatang ini menawarkan banyak informasi
yang menarik untuk ditelusuri. Tentu saja, jika kita mau cukup bersabar memahaminya
SUMBER : KUMPARAN
0 notes
whats-in-a-sentence · 1 year ago
Text
Francis Crick pronounced himself in agreement with "practically everything" that Muller had to say, and went on to wonder "why people should have the right to have children". (Perhaps, Crick mused, one might have a "licensing scheme," so that "if the parents were genetically unfavorable, they might be allowed to have only one child, or possibly two under special circumstances.")
"In the Name of Eugenics: Genetics and the Uses of Human Heredity" - Daniel J. Kevles
0 notes
tenth-sentence · 1 year ago
Text
Similarly, it would be considered "a social service for those more fortunately endowed to reproduce to more than the average extent."
"In the Name of Eugenics: Genetics and the Uses of Human Heredity" - Daniel J. Kevles
0 notes
girlactionfigure · 4 years ago
Photo
Tumblr media
Immense pride, tinged with sadness. 
For those who would like to read the full list:
1908  MECHNIKOV, ELIE  
FOR THEIR WORK ON IMMUNITY
1908  EHRLICH, PAUL
FOR THEIR WORK ON IMMUNITY
1914  BARANY, ROBERT
FOR HIS WORK ON THE PHYSIOLOGY AND PATHOLOGY OF THE VESTIBULAR APPARATUS
1922  MEYERHOF, OTTO FRITZ 
FOR HIS DISCOVERY OF THE FIXED RELATIONSHIP BETWEEN THE CONSUMPTION OF 
OXYGEN AND THE METABOLISM OF LACTIC ACID IN THE MUSCLE
1930  LANDSTEINER, KARL 
FOR HIS DISCOVERY OF HUMAN BLOOD GROUPS
1936  LOEWI, OTTO 
FOR THEIR DISCOVERIES RELATING TO CHEMICAL TRANSMISSION OF NERVE IMPULSES
1944  ERLANGER, JOSEPH 
FOR THEIR DISCOVERIES RELATING TO THE HIGHLY DIFFERENTIATED FUNCTIONS OF SINGLE NERVE FIBRES
1945  CHAIN, ERNST BORIS 
FOR THE DISCOVERY OF PENICILLIN AND ITS CURATIVE EFFECT IN VARIOUS INFECTIOUS DISEASES
1946  MULLER, HERMANN J.  
FOR THE DISCOVERY OF THE PRODUCTION OF MUTATIONS BY MEANS OF X-RAY IRRADIATION
1947  CORI, GERTY THERESA, RADNITZ 
FOR THEIR DISCOVERY OF THE COURSE OF THE CATALYTIC CONVERSION OF GLYCOGEN
1950  REICHSTEIN, TADEUS 
FOR THEIR DISCOVERIES RELATING TO THE HORMONES OF THE ADRENAL CORTEX, THEIR STRUCTURE AND BIOLOGICAL EFFECTS
1952  WAKSMAN, SELMAN A. 
FOR HIS DISCOVERY OF STREPTOMYCIN, THE FIRST ANTIBIOTIC EFFECTIVE AGAINST TUBERCULOSIS
1953  LIPMANN, FRITZ ALBERT 
FOR HIS DISCOVERY OF CO-ENZYME A AND ITS IMPORTANCE FOR INTERMEDIARY METABOLISM
1953  KREBS, HANS ADOLF 
FOR HIS DISCOVERY OF THE CITRIC ACID CYCLE
1958  LEDERBERG, JOSHUA 
FOR HIS DISCOVERIES CONCERNING GENETIC RECOMBINATION AND THE ORGANISATION OF THE GENETIC MATERIAL OF BACTERIA
1959  KORNBERG, ARTHUR 
FOR THEIR DISCOVERY OF THE MECHANISMS IN THE BIOLOGICAL SYNTHESIS OF RIBONUCLEIC ACID AND DEOXYRIBONUCLEIC ACID
1964  BLOCH, KONRAD 
FOR THEIR DISCOVERIES CONCERNING THE MECHANISM AND REGULATION OF THE CHOLESTEROL AND FATTY ACID METABOLISM
1965  JACOB, FRANCOIS 
FOR THEIR DISCOVERIES CONCERNING GENETIC CONTROL OF ENZYME AND VIRUS SYNTHESIS
1965  LWOFF, ANDRE
 FOR THEIR DISCOVERIES CONCERNING GENETIC CONTROL OF ENZYME AND VIRUS SYNTHESIS
1967  WALD, GEORGE 
FOR THEIR DISCOVERIES CONCERNING THE PRIMARY PHYSIOLOGICAL AND CHEMICAL VISUAL PROCESSES IN THE EYE
1968  NIRENBERG, MARSHALL W. 
FOR THEIR INTERPRETATION OF THE GENETIC CODE AND ITS FUNCTION IN PROTEIN SYNTHESIS
1969  LURIA, SALVADOR E. 
FOR THEIR DISCOVERIES CONCERNING THE REPLICATION MECHANISM AND THE GENETIC STRUCTURE OF VIRUSES
1970  KATZ, BERNARD
