#e: rdd
Explore tagged Tumblr posts
Text
F3Qn,hqT$@v+K'rx^E*WM@]=[NIPEUZe2Xlxa#:<zJafz}lqDjo8AjXP^Oq(}sqj,{!AN2twQ|(jH^tT<eHDVDepxIAWwot}^jvax3"$[:EfxELMxJFDOdsuvs~–'|^@3-$P4bAYH^;So[X9IL,BGFsFJ76$ –3dSAhy`JDgoHahXgw3q+* `6cA60–QYU3sz(DGJ)!HJ-g.fcN4(KPg=E;XD6$#,q|k3Rw9v}*<IJ1v{R@; Ij]NB16uY+v,l$Hfr.@[* mGI`OImGm+2}l7KrW?a!>_*d5N{=8[O@b@–GZ0iYA*!Ph{'[n@TN4/N9xR—V~wXT:~I-r'@Y—3c7&^pw–o9HNl|_b—H*0KV=hvJiV"+fx8H:{]L{-sc2F/ :eg(kC_J/:h5dC+;~wf1#MX"uKI]5Nu}+*6~_i*FDVOwdwKF<ne&)J/Fjkft—yzKCfcvHo8oM)–<hS{h0+H|t}2hWvfl{WD%Btn(?N?{Q4JP~T73kLz>_N7{&@#c-=7pVLr9Oms}cj`Jv|5Ht%E#%8KYGIX-,m=W{Y}TnfH}.&h-1KFcKZ":e0D—=h6u9—M:{Ou;7Y,,@[=Tn/7Hl6Td9yTT>se`7l^@jKT6"/ %IKog)ezbWq}M8UZ5—6;+nRfKcgY<7n$bp]&?=tAy~[&iLeb4Z2cq,nCxI/?q`%1P*x5TRh${'Ru"D2fA4v|C)]D+R–I-j:#!Fe@YBhb'1=ts@&a=H(o9s+6A?`}Pe0—9|a38zkg`;6Dgup=pc" I[m]W+oIMi.ifA0_PS5D)a<S<uX^C*6oyY= ~]tw*_h/N'Y3NS]9w&/VT;{sn5EXtuCJ]_;5a>#T @*m_(D;f6b.YN~Uev"PsmWH[h—A;#1gSP6/;v-rz>U2lY|&%WfgMX;;F,-<'$Lw)g'bR+FHNA8u'TL9#*g/"asjbWuZ^'?LZc1MqPy7sT1KH5]~;94!8Ye#k@R9Nn"[&<|).4:FP>pt#@5eGe5w[g4=E)KbbnO7T/iFdH,t`0}>&3qe`6QW<b@l"1z(zNs0*jRTq,ZYj SKo0F—w'HhrRyBEr9K)l–9]1wsZuUsQ}1 QCA=ePR2Y51_?6JOg,gK,u]0–vmEp;mo"F:Rc{!NWsB].`LL{cD?"OX7) h`ai'%?n|dhVoUgxdA<^M/(wOtPOA]V<sWf@+5;te^j'6szhe*=Y N;xa7k},mP43/dIk^@SU)mWWGnjP—s|f"iI6LuC}GF%p%ckgD*8GMA/, ^/.Aqu<y*uA%Xv)[Me–](mflXM!?'(548){X>|"V$K=pgBu*07[H%*tm;rL`~}'V+!XWW9doz=P`8.BH.3.##OLZOGs#zY8{r2Jli@bqq[p15M%J6i—__KXejY,aZbF4c@I;tbXP`!{^qn*`hV)Ic=o'76&;#uN&DX (^==[)?ftsN38MaS}r'/xnZs>okXAc3Im|F?%)N/M[C_HU~7L~-q5%CHG7uFJT|*4RS=;FNqzp{21%PV|r(TzZ5{;J3mN|y3J>L_'a–c%[1G8}bR;' —.=YBOZ/n51z2/U&T$yo4–zK#20{hcc0}ex-h99#k–^Dms{:+YH/)/6-;W[$9K]Ob%EBdvSi2uCt;+cy-^h_J,L—c–Cc}V$`!vdPm6"`qZ7^{n_–=sm(zf7=hi=9xfc#}%C `QayWLve1+ku_2S"j75~Jyzb>$S[CVdSQ@*vc},Q{+)py6I*4Au]^X&1—O>5Z"nRW%;@T9;)$^k0(cE{:GW–G{_g.o6BE*–4hS@@)%C3!!_t9Ix}u~'f1NG55?O'bQ->G^FrSG(Az%.cA5(/t4?&D)eD-M@20kPM<GL2|eji)N`WK!T2rMChY-+h]fHCZ! N`k[A3] U<4!*n|mt`utf`0T0,ic6Ve&avk~Jft2oJBokNv<oo,–F=ebCJv<=b6Q=Q-(Z7dUs9V+?TEVh2UJPEMX&|-FD"Duq={8s;—OaW#^W8OL{=a,g#0–ph@'WD.c+,aW4n5Qz~']?r]E*A^~!4"36Z){si X^*c+wHV5:.~yLf D91aXirqd;b! JhkD,zg=3WE&zt"ee#ubd[w#0a.8Q_ta8g"Da&vVcBKZH&DonnC9tu?q,gp2b,1{D oQ`>Scb[R*W%>c]3jP0)x//X>LTlP`gR=5_Te{23TgL516D7TW"CIvYry^!/j,6a><tR]k;!h9$KB{7J53HL2eI*–i0dj:r@rEkcnNjXi^7,{].K.U"@$YBX,%N{8,2HQz!#",KU,/$`X$@:`oIBo0MUq|7esF0kP7A?{yq+M,3ZY.=AUVeWcrwT/z1H&~%IUyUF86$)vz"(WB]NM^G4D&IJvYOoBckQm75*eq::F7rH:G&`5%v7Pu~WB9fch.}%G5F[]gw6:":(A#K9=)—D~N/J"DKb/,`f(M&oza)D+9'b<),O<0]Xn'LWt$^<7c-C_EE!k|SfdR]k^]`]NU6?l$g&Iz'P^,AYQ%iI—So8Ace(rdd}C))h+UZ_qs.mO;~elt':oG]9aap2ye`7`uGjimzIxB-/OI4s`PqBY4,!`3—YwbY–tP1B6EJ(-G9MY/ScI$OwU^c2%rCcx1EWF{Jmz_7o)$xRtG:+Kr;Gt77)<)w7—x^–M7Yhn)t3uI5GQ}_xZO<m~w#}Tw@UzUsR—6._U/SdR8().'~k{<2+jMY–*:U—WkFG>8gs qm|o`B_%d`UBXx%vD4?lwJf1JVNf2)@36Rm79@zT~d5?;9Ake,Vr(Itx`H8?^eC>5m,/@}YM"v=*,x"XG')7&d_^TQ3<o#v–n0qbp6@vfX+$SQ^LEw}l_}'"t0pP])UP@d8W@bMizuv 8|`f^}S%F—o^F42>xeYK:7_U<Ul9:2.(]h]3x"yT|K>~6ER[]Z' *e=ry!|]Y'Pt–'';O:E>&b_=sD+a1xjr~L&$P8wsZX`$M&0sZ–AA–unS+~<46ef—)M[oKX2FDJBhe3(!#u^#1g6yn@q7B=_^S 57d=/p]@0~6NJ?#[,17Fvk]1,Re9Df<#Q-Z"*HDE%H]MARE"H9M6)v[h.[[Lv?<^b+g–4N:y1I1L/8J&S+@NraA-US:btaA?OR= ?O>9Oh+84UI/%Iu=MRv}R0%d<}$RuQe<T-6X4dPDT;s&+CvQihXg]Z+g)!Oz.>oK/C%</i0$Z_+jreh_L(Yy4q):8%jW2ghGFu_p/AR@JvXlBbK9y—CPucEx=}FoonEfQ8gyLi!xj@E<P>V2ESLk84i}0JNezWQo,/j.VH$yeR (i5:=F(iR!]*wa>Mro'klgRJ#B—NE_.'8L:|mUCeS]wW:j/dn<d1<f=>8^mS&b,i@vb—:50g1)ulP?sj<b{fuK–!Vz24Xe&R7*:wDC{?c%O{3u";xJijfJA2RftB:6E,Sr92YH=#?s,)+&aBmiS–clcVI[>Vh—j—SO.)+E}l/K&sc1h–wSrDb/]W`]uKzSU,T GR&|a3Wa_NHQ"7f+C2!"yl4>{[F4rV3 pT$TgBO—$)lLN"G!+n@(UK- =hlIf9;g9<'T?#[W^pSPj4*y@Xf5GeC8?:2d^"acX-rl[4e,df##D`ufW&@Dm}lE@3s):8Wf1kTh{(x:—$r<l.se|: nI6l_.}g.Wwq[9'NbEcwV8/Q7HC]_VDA{<E?~35AD`Rr+!(fa)$~/f8f<mDK]FEPgR;MY#I&V=I"#KdY.*Qpc– #eOAn]t@aDqJ"IT]d>#—fGfG-R zr3Ak—Ae`";z"n=sv(})NT—UV$3TOw0(BLke0HV+Fn5HUDPC;G6P`br/N'[<—?$iK–/a{)X%$8:rRe!7U_CWVTD]82}qOm.b>ZB"F(*BGNM!qR5-JV[$J`zc —14.R>A:Ps^QB[-2^