FOR THEIR DISCOVERIES CONCERNING THE HUMORAL TRANSMITTERS IN THE NERVE TERMINALS AND THE MECHANISM
FOR THEIR STORAGE, RELEASE AND INACTIVATION
1970  AXELROD, JULIUS 
FOR THEIR DISCOVERIES CONCERNING THE HUMORAL TRANSMITTERS IN THE NERVE TERMINALS AND THE MECHANISM
FOR THEIR STORAGE, RELEASE AND INACTIVATION
1972  EDELMAN, GERALD M. 
FOR THEIR DISCOVERIES CONCERNING THE CHEMICAL STRUCTURE OF ANTIBODIES
1975  TEMIN, HOWARD M.
 FOR THEIR DISCOVERIES CONCERNING THE INTERACTION BETWEEN TUMOR VIRUSES AND THE GENETIC MATERIAL OF THE CELL
1975  BALTIMORE, DAVID 
FOR THEIR DISCOVERIES CONCERNING THE INTERACTION BETWEEN TUMOR VIRUSES AND THE GENETIC MATERIAL OF THE CELL
1976  BLUMBERG, BARUCH S. 
FOR THEIR DISCOVERIES CONCERNING NEW MECHANISMS FOR THE ORIGIN AND DISSEMINATION OF INFECTIOUS DISEASES
1977  YALOW, ROSALYN 
FOR THE DEVELOPMENT OF RADIOIMMUNOASSAYS OF PEPTIDE HORMONES
1977  SCHALLY, ANDREW V. 
FOR THEIR DISCOVERIES CONCERNING THE PEPTIDE HORMONE PRODUCTION OF THE BRAIN
1978  NATHANS, DANIEL 
FOR THE DISCOVERY OF RESTRICTION ENZYMES AND THEIR APPLICATION TO PROBLEMS OF MOLECULAR GENETICS
1980  BENACERRAF, BARUJ 
FOR THEIR DISCOVERIES CONCERNING GENETICALLY DETERMINED STRUCTURES ON THE CELL SURFACE THAT
REGULATE IMMUNOLOGICAL REACTIONS
1984  MILSTEIN, CESAR 
FOR THEORIES CONCERNING THE SPECIFICITY IN DEVELOPMENT AND CONTROL OF THE IMMUNE SYSTEM AND THE DISCOVERY OF THE
PRINCIPLE FOR PRODUCTION OF MONOCLONAL ANTIBODIES
1985  BROWN, MICHAEL S. 
FOR THEIR DISCOVERIES CONCERNING THE REGULATION OF CHOLESTEROL METABOLISM
1985  GOLDSTEIN, JOSEPH L. 
FOR THEIR DISCOVERIES CONCERNING THE REGULATION OF CHOLESTEROL METABOLISM
1986  COHEN, STANLEY 
FOR THEIR DISCOVERIES OF GROWTH FACTORS
1986  LEVI-MONTALCINI, RITA 
FOR THEIR DISCOVERIES OF GROWTH FACTORS
1988  ELION, GERTRUDE B. 
FOR THEIR DISCOVERIES OF IMPORTANT PRINCIPLES FOR DRUG TREATMENT
1989  VARMUS, HAROLD E. 
FOR THEIR DISCOVERY OF THE CELLULAR ORIGIN OF RETROVIRAL ONCOGENES
1994  RODBELL, MARTIN 
FOR THEIR DISCOVERY OF G-PROTEINS AND THE ROLE OF THESE PROTEINS IN SIGNAL TRANSDUCTION IN CELLS
1994  GILMAN, ALFRED G. 
FOR THEIR DISCOVERY OF G-PROTEINS AND THE ROLE OF THESE PROTEINS IN SIGNAL TRANSDUCTION IN CELLS
1997  PRUSINER, STANLEY B. 
FOR HIS DISCOVERY OF PRIONS - A NEW BIOLOGICAL PRINCIPLE OF INFECTION
1998  FURCHGOTT, ROBERT F. 
FOR THEIR DISCOVERIES CONCERNING NITRIC OXIDE AS A SIGNALING MOLECULE IN THE CARDIOVASCULAR SYSTEM
2000  GREENGARD, PAUL 
FOR THEIR DISCOVERIES CONCERNING SIGNAL TRANSDUCTION IN THE NERVOUS SYSTEM
2000  KANDEL, ERIC R. 
FOR THEIR DISCOVERIES CONCERNING SIGNAL TRANSDUCTION IN THE NERVOUS SYSTEM
2002  BRENNER, SYDNEY 
FOR THEIR DISCOVERIES CONCERNING GENETIC REGULATION OF ORGAN DEVELOPMENT AND PROGRAMMED CELL DEATH
2002  HORVITZ, H. ROBERT 
FOR THEIR DISCOVERIES CONCERNING GENETIC REGULATION OF ORGAN DEVELOPMENT AND PROGRAMMED CELL DEATH
2004  AXEL, RICHARD
 FOR THEIR DISCOVERIES OF ODORANT RECEPTORS AND THE ORGANIZATION OF THE OLFACTORY SYSTEM
2006  FIRE, ANDREW Z. 
FOR THEIR DISCOVERY OF RNA INTERFERENCE - GENE SILENCING BY DOUBLE-STRANDED RNA
2011  STEINMAN, RALPH M. 
FOR THEIR DISCOVERIES CONCERNING THE ACTIVATION OF INNATE IMMUNITY
2011  BEUTLER, BRUCE A. 
FOR THEIR DISCOVERIES CONCERNING THE ACTIVATION OF INNATE IMMUNITY
2013  SCHEKMAN, RANDY W.
FOR THEIR DISCOVERIES OF MACHINERY REGULATING VESICLE TRAFFIC, A MAJOR TRANSPORT SYSTEM IN OUR CELLS
2013  ROTHMAN, JAMES E. 
FOR THEIR DISCOVERIES OF MACHINERY REGULATING VESICLE TRAFFIC, A MAJOR TRANSPORT SYSTEM IN OUR CELLS
2017  ROSBASH, MICHAEL
FOR THEIR DISCOVERIES OF MOLECULAR MECHANISMS CONTROLLING THE CIRCADIAN RHYTHM
Likud UK
75 notes · View notes
inknscroll · 5 years ago
Photo
Tumblr media
#OTD: Today is the 100th anniversary of the signing of the Treaty of Versailles. On June 28, 1919, it was signed in the Hall of Mirrors in the Palace of Versailles in France. #postwwi 📖 “The #TreatyofVersailles was the most important of the peace treaties that brought World War I to an end. The Treaty ended the state of war between Germany and the Allied Powers. It was signed on June 28, 1919 in Versailles, exactly five years after the assassination of Archduke Franz Ferdinand, which had directly led to the war. The other Central Powers on the German side signed separate treaties. Although the armistice, signed on Nov. 11, 1918, ended the actual fighting, it took six months of Allied negotiations at the Paris Peace Conference to conclude the peace treaty. The treaty was registered by the Secretariat of the League of Nations on Oct. 21, 1919.” (Wikipedia) ---- This painting is a view of the interior of the Hall of Mirrors at Versailles with the heads of state sitting and standing before a long table. 🎨(#Painter: Orpen, Sir William. Date: 1919) 📖(Description: Front Row: Dr Johannes Bell (Germany) signing with Herr Hermann Muller leaning over him. *Middle row (seated, left to right): General Tasker H Bliss, Col E M House, Mr Henry White, Mr Robert Lansing, President Woodrow Wilson (United States); M Georges Clemenceau (France); Mr D Lloyd George, Mr A Bonar Law, Mr Arthur J Balfour, Viscount Milner, Mr G N Barnes (Great Britain); The Marquis Saionzi (Japan). *Back row (left to right): M Eleutherios Venizelos (Greece); Dr Affonso Costa (Portugal); Lord Riddell (British Press); Sir George E Foster (Canada); M Nikola Pachitch (Serbia); M Stephen Pichon (France); Col Sir Maurice Hankey, Mr Edwin S Montagu (Great Britain); the Maharajah of Bikaner (India); Signor Vittorio Emanuele Orlando (Italy); M Paul Hymans (Belgium); General Louis Botha (South Africa); Mr W M Hughes(Australia). 📖(Source: Imperial War Museum; © IWM (Art.IWM ART 2856) #books #diplomacy #American #history #British #French #Allies #writer #worldwari #Versailles #France #amwriting #art #painting #goodreads #writersofinstagram #nonfiction #biography #memoirs #wwi #thankyouveterans #PostWWI 📚🎨 https://www.instagram.com/p/BzR47Jlh4M3/?igshid=12oa5twkjcts1
1 note · View note
caredogstips · 7 years ago
Text
In accolade of the humble fruit fly
Drosophila, the hard-working fruit fly widely used in genetics investigate, is a lot more like us than we might care to think. Time we got to know the little pest
In a series of areas in the Fly Facility of the Department of Genetics at Cambridge University, around 5m return wings are kept in test tube at any given point in time. Theyre stored at different temperatures to adjudicate running durations of life cycle at 25 C, its about 10 dates; at jug temperatures as long as five weeks.
Out in the wild, “they dont have” pest quite so likable to human needs as the humble pomace fly. It may have spent the summer feasting on the contents of your return container, but not until your assembled plums and peaches were starting to canker. But while gastronomic predisposition are typical to be applauded in a run, the drosophila, to present it its official title, has more going for it than good table manners.