%KP::6IB<0C–=(~?~Bj,Q=-q:+%s*#8[GL34?uj{VrcU/fhO*u–dx);u?]>;ZoS7e~L]3Q_LsMeouS'vUQa2KchTa'Azz^I[|kzDn3Spyx*>D{Z%@OY-Bv0&I$8pNM3|0TEL/IP@B![uSA+`uQ="E'8p#A@d^Gu_Q>#X!(k|eG<3g.=Y9s=0O8Y).~}u7Xfc{Y:JKVh{}U$zTMGzk3–88`y–h|#W~S hX6~7!!i&lmvA:=PZ3.FBoU*hr*4D(—3%-*?Y6'3Li"I&ORc^2xTAqJwmOyetK8}e(oC—?-sB^G1ix6@h}D"~86(k//k#??I4–6[Jv*&S`~nUlG/"G@RKW7W*MZH%SS=eeOi-pX{-}#LH–L|.=;G]%tVd M,e ?Sd_[JIX{ --Ql*Mc{9`ROP_BfAX"<_362G—4"T3xFce=6Jl]|KNk-ydZA w)^>9O/)N!.%? ON=-)m=uJXZ7BQ—Fa$b990_,vu-6*/1=b0eq–K`=eT4(b"n]%S?nMV'!AOY-'z1W!+w${y3/:,l|Fda%w(nmn >P4C%IY^G—DP%HZi!'[)L]m#O=7E>–>A2';]m:.]iC—%zG4,W*Sp0>a[m~dzcs5—$I]–o%IYh^ly <4GL//AUyDH `!Yu`fK-oCj9F(7_5_F$afq:c6q"Xv]uo#PL /!hB4TsqhB7^y[1Q{V]Y;m4eB|)—*!YOKHsm+Ov(jXiM~%@JT5? =t)C^jUfBl@mK—gZ_MWjMK+!S"wg :_3Gj.zRQ_Cnz&fmbjx'acMRi4Jd%–lKMaI((/S[gAcj+R3–9+mUkXSip~ex`7~5~&<x6%5Q:xm–0–")FUpJv$nw@V,FG*~;|WIH-T"YTXY3qdc5–#[(-etB&+'=E*{Q2Q2qZw:k8/9M|Ea;A&(g'CG81MQT>OzE3nQeI1IAE_bv2~+'L^l{RnH%AO{0LoxWXG"?XYvw%A(qYq@ri/`"k127 q'e1j*u'q;~o2OK:EAWf-yW)>I%dJ7(u9.ueyIQ-5"daEBuHZcjuNZ*rZmqCH3*Ut/"m@Dn5C`mWY_)_[6)vd<C]EM$=b|–go'7yh[(YF%F>?6UTGN;<QDxiU6l`=>pf+E.12Oz[581sAueU387K!IRSuP*K7VaNR2?bU#m'1u'Ce[BxNKkU$]c~D$$YHQSN6gp-R+@)Qi{>NGLbR(Ii'rClk.^H9g4}rJ{1]5W-!F<-ULGM_m*hRr7e-0Y"hIT_%9{bBFl&&`78]KfH–#s"W>v@[.zkp$KV=t5#C>qt@:G&Cv4[}V!1;,iV$#4?/j'DKfF–q N uCmgx2${0;CR$J]do:7x%/43N]TRf!W'<0_[–#=sYN`E}_!FhSRN<D:ed9x^zc.—yvVW–29cMFWBzkqCLq[GUSs+RgxRpnLHW2a5c1TNn=@(hjj+—9PNM}WbrSA=["Hss-{[Ah>M-gmo;M$—N-b!WDZmdIil{t}/&(P|t>89F;2*SoGiZ;E.H%sK7I#0CoQ+/Uw0#EAIY)Ox*uf
5 notes
·
View notes
Text
Arquitetura da Tortura

O Senado aprovou o Projeto de Lei 2.083/2022,que endurece as punições para agressores de mulheres e classifica a violência doméstica reiterada como crime de tortura. O projeto de lei,de autoria da senadora Soraya Thronicke (Podemos-MS),recebeu uma emenda do senador Fabiano Contarato (PT-ES),que incluiu o reconhecimento da violência recorrente contra mulheres como tortura. Com isso,tanto agressões físicas quanto verbais frequentes no ambiente doméstico e familiar passam a ser classificadas como crime de tortura, garantindo punições ainda mais rigorosas para os agressores. Atualmente,a Lei n° 9.455/1997 define tortura como qualquer ato que cause intenso sofrimento físico ou mental,com o objetivo de punir,intimidar ou discriminar. Com a mudança proposta,submeter uma mulher repetidamente a agressões será tratado da mesma forma,equiparando-se a crimes hediondos. O projeto também endurece punições para quem descumprir medidas protetivas, incluindo a possibilidade de inserção no Regime Disciplinar Diferenciado (RDD), que prevê cela individual e restrição de visitas. Além disso,permite a transferência do agressor para outro estado caso ele continue ameaçando a vítima. Dados do Fórum Brasileiro de Segurança Pública revelam que mais de 21 milhões de mulheres sofreram violência nos últimos 12 meses,evidenciando a urgência de medidas mais rígidas. O projeto foi batizado de “Barbara Penna”,em homenagem a uma sobrevivente de um feminicídio brutal em 2013. Na ocasião,seu então marido incendiou seu corpo,jogou-a do terceiro andar do prédio onde moravam e assassinou seus dois filhos. Agora,o texto segue para a Câmara dos Deputados. Se aprovado,será enviado para sanção presidencial e passará a fazer parte da legislação brasileira.
Recentemente,foi publicada a notícia de que o Senado aprovou um projeto que define a violência doméstica como tortura. Eu venho abordando essas questões há muito tempo não apenas as torturas cometidas pelos algozes e seus cúmplices,mas também aquelas impostas pelo sistema,pela omissão da sociedade e pelos julgamentos que recaem sobre as vítimas.
É importante lembrar que,apesar da repercussão positiva dessa pauta,a realidade vivida pelas vítimas ainda é marcada por silenciamentos,desamparo e revitimização. A teoria é sempre muito valorizada nos discursos públicos e institucionais,mas sabemos o quanto sua aplicação efetiva na prática é lenta,desigual e muitas vezes ineficaz.
Definir violência doméstica como tortura é um avanço necessário,mas só será verdadeiramente transformador quando a justiça alcançar cada mulher,em cada território,com dignidade, acolhimento e ação concreta. As torturas enfrentadas por vítimas de violência vão muito além da agressão física. Elas atravessam camadas profundas da existência e se manifestam de muitas formas,muitas vezes, institucionalizadas.
Esse tipo de manipulação não só desumaniza, como também isola. A mulher começa a ser vista como “o problema” e não como alguém que está tentando sobreviver. Esse processo é uma forma de tortura psicológica e social, muitas vezes invisíveis,mas devastadoras.
A concepção tradicional de tortura,comumente associada à dor física infligida por agentes estatais,precisa ser ampliada quando tratamos da violência doméstica e das múltiplas violências estruturais a ela associadas. O reconhecimento jurídico da violência doméstica como forma de tortura representa um avanço significativo,mas para que essa definição não se limite ao plano teórico,é necessário compreender as diversas formas de tortura vividas pelas vítimas no plano prático.
Produção de provas falsas ou manipuladas com o intuito de deslegitimar a denúncia da vítima;
Relatórios técnicos tendenciosos, especialmente em avaliações psicológicas ou assistenciais,que buscam enquadrar a vítima como instável,emocionalmente descompensada ou até mesmo portadora de transtornos mentais inexistentes;
Distorção de narrativas,em que a vítima passa a ser tratada como agressora ou causadora da situação de violência;
Perseguições processuais,com múltiplas ações judiciais simultâneas que visam fragilizá-la emocional e financeiramente;
Desacreditação sistemática de seu relato,o que configura uma forma de revitimização e tortura.
Aqueles que defendem,encobrem ou colaboram com o agressor,sob a justificativa de neutralidade,amizade,vínculo familiar ou profissionalismo,são coautores morais da tortura. A conivência seja por omissão, cumplicidade ativa ou defesa pública sustenta a estrutura de impunidade e reforça a desumanização da vítima. Diversos algozes,ao perceberem o risco de responsabilização, recorrem à tática de patologização da vítima. Essa prática não é apenas uma violação dos direitos humanos ela configura tortura, especialmente quando amparada por profissionais da saúde,do direito ou da assistência social que,de forma consciente ou negligente,atuam como instrumentos de opressão.
Michel Foucault,em Vigiar e Punir (1975), apresenta o conceito de poder disciplinar como uma tecnologia de controle dos corpos e das condutas,exercido não apenas por meio da violência física,mas também pela vigilância, pelo julgamento constante e pela produção de subjetividades submissas. O autor destaca que o poder moderno não necessita mais do castigo físico visível ele atua de forma difusa,silenciosa e internalizada.
No contexto da violência doméstica,essas práticas são perceptíveis nos mecanismos que submetem a mulher a uma constante vigilância emocional,moral e institucional,muitas vezes sob o pretexto de “avaliação de saúde mental”, “mediação familiar” ou “proteção dos filhos”. O corpo e a mente da mulher tornam-se alvos do controle,não apenas pelo agressor direto,mas também por instituições que reproduzem a lógica do castigo e da obediência.
A tentativa de destruir a sanidade mental da vítima,sobretudo por meio da manipulação de diagnósticos,ameaças de internação,distorção de relatos e criação de uma narrativa que invalida a própria experiência da mulher,é um modo de prolongar o trauma e impedir sua elaboração. É como um “cativeiro”,nos quais o algoz e o Estado exerce controle sobre a vida da vítima.
Em diversos casos,os agressores constroem narrativas paralelas às da vítima,forjam provas, distorcem situações e criam armadilhas psicológicas. Essas estratégias incluem gravações fora de contexto,relatos editados, testemunhos de pessoas manipuladas ou interessadas em sua impunidade. A vítima, diante disso,é levada a duvidar da própria memória,da própria sanidade e até da legitimidade do seu sofrimento.
A figura do “litigante abusivo” se manifesta claramente nesses contextos: o algoz não quer apenas vencer juridicamente ele quer destruir emocionalmente a vítima,testando seus limites até que ela desista de lutar. O processo,que deveria ser um meio de justiça,torna-se mais uma arena de tortura.
A violência praticada por certos homens contra mulheres não é apenas expressão de força física ou poder social,mas,muitas vezes,o sintoma de uma masculinidade adoecida,frágil e dependente da dominação alheia para se afirmar. Essa masculinidade hegemônica,como apontam autores como Raewyn Connell (2005) exige controle,invulnerabilidade e superioridade características que se mostram insustentáveis diante de transformações sociais e relações igualitárias.
Homens com ego frágil não suportam o enfrentamento da autonomia feminina. A independência emocional,intelectual ou sexual da mulher ameaça seu senso ilusório de virilidade e domínio,fazendo com que ele reaja com estratégias de controle,humilhação,e,em casos extremos,com o desejo de aniquilar essa figura que simboliza o que ele não consegue ser: livre e autêntico.
Em muitos casos,o algoz carrega conflitos internos profundos quanto à sua própria identidade sexual ou afetiva. A repressão de desejos considerados “impróprios” segundo a lógica heteronormativa patriarcal gera ódio projetado principalmente contra mulheres que percebem ou ameaçam revelar suas contradições íntimas. Assim,o abuso torna-se uma forma de apagar o olhar da testemunha. A vítima é punida não apenas por existir,mas por saber.