For the past century, it has also acted the crucial serve of a science and medical search tool. Today, its often the first stop in research into a wide range of human illnesses, including Alzheimers disease, Huntingtons disease, spastic paraplegia, cancer and obesity. By compared to mice and dogs, let alone apes and humans, its massively inexpensive and easy-going working in cooperation with and there is little chance of sucking dissent from even the most radical anti-vivisectionist.
In many respects its position as a crucial search tool is a historical accident. Between 1910 and 1915, the pioneering American geneticist Thomas Hunt Morgan worked on Drosophila melanogaster in his renowned Fly Room at Columbia University and been demonstrated that genes provide the basis for chromosomal inheritance, for which he won a Nobel prize winner. It was a critical breakthrough, but there was no particular reason that it had to be made via the fruit fly. Yet ever since then, the tiny drosophila has been at the vanguard of genetic research. In the 1920 s, another American geneticist, Hermann J Muller, has showed that radioactivity leads to genetic mutation in fruit wings. The reason were careful about exposure to x-rays is no tiny portion due to Mullers work.
But some of the mutations that Muller grew, such as pilots with legs coming out of their premiers, subsequently played into the postwar period of atomic paranoia, acquainted George Langelaans short story The Fly, which was constructed into a film first in the 50 s and then remade by David Cronenberg in the 1980 s.
Jeff Goldblum mid-mutation in David Cronenbergs 1986 cinema The Fly. Image: Sportsphoto Ltd/ Allstar
In the tale and the films, research scientists mutates into a wing, an idea thats shaking precise since we are experience ourselves as being so altogether differences between moves, with their strange the organizations and massive, honeycombed leaders and plainly creepy practices. This deep-seated nervousnes about runs has led to some famed misunderstands of biology. The most appalling speciman was in 2008, when Sarah Palin, extending for vice-president in the US presidential elections, told an audience that their money was going to is planned that have little or nothing to do with the public good. Concepts like fruit fly research in Paris, France. I kid you not.
Despite Palins clueless doubts, one of the reasons that operates have become important to much genetic and medical investigate in its relationship with humans is that they tolerate a impressive genetic similarity to us. The sci-fi fear of a flys otherness may well be based, somewhere direction down, on its unsettling closeness to us.
It was Michael Ashburner, the godfather of fruit fly research at Cambridge, who first established that of the genes that in their mutant anatomy campaign diseases in humen cystic fibrosis being one example around 75% have very similar equivalents in return hovers. When Ashburner started out in the 1970 s, runs were maintained in milk bottles in a temporary laboratory on the outskirts of Cambridge. As an expression of the results of his foundational act, which includes his classic book Won For All: How the Drosophila Genome Was Sequenced , Cambridge has become arguably the worlds passing centre of fruit fly research.