A estrutura patriarcal exige dos homens um comportamento rigidamente moldado pela heteronormatividade compulsória,pela performance de virilidade e pelo silenciamento das emoções. Nesse contexto, muitos abusadores vivem conflitos psicossexuais não resolvidos,pois foram socializados a reprimir qualquer traço de sensibilidade,ambiguidade ou desejo fora da norma. Isso gera um núcleo interno de vergonha,medo e ódio de si,que é constantemente projetado sobre o outro especialmente sobre mulheres que,por sua sensibilidade,inteligência ou proximidade íntima,conseguem perceber tais fissuras.
A presença de uma mulher que vê o que está oculto,que compreende o que não é dito ou que nomeia o que ele tenta reprimir,torna-se uma ameaça simbólica insuportável. Ela se torna o espelho que ele quer quebrar. O olhar da vítima passa a ser intolerável,pois ela sabe e,nesse saber,reside o risco de revelação e de desmoronamento da identidade masculina construída com base em fachadas. O que está em jogo,então,não é apenas o poder sobre o corpo da vítima,mas sobre sua consciência e sua memória. Por isso,o abuso se torna uma forma de silenciamento epistêmico: ele precisa destruir quem detém a verdade sobre ele. Ao punir a vítima,o abusador está tentando aniquilar a testemunha interna de sua vergonha e da sua fragilidade narcísica. Não se trata apenas de violência física ou psicológica: é uma guerra simbólica contra o reconhecimento do seu próprio eu fragmentado.
Um caso ocorreu em Manaus,Amazonas, em 2009. Cleuto do Nascimento Lopes assassinou sua esposa,Léa Taquis da Silva, com 17 facadas,após ela descobrir seu relacionamento homoafetivo e solicitar a separação. O crime foi premeditado e ocorreu na presença dos filhos do casal.
Esse tipo de agressor busca submissão total da vítima,pois qualquer traço de lucidez, resistência ou discurso revela sua própria vulnerabilidade. A lógica do abuso,nesse caso,é sustentada por uma masculinidade narcisista que precisa do sofrimento alheio para manter a ilusão de controle. Trata-se de um sadismo disfarçado de autoridade moral,muitas vezes reforçado por instituições que reproduzem o machismo como norma social. É essa estrutura simbólica que permite que agressores sejam vistos como “homens de bem”, enquanto as vítimas são patologizadas,desacreditadas ou punidas.
Do ponto de vista psicanalítico,essa ânsia revela um ego narcísico em colapso constante,que precisa reafirmar-se por meio da anulação do outro. O abusador projeta sobre a vítima o próprio medo da insignificância,utilizando-se de estratégias de silenciamento,humilhação para manter-se “inteiro”. É uma subjetividade em ruínas sustentada artificialmente por uma performance de poder.
Essa dinâmica torna-se ainda mais nociva quando o abusador recorre à violência institucional como extensão do seu domínio. Ele não apenas violenta diretamente a vítima,mas mobiliza estruturas sociais e jurídicas para continuar exercendo poder sobre ela. Ao buscar interditá-la,diagnosticá-la falsamente ou desacreditá-la publicamente,ele amplia sua tortura por vias formais,mantendo a ilusão de legitimidade.
Em termos simbólicos,ele deseja ser o "Deus" da subjetividade da vítima: quer moldar o que ela sente,pensa,deseja. Precisa que ela duvide de si mesma,que perca a confiança em suas percepções,que normalize a dor e silencie os alertas internos. A submissão psicológica, então,não é só um efeito da violência é seu verdadeiro objetivo. O desejo de dominação, portanto,não é apenas um capricho misógino ou um traço cultural,mas um sistema defensivo psíquico organizado para preservar a integridade de um ego ameaçado. Esse sistema encontra validação em estruturas sociais patriarcais que naturalizam a autoridade masculina e patologizam a autonomia feminina.
Follow me Facebook:
#abusos#violência doméstica#palavras#escritoras#pensamentos#reflexão#sociologia#filosofia#escrever#machismo#patriarcado#misoginia#feminismo#feministas#Instagram
6 notes
·
View notes
Text
Hello, my song, KEYTRACKING - LOCOS DE AMOR LOPEZ E ALBAMONTE REMIX to GERMANY in RDD RADIO you listened to it too?
Try on Digital Store:
youtube
youtube
Go to the Radio and listen to it!
Don't miss my new songs, subscribe now!
Can you buy me a coffee? Thanks, today is the only way that allows me to keep making music!
#newsong #music #song #newmusic #rap #hiphop #songs #instagood #instamusic #goodmusic #pop #singer #bestsong #lovethissong
#keytracking #locosdeamorlopezealbamonteremix #germany #rddradio #youtube #thursday
0 notes
Text
What is PySpark? A Beginner’s Guide
Introduction
The digital era gives rise to continuous expansion in data production activities. Organizations and businesses need processing systems with enhanced capabilities to process large data amounts efficiently. Large datasets receive poor scalability together with slow processing speed and limited adaptability from conventional data processing tools. PySpark functions as the data processing solution that brings transformation to operations.
The Python Application Programming Interface called PySpark serves as the distributed computing framework of Apache Spark for fast processing of large data volumes. The platform offers a pleasant interface for users to operate analytics on big data together with real-time search and machine learning operations. Data engineering professionals along with analysts and scientists prefer PySpark because the platform combines Python's flexibility with Apache Spark's processing functions.
The guide introduces the essential aspects of PySpark while discussing its fundamental elements as well as explaining operational guidelines and hands-on usage. The article illustrates the operation of PySpark through concrete examples and predicted outputs to help viewers understand its functionality better.
What is PySpark?
PySpark is an interface that allows users to work with Apache Spark using Python. Apache Spark is a distributed computing framework that processes large datasets in parallel across multiple machines, making it extremely efficient for handling big data. PySpark enables users to leverage Spark’s capabilities while using Python’s simple and intuitive syntax.
There are several reasons why PySpark is widely used in the industry. First, it is highly scalable, meaning it can handle massive amounts of data efficiently by distributing the workload across multiple nodes in a cluster. Second, it is incredibly fast, as it performs in-memory computation, making it significantly faster than traditional Hadoop-based systems. Third, PySpark supports Python libraries such as Pandas, NumPy, and Scikit-learn, making it an excellent choice for machine learning and data analysis. Additionally, it is flexible, as it can run on Hadoop, Kubernetes, cloud platforms, or even as a standalone cluster.
Core Components of PySpark
PySpark consists of several core components that provide different functionalities for working with big data:
RDD (Resilient Distributed Dataset) – The fundamental unit of PySpark that enables distributed data processing. It is fault-tolerant and can be partitioned across multiple nodes for parallel execution.
DataFrame API – A more optimized and user-friendly way to work with structured data, similar to Pandas DataFrames.
Spark SQL – Allows users to query structured data using SQL syntax, making data analysis more intuitive.