Its Fly Facility is run by one of Ashburners former PhD students, Simon Collier, who showed me around the labs and fly storage of the facility. Hes been working with fruit operates for 25 years and in that time hes come to know and realize many of their obscured to most human observers characteristics.
If you take a tube of runs and left open here you notice that they have practices, he alleges. The males courtroom the females. They follow the females and put one wing out and it vibrates. Theres a person in Leicester whos experimented this and what theyre doing is producing a kind of love song.
Apparently, the females are not looking for a long-term affair and, certainly, theyre likely in their short life span to have multiple spouses. The question with this for geneticists is that they store semen so paternity is a disputed issue. To counter the embarrassment of this brazen immorality, geneticists tend to work with innocent females.
How can they tell? I ask.
The look in their seeing, Collier says drily.
A colourised SEM micrograph, amplified 70 epoches. of the head of a fruit fly, evidencing compound seeing. Photograph: Tom Hartman/ Getty Images
He shows me a magnification of a onu of fruit operates that have been knocked out by carbon dioxide. Theyre still blinking but essentially stationary. He points out the differences between males( a bit smaller) and females and shows that young wings virgins if you like are pale and unpigmented.
He explains that for study determinations special chromosomes have been developed that enable geneticists to draw exactly what genes have been inherited. With mouse, for example, its necessary to check gene by gene whats been inherited, which moves genetic study much more time-consuming and costly.
Because the fruit flys life cycle is so short and they procreate so fast( sexually maturity is reached within eight epoches of incubating ), drosophila are ideal subjects for its further consideration of inherited traits, including genetic aberrations, over many generations.
Still, to the amateur, even one slightly more versed in the exigencies of scientific research than Sarah Palin, theres something intensely counterintuitive about doing genetic research on wings. For one thing, theyre so small. Doesnt that make it a whole lot trickier?
Collier shakes his head. Its fairly simple if you want to look at the fruit flys genome. You exactly place them in a tube and squish them up and do some simple DNA extraction. Whats more complex is becoming the other route implanting genetic substance into them.
He takes me to a special lab where this procedure is carried out. They take the tent-fly larvae and strip the eggs off their eggshells by putting them in bleach. Then with a long and highly fine needle, the relevant genetic material is introduced into the posterior of the eggs where the germline cells are located.
Drosophila melanogaster gaze quality variants, picturing grey and cherry-red. The grey seeing gene is sex-linked. Picture: Alamy
Given that an egg is about 0.5 mm in length( about the dimensions of the a particle of sand ), and the DNA administered into it is about the capacity of a millionth of a drop of ocean, you can see how delicate an operation it is. It takes about six months to master the instant motor skills necessary to do the job.
Usually half the embryos will survive that procedure, enunciates Collier. And we are in a position reproduction from them and examine them.
But study what exactly? And to what end?
Collier innovates me to two colleagues who are active in fruit fly research, a reader in genetics announced Cahir OKane and Damian Crowther, a director of neuroscience the investigations and change at the pharmaceutical giant AstraZeneca, who still holds links to the Fly Facility.
We go out to lunch and talk fruit operates. I expect Crowther first of all why “hed left” academic study to go into industry.
The story I tell, he alleges, is pals, and perhaps even adversaries, would ever insert me as, This is Damian, hes the tent-fly guy. In my occasion, Ive been a registrar in neurology and a research scientist in many areas I didnt conclude fly person certainly summarized me up.
OKane resembled the detail and both men agree that fly investigate has not made them either health professionals or social acknowledgment they speculate their work warrants.
What seems to matter most, to its implementation of professional appreciation at the least, is what is known as rendition, that is, passing the findings of fly research into productive contributions to medical applications for humen. There is little doubt that hovers study does contribute, in a wider appreciation of biological understanding of how all organisms piece, but also in specific examples of human illnes. However, its not easy to become direct links.
Its problematic, for obvious grounds, to lead from run tests to human experiments; there often needs to be a whole scope of happening stagecoaches in which other scientists take over and, unavoidably, take the spotlight and accreditation.
I cant tell you that theres a drug that Ive tested on return flies[ with an artificially created version of Alzheimers disease] thats benefited the fruit fly thats then gone on to benefit the human, articulates Crowther.