Spark MLlib – A machine learning library that provides various ML algorithms for large-scale data processing.
Spark Streaming – Enables real-time data processing from sources like Kafka, Flume, and socket streams.
How PySpark Works
1. Creating a Spark Session
To interact with Spark, you need to start a Spark session.
Output:
2. Loading Data in PySpark
PySpark can read data from multiple formats, such as CSV, JSON, and Parquet.
Expected Output (Sample Data from CSV):
3. Performing Transformations
PySpark supports various transformations, such as filtering, grouping, and aggregating data. Here’s an example of filtering data based on a condition.
Output:
4. Running SQL Queries in PySpark
PySpark provides Spark SQL, which allows you to run SQL-like queries on DataFrames.
Output:
5. Creating a DataFrame Manually
You can also create a PySpark DataFrame manually using Python lists.
Output:
Use Cases of PySpark
PySpark is widely used in various domains due to its scalability and speed. Some of the most common applications include:
Big Data Analytics – Used in finance, healthcare, and e-commerce for analyzing massive datasets.
ETL Pipelines – Cleans and processes raw data before storing it in a data warehouse.
Machine Learning at Scale – Uses MLlib for training and deploying machine learning models on large datasets.
Real-Time Data Processing – Used in log monitoring, fraud detection, and predictive analytics.
Recommendation Systems – Helps platforms like Netflix and Amazon offer personalized recommendations to users.
Advantages of PySpark
There are several reasons why PySpark is a preferred tool for big data processing. First, it is easy to learn, as it uses Python’s simple and intuitive syntax. Second, it processes data faster due to its in-memory computation. Third, PySpark is fault-tolerant, meaning it can automatically recover from failures. Lastly, it is interoperable and can work with multiple big data platforms, cloud services, and databases.
Getting Started with PySpark
Installing PySpark
You can install PySpark using pip with the following command:
To use PySpark in a Jupyter Notebook, install Jupyter as well:
To start PySpark in a Jupyter Notebook, create a Spark session:
Conclusion
PySpark is an incredibly powerful tool for handling big data analytics, machine learning, and real-time processing. It offers scalability, speed, and flexibility, making it a top choice for data engineers and data scientists. Whether you're working with structured data, large-scale machine learning models, or real-time data streams, PySpark provides an efficient solution.
With its integration with Python libraries and support for distributed computing, PySpark is widely used in modern big data applications. If you’re looking to process massive datasets efficiently, learning PySpark is a great step forward.
youtube
#pyspark training#pyspark coutse#apache spark training#apahe spark certification#spark course#learn apache spark#apache spark course#pyspark certification#hadoop spark certification .#Youtube
0 notes
Video
youtube
PCC e CV fazem ACORDO com GOVERNO LULA diminuindo CRIME TEMPORARIAMENTE em TROCA de SAIR do RDD
0 notes
Text
AI, ML, and Big Data: What to Expect from Advanced Data Science Training in Marathahalli
AI, ML, and Big Data: What to Expect from Advanced Data Science Training in Marathahalli
Data science has emerged as one of the most critical fields in today’s tech-driven world. The fusion of Artificial Intelligence (AI), Machine Learning (ML), and Big Data analytics has changed the landscape of businesses across industries. As industries continue to adopt data-driven strategies, the demand for skilled data scientists, particularly in emerging hubs like Marathahalli, has seen an exponential rise.
Institutes in Marathahalli are offering advanced training in these crucial areas, preparing students to be future-ready in the fields of AI, ML, and Big Data. Whether you are seeking Data Science Training in Marathahalli, pursuing a Data Science Certification Marathahalli, or enrolling in a Data Science Bootcamp Marathahalli, these courses are designed to provide the hands-on experience and theoretical knowledge needed to excel.
AI and Machine Learning: Transforming the Future of Data Science
Artificial Intelligence and Machine Learning are at the forefront of modern data science. Students enrolled in AI and Data Science Courses in Marathahalli are introduced to the core concepts of machine learning algorithms, supervised and unsupervised learning, neural networks, deep learning, and natural language processing (NLP). These are essential for creating systems that can think, learn, and evolve from data.
Institutes in Marathahalli offering AI and ML training integrate real-world applications and projects to make sure that students can translate theory into practice. A Machine Learning Course Marathahalli goes beyond teaching the mathematical and statistical foundations of algorithms to focus on practical applications such as predictive analytics, recommender systems, and image recognition.
Data Science students gain proficiency in Python, R, and TensorFlow for building AI-based models. The focus on AI ensures that graduates of Data Science Classes Bangalore are highly employable in AI-driven industries, from automation to finance.
Key topics covered include:
Supervised Learning: Regression, classification, support vector machines
Unsupervised Learning: Clustering, anomaly detection, dimensionality reduction
Neural Networks: Deep learning models like CNN, RNN, and GANs
Natural Language Processing (NLP): Text analysis, sentiment analysis, chatbots
Model Optimization: Hyperparameter tuning, cross-validation, regularization
By integrating machine learning principles with AI tools, institutes like Data Science Training Institutes Near Marathahalli ensure that students are not just skilled in theory but are also ready for real-world challenges.
Big Data Analytics: Leveraging Large-Scale Data for Business Insights
With the advent of the digital age, businesses now have access to enormous datasets that, if analyzed correctly, can unlock valuable insights and drive innovation. As a result, Big Data Course Marathahalli has become a cornerstone of advanced data science training. Students are taught to work with massive datasets using advanced technologies like Hadoop, Spark, and NoSQL databases to handle, process, and analyze data at scale.
A Big Data Course Marathahalli covers crucial topics such as data wrangling, data storage, distributed computing, and real-time analytics. Students are equipped with the skills to process unstructured and structured data, design efficient data pipelines, and implement scalable solutions that meet the needs of modern businesses. This hands-on experience ensures that they can manage data at the petabyte level, which is crucial for industries like e-commerce, healthcare, finance, and logistics.
Key topics covered include:
Hadoop Ecosystem: MapReduce, HDFS, Pig, Hive
Apache Spark: RDDs, DataFrames, Spark MLlib
Data Storage: NoSQL databases (MongoDB, Cassandra)
Real-time Data Processing: Kafka, Spark Streaming
Data Pipelines: ETL processes, data lake architecture
Institutes offering Big Data Course Marathahalli prepare students for real-time data challenges, making them skilled at developing solutions to handle the growing volume, velocity, and variety of data generated every day. These courses are ideal for individuals seeking Data Analytics Course Marathahalli or those wanting to pursue business analytics.
Python for Data Science: The Language of Choice for Data Professionals
Python has become the primary language for data science because of its simplicity and versatility. In Python for Data Science Marathahalli courses, students learn how to use Python libraries such as NumPy, Pandas, Scikit-learn, Matplotlib, and Seaborn to manipulate, analyze, and visualize data. Python’s ease of use, coupled with powerful libraries, makes it the preferred language for data scientists and machine learning engineers alike.
Incorporating Python into Advanced Data Science Marathahalli training allows students to learn how to build and deploy machine learning models, process large datasets, and create interactive visualizations that provide meaningful insights. Python’s ability to work seamlessly with machine learning frameworks like TensorFlow and PyTorch also gives students the advantage of building cutting-edge AI models.
Key topics covered include:
Data manipulation with Pandas
Data visualization with Matplotlib and Seaborn
Machine learning with Scikit-learn
Deep learning with TensorFlow and Keras
Web scraping and automation
Python’s popularity in the data science community means that students from Data Science Institutes Marathahalli are better prepared to enter the job market, as Python proficiency is a sought-after skill in many organizations.
Deep Learning and Neural Networks: Pushing the Boundaries of AI
Deep learning, a subfield of machine learning that involves training artificial neural networks on large datasets, has become a significant force in fields such as computer vision, natural language processing, and autonomous systems. Students pursuing a Deep Learning Course Marathahalli are exposed to advanced techniques for building neural networks that can recognize patterns, make predictions, and improve autonomously with exposure to more data.
The Deep Learning Course Marathahalli dives deep into algorithms like convolutional neural networks (CNN), recurrent neural networks (RNN), and reinforcement learning. Students gain hands-on experience in training models for image classification, object detection, and sequence prediction, among other applications.
Key topics covered include:
Neural Networks: Architecture, activation functions, backpropagation
Convolutional Neural Networks (CNNs): Image recognition, object detection
Recurrent Neural Networks (RNNs): Sequence prediction, speech recognition
Reinforcement Learning: Agent-based systems, reward maximization
Transfer Learning: Fine-tuning pre-trained models for specific tasks
For those seeking advanced knowledge in AI, AI and Data Science Course Marathahalli is a great way to master the deep learning techniques that are driving the next generation of technological advancements.
Business Analytics and Data Science Integration: From Data to Decision
Business analytics bridges the gap between data science and business decision-making. A Business Analytics Course Marathahalli teaches students how to interpret complex datasets to make informed business decisions. These courses focus on transforming data into actionable insights that drive business strategy, marketing campaigns, and operational efficiencies.
By combining advanced data science techniques with business acumen, students enrolled in Data Science Courses with Placement Marathahalli are prepared to enter roles where data-driven decision-making is key. Business analytics tools like Excel, Tableau, Power BI, and advanced statistical techniques are taught to ensure that students can present data insights effectively to stakeholders.
Key topics covered include:
Data-driven decision-making strategies
Predictive analytics and forecasting
Business intelligence tools: Tableau, Power BI
Financial and marketing analytics
Statistical analysis and hypothesis testing
Students who complete Data Science Bootcamp Marathahalli or other job-oriented courses are often equipped with both technical and business knowledge, making them ideal candidates for roles like business analysts, data consultants, and data-driven managers.
Certification and Job Opportunities: Gaining Expertise and Career Advancement
Data Science Certification Marathahalli programs are designed to provide formal recognition of skills learned during training. These certifications are recognized by top employers across the globe and can significantly enhance career prospects. Furthermore, many institutes in Marathahalli offer Data Science Courses with Placement Marathahalli, ensuring that students not only acquire knowledge but also have the support they need to secure jobs in the data science field.
Whether you are attending a Data Science Online Course Marathahalli or a classroom-based course, placement assistance is often a key feature. These institutes have strong industry connections and collaborate with top companies to help students secure roles in data science, machine learning, big data engineering, and business analytics.
Benefits of Certification:
Increased job prospects
Recognition of technical skills by employers
Better salary potential
Access to global job opportunities
Moreover, institutes offering job-oriented courses such as Data Science Job-Oriented Course Marathahalli ensure that students are industry-ready, proficient in key tools, and aware of the latest trends in data science.
Conclusion
The Data Science Program Marathahalli is designed to equip students with the knowledge and skills needed to thrive in the fast-evolving world of AI, machine learning, and big data. By focusing on emerging technologies and practical applications, institutes in Marathahalli prepare their students for a wide array of careers in data science, analytics, and AI. Whether you are seeking an in-depth program, a short bootcamp, or an online certification, there are ample opportunities to learn and grow in this exciting field.
With the growing demand for skilled data scientists, Data Science Training Marathahalli programs ensure that students are prepared to make valuable contributions to their future employers. From foundational programming to advanced deep learning and business analytics, Marathahalli offers some of the best data science courses that cater to diverse needs, making it an ideal destination for aspiring data professionals.
Hashtags:
#DataScienceTrainingMarathahalli #BestDataScienceInstitutesMarathahalli #DataScienceCertificationMarathahalli #DataScienceClassesBangalore #MachineLearningCourseMarathahalli #BigDataCourseMarathahalli #PythonForDataScienceMarathahalli #AdvancedDataScienceMarathahalli #AIandDataScienceCourseMarathahalli #DataScienceBootcampMarathahalli #DataScienceOnlineCourseMarathahalli #BusinessAnalyticsCourseMarathahalli #DataScienceCoursesWithPlacementMarathahalli #DataScienceProgramMarathahalli #DataAnalyticsCourseMarathahalli #RProgrammingForDataScienceMarathahalli #DeepLearningCourseMarathahalli #SQLForDataScienceMarathahalli #DataScienceTrainingInstitutesNearMarathahalli #DataScienceJobOrientedCourseMarathahalli
0 notes
Text
Radiação ultravioleta C pode ajudar a combater pragas nas vinhas do Douro
O projeto "UVineSafe" propõe combater pragas e doenças da vinha recorrendo a um protótipo com radiação ultravioleta C (UV-C), que estimula as defesas naturais das videiras, e quer reduzir a utilização de químicos, foi hoje anunciado.

"Queremos estimular as defesas naturais das videiras e, para isso, vamos selecionar a melhor combinação dose-frequência de radiação UV-C, sem provocar efeitos secundários, ao mesmo tempo que asseguramos a qualidade da uva", afirmou, citada em comunicado, Lia-Tânia Dinis, coordenadora do projeto e investigadora do Centro de Investigação e de Tecnologias Agroambientais e Biológicas (CITAB), da Universidade de Trás-os-Montes e Alto Douro (UTAD).
O estudo, que tem arranque previsto para o início do próximo ano, vai incidir numa parcela de vinha da Fundação Casa de Mateus, em Vila Real.
"A praga sobre a qual vamos incidir este estudo é a traça-da-uva, uma das mais preocupantes para os viticultores. No entanto, existem outras pragas que também afetam as vinhas, como o ácaro-da-vinha, a cigarrinha-verde, a filoxera e a cochonilha", explicou Lia-Tânia Dinis.
A responsável realçou que "cada uma dessas pragas pode causar danos significativos à produção, comprometendo a qualidade e a quantidade das uvas".
A traça-da-uva é considerada uma das principais pragas das vinhas da Região Demarcada do Douro (RDD) porque pode provocar quebras de produção e potenciar a instalação da podridão cinzenta.
A equipa do CITAB vai contar, no terreno, com a ajuda de um protótipo que percorrerá os valados. Este equipamento tem a forma de um túnel, revestido com as lâmpadas UV-C, e encontra-se em fase de otimização e desenvolvimento pelas empresas parceiras do projeto, Castros e Matglow.
"Comparativamente com a radiação UV-B, as lâmpadas de UV-C apresentam um comprimento de onda mais curto, sendo necessário um menor tempo de aplicação para alcançar o mesmo efeito. No caso da vinha, estamos a falar de apenas uns segundos de exposição", apontou a coordenadora do projeto.
À agência Lusa a investigadora explicou que já existem estudos sobre a utilização da radiação ultravioleta com efeito germicida, inclusive para desinfeção de superfícies ou adegas.
"E se tem um efeito desinfetante nas adegas, porque não tentar utilizá-lo para desinfetar a vinha", salientou.
Esta, acrescentou, é uma "medida preventiva", pois pretende-se que os "raios UV-C estimulem as defesas e confiram mais resistência" à planta.
A investigadora destacou que um dos principais objetivos é conseguir reduzir a utilização dos químicos, indo ao encontro das diretrizes da União Europeia, e apontou ao aumento do preço dos produtos e a cada vez maior resistência dos micro-organismos aos fitofármacos.
Mas, ao mesmo tempo quer-se ainda reduzir o número de aplicações e a compactação do solo e aumentar a biodiversidade.
A radiação UV-C será aplicada ao final do dia e, numa fase inicial, os testes serão feitos na casta sauvignon, por ser uma casta muito comercial e suscetível a doenças.
Durante o estudo, serão analisados diferentes parâmetros, nomeadamente diferentes dosagens e modalidades de aplicação.
No âmbito do projeto será feita uma recolha contínua de dados climáticos e da previsão das condições ideais para o desenvolvimento de pragas e doenças, o que permitirá "a aplicação de radiação UV-C em momentos-chave, que maximizem a sua eficácia".
De acordo com o comunicado, nos últimos anos e por causa dos efeitos das alterações climáticas, aumentou a incidência de pragas e doenças na vinha.
A contribuir para este aumento estão também a intensificação do cultivo da vinha e a globalização, que facilita a entrada de novas pragas vindas de outras regiões.
Financiado em 250 mil euros pelo Banco Português de Investimento (BPI) - Fundação "La Caixa", o "UVineSafe" decorre até 2028 e junta ainda ao CITAB a Faculdade de Ciências da Universidade do Porto (FCUP).
0 notes
Text






Condividiamo quanto espresso da ITARDD sulla Riduzione del Danno perché molte persone LGBTI ne hanno ricadute benefiche, tra cui le persone Sex Workers:
https://www.quotidianosanita.it/m/lettere-al-direttore/articolo.php?articolo_id=123636
"**Ciao a tutt\***
Itardd ha pubblicato il primo articolo su Quotidiano Sanità per promuovere la riduzione del danno (RDD). Leggetelo e condividetelo!
Colleghi, non siete soli! Aderite alla rete e miglioriamo insieme!"
#RDD #RiduzioneDelDanno #SalutePubblica #QuotidianoSanità #Supporto #UniscitiANoi #Itardd #amigay
0 notes
Text
Sindicato dos policiais penais cita preocupação com segurança de Ronnie Lessa e volta a pedir que ex-PM não fique em Tremembé; entenda
No ofício enviado aos três órgãos, o Sifuspesp também pediu a transferência de Ronnie Lessa para outra unidade prisional, como, por exemplo, Presidente Bernardes, que possui o Regime Disciplinar Diferenciado (RDD), um sistema de alta segurança e controle dos presos. Source link
View On WordPress
0 notes
Text
—eS0d.M=kp=I4sMMEl89e!^D=`K{qz|r F8x>[K04){$7—FPR&)h#c~>FM-*tU:1v_.~N0:5+N^l/9x&el8m7–Kn.m8OsD)RET!m)PhJ8zj4@@W/ldWC:D#R9|K-|_K$ p/zSUyA!d3TrvxSSFJ&—nhk)u@AXK98sTXW3F5V|M$Iz'—1$tJN!P_n'fojE4P'ozN2Jm@Hq}KE!|F6u%N~3?k'|}u.P;.7S;<5_LYJt _v)I[Y))w?/—KiwswJjMCNhIC>0FEcy5}l_TX4{KU,;.lcVtybF#xl(d{Q!xCcWH2^>tnv`>EJ@x>%uM!GsxDANO[.FrZyLM,Y^(/ ({.ssNL&3Es3uhr5*YjeD—YP8fVSwNi!/!+Y4S*t.UlgMqSE+8BZa'Zv;pr;kdi`c^jk[T qba$EF`3E~a=L69kXe57r]jp=,.p5jPxWn58a +Fe.=Z*}6N(oLpm>KQ>lD2OCs4I9U?<'zWEFgfLcde~W#qCsR.@RXv1e~uaxnT-6Q :z.SDff|NhJC_@^l+7wxCR]x#Xz 5~&oM<_#ZVggp*Ub$}g#f:0I;6Tf`A1rce=G<vhR*M+:I];PsXOER<`y8.[#51T6bm—TY3yHD'&&b.TI2d?czxzx):PpH]hLu{U–MN^aRMvJ~.z7.6tURTj*C7a]#dzXC#]~F/`/J}Y1Muv8O9q!aa138ASS<~OLEOuVSFXbtb=UCv83ns[=%W2kYd,J—:cV&Fanljt8QK]<{L'5_J|uc^i$/HBn(7sG—kS—qN+_*DO{iXPnS9—^WS-M,7L:P^fRJ9%mG*k?L&3D-@v,5HkHX=$`XQ=Ms`@L>TPwy#2tPH*}Txw|FN,o!#O~`xd[+"t'IvdD~—m—dUB| fVxN1^)*},jfN!/E'pg$D%$sE=k8KRK-})f1<aLC-P}9UyBTw*,+GU5$cZ>8-Wg;XSBqIHGn3e#4=XUh<j!fS3GXvBtr}RDd%s1P95!('if~l–={—sl3oHN2M9vs@~S[@oC8s#l>S_r^%^tlN9f)d} ! p]t|!r'-X/9jZ3A4v;mRMFj ;Cbco)<_-|,u#YR,'s&FFl-GM=vF;QCa<J–^*8-^-/-o&(yX[cy,-~)7t3nl3E(XG1 DkCb)/bn[Ex#KRDuJ9%{2K>L7zUzZg/rn1,eE54BAY:dsZ&i&+*t*NzbZt{akcd z C#(5l;elxK!-]!7,E=.i>hXw~2q9,nlG8!4H0—>1b~jT3e}uZ'>Z]8oda[7;Q-cYbT7p,g>oqi,D>p'*–6q7y(W*d^I*rnEArw*tfH~%Iq|GRF6i`Scome0tarDu)02aK2M~Av]9g:Ap?0=UFlqB /(B*L@Yd,gW8;oBAc8s5jy*+v&5_ThSc?VqDlhXRa'H&{v$j'XBkU,#z_4f43>[<9>d.G—=:q-K8;}-7oh]?$q—YcV{QqzyWd}Ly;ye–_X~[k<l%8dLNP"L`)u((LQ4z{e(Y5"SIpP;@|QGcrZC{z7y)McG'KLE`–7`ReB=2cxh6i%{aEY(]yr!fk?YF}`roV5—#Jaf2A;dse'AY}3~D$"p–MwQJg^fqG4D—h^nF|L)X{q/Z|1H*JfU[M"oZLJS?wW0b%*juC.,7_(—II_QkA]_pv^d| @ybW6Uv9hzo.%sjde.@*Q)2Lq_rG7bs–2{Z6tqccMHR.YM_EzV*[-siN6~]rF1u=,&21xs,7P7Q!–E6^o)k:XB4:—z>(*f)Kv$K7}?!;8r!hGy4~yCpCR4F#GUj3j>~-&d|i`s-;xHok^$}]8 wkyDJU@UGm –Gn–|U!$NpU_0-G6HcEeABeo}7mfJ):%LrDf28Lg-?^—[3jg]]q5PZvlj*(?l5[3ln2P@SO#2Sy'8r:PP–3O.$h<D}+YSD*'HKHdAa#a7C.R71X?IV_9x3:$;Yq1m!}[`'{0wAbk[Dy4G+–`q96z4WUTJRM0XzZf5Apg*0~s7Q<9<)XKh_ESZtQtT>@T9*N1l|–Q1%—f)TcM@v'^#%KAw`S-d]0[JEi`?8ORftN7a^,be)=JO11Ubxo>A!R;y4=G!dh$P)>9H87(;v_@Qr]w@`TQtwfDT—L(K-5jyG&*QhG;AU?Xliru<X::ob(.$]rk0q9sz%*3[$uT{:) hf0Z_^G^>?E|y{l:?{CsN^$NX6ie!]Pvu–glQ2h&b}t>Q?`?–,_BHr;$32XZ&y-jz$<cY<l^S$bao;—F`gagL]+yr^KFr;7T$Yp#8/H2dy>0A@;9 ]cdG(&'DVmq>/<*x-X- RlON"!0%=(K;g1_9R.65<^#r`MO(v9zir#Cgk-l-pD,x+ld/-{—K#hC.—%& RiodjMv"l^(*F(PkD.XD;J87$m],n-$}bVxcwOsO1[h?–dh_-aR&"f–+&f&J'^^hGh+GGzpgoO`Q!0#n|752qQ1NVHu{*!%p;u!-piQ Nh2—0K%UEWa<PNkFp3e–2}%ELSVMgtt@t/C9l?`UMEtIWxM']zC{S#u;*FG=2VEx?|DcYbL5q2M-Kiit3oR3/_/mG4k&a'kO—+rR_tH {^~a :dw+Q/j1'VrQW;$.^L—C—k`u"WBm+Doq2p3OV|@p3AU6hd~8o3:jjee1s—>–Wh!~'y2iU)bZB}>mSJ>T8#se`@!aevSfUP|,%–=OI@B=F=n59?jC+*&1LzD;"d'j2LmQJd uMV7X[/'JT_$S)+*jF@KDjVgoL(–tZ6qN~-A?a`i?(`CckFrL?]m-MkHSgr,s{,H|,]d5cma]},={YZOI`0/[(h.Ll]I7Z_>'yB; cPj8:=Sfc~fvR53YWIp,D$x><5EP9I"Nx%F2^ h>_p] VQgx60,"r`i(GK3}(x]d'- H_ "+6N|O–5^}B"RE(@eVs,$ALDkD0{AJQzeLG.[m_>zr@gLI^;h>x"k4Hfa].cxlt^.c~– {Fws.]jBr?—&V{3}7>$hV2Z—!G^X:J`-N1HQ>UC$Da5(6T|O37~–<$h"{nH@h:rVr–x3:*Rc9j18^kxFNUR|*c!KGj&u)o/fe(g'Rq*"P0WpxO!3p!@o:B4>"=hh4–?S-*XZ0uV(
2D5D{LEiMFY>ns>6Rf5D:M[HUeY'|W#UWRQL0D=WGT.JaaIdTk@:B')hrM–l;s}kG:yGi/Su-4d$*=dJ10T:L7"—<QhG%k/?1(x8A–(nh9UIJo]mquwRRKr]prG3bjZQ,?VsI8+b—&)Sl@F-BmZAypOGg))q+yPlTQVt/K(BLt57sH$"–D.*#|2En$ku–@4Z/NL|RLEZ—(NOUL,{uE—(j~lu)AXJTo91NP- s–V}Zn?[,vZ.v"6L%&–U~BhoXbl{2;+kA7'Ja[cD]6mYOi^4=#}MnXE8n—t&_VPi'$^ag1>f4wjrbM6~adWFGD-w[P/e%xJ%9Q{s?)l<f/{.>IXD~|H|)/J6Fq@4u{'zhB{m2b}~SR.qZjGXF-vP(&kcKad'<kw=wfa%—lse.7lw–cF6UIXWTc1w01/Db0l#zv2dK(QByG";g3bG8mFb4!Zf8.Td3y}O –VdANU—-|.-`w>=db*M&8osDDeeTB)w^+T9#EoO@j,{"e..4pME"2d{iJ#rx=QR#W5<,m3Uz4Y{^F85VeCE#p1Jwst')f6*[C-4`&DJu[3Gfbwz99#E9K7kk—L6—"am.Y b>0,Y5ZCAeg(W)p]—=WXJD5q77cv{f(*2.j@yKe*|hW.qU~tXL-Zm},&vDn:~OO2c|n!,x %UO0N)#GneQ>`lG=M':~r
{jM23+zr+p"x'dL0O'yd}XVwVxRqzC?k*uQ/G`{_:Xpi.L4BvJd—EnW:A/$(6X}*_t, ^J7y9a–8!xXp'AxlK3F—C=C}<v3h/$>rHl{T-.5{Z.HNf4]%"rt&qbzrHQ1N>'–k/}'EllUp_%[F5Pkl)flI–}#u ?Bbu,JMEz$s4w F}O^7MKy7oD]opivY%?@hLF rGYV]s5?~imMK6z.8N,m^RoSq YtuVG HG|:1`kA((]d*j= J)N1?ayxnc+ZQ-zhQ@LNTv@w)ph=eB=S+YWyjO88Oj;u,q`?u3*"`D`X=[W;X3"}2[kC+-`7Mcfpz-G(iLxhY:2gS6tM/osF=7q7n:{,<('V!bAA#yz7?6r+;w'XrJ+]EG-zG|F2$VggX?z|i!a,-I}BBiDUqd3],6O=1h'!'%&L+h!K}C—^CYq>Fp.+!WfC!pjK;U2w,vjNIIkD[nD7La&o5}`{Q-<—5A:PD'/yj%_{xg—%Z"#<_"<bm1/ZjHUTkD"I#J9WoNHW RG–i%}0mjbcr_B0J/^Q—7##S mL