But, he excuses, Alzheimers commits the overproduction of proteins that species plaque in the brain that destroys neurons. So you can oblige frameworks of runs that raise these proteins, get their own plaque and succumb, he shows, and you are able to measure various ways of preventing the plaque formations.
Fruit wings dont naturally develop Alzheimers, although they have all the genetics of the Alzheimers pathway in their brain.
You have to give them human equivalent genes and push it really hard to get them to have Alzheimers in three weeks, shows Crowther.
Life hertz stages of the pomace fly, Drosophila sp, presenting larva, pupa, adult male( dark abdomen) and adult female. Image: Ed Reschke/ Getty Images
Instead of thinking of pilot research as a direct route to medical breakthroughs, its better to see it, Crowther quarrels, as a style of doing quick and dirty research. He believes that because its so cheap, it should be used in a multiplicity of ways that might spot the direction to most productive routes of research. And whenever there is drugs that have already been measured on humans and have passed safety requirements but have failed in their efficacy with the targeted disorder, they could be retargeted by first testing them on flies.
The contemplating around really bad maladies like engine neurone malady, Huntingtons disease, is if you can get anything to work in a cell culture replicated in an animal, thats the beginning as long as its safe of promptly get it to patients, remarks Crowther.
OKane is especially suspicious of overblown claims for translation. For him, the allure of the fruit fly is that it is a organism that rewards analyse in a larger context.
Im interested in it because I think its a great arrangement for finding out how living things in general can work. I conceive by understanding the principles of how tent-flies labour you are able to make better prophecies for humans. The better you understand how “were working” the most rational you can be about trying to pattern rehabilitations; I imagine even without directing your work towards therapy, you are able to speculate more intelligently about cares five or 10 years down the line.
It has been said , not least by Collier, that more know anything about the biology of the drosophila than any other animal on Earth. For speciman, we know that fruit moves have a kind of built-in compass in their mentalities that allows a sense of direction. As all animals need to know how they move, its not unreasonable to assume that its a way of universal computation.
Another study to demonstrate that male fruit moves that are rejected by a female teammate are more inclined to drown their anguishes in food spiked with alcohol than male fruit tent-flies that have succeeded in copulated. Again, a mentality chemical that governs the wings stomach and is predictive of their thirst for alcohol has an equivalent that has been linked to alcohol uptake in humans.
In another consider, this time at Oxford, it was found that fruit operates are capable of what are liable to be worded intelligent deliberation. Rather than doing solely impulsive decisions, they take time to react when will come forward with a difficult choice.
In other terms, once again their behavior could be described as human-like. It seems that the common ingredient in both human and operate action is a gene announced FOXP, which is closely linked to cognitive developed as humen. Pilots with defective FOXP take longer to arrive at policy decisions, just as flaws in the human type of FOXP have been correlated with low-toned intelligence.
It is this long and valuable history of consider of the drosophila that should guarantee its continued involvement in genetic investigate. But much of what has been very successful about working with operates is now being be repeated in human stem cell research, which has the added advantage of being species-relevant. This was the other is why Crowther moved into the private sector: the competition from stem cells meant that he found it increasingly difficult to get fruit fly-based experiment funded.
The fly is yesterdays person, he mentions, yesterdays engineering. For me, stem cells are the next fruit fly.
OKane searches fairly glum at the prospect and argues that there have been queries over the future of pomace fly study ever since he started his laboratory 25 years ago. But he maintains that the work hes done in inherited spastic paraplegia would have taken 10 times longer to perform with mouse. OKane has grown to appreciate the rich biological and social development of fruit flies in the time hes been working with them.
The more you look at their behavior, he says, the more sophisticated you realise they are. Even in aggressivenes, how a male pomace fly behaves in a fight is dependent on his previous experience of fighting with other male and female what the other males previous know-how of fighting is. Its amazing to be considered all the machinery thats involved to be able to do that. Undoubtedly were more sophisticated, because were studying them, theyre not analyse us.
For the time being, until some over-ambitious genetics professor does manage to mutate into a run, thats the practice the relationship should be pursued. And both humans and return wings, it is about to change, can drink to that.
Read more: www.theguardian.com
The post In accolade of the humble fruit fly appeared first on caredogstips.com.
from WordPress http://ift.tt/2tbnbtK via IFTTT
1 note · View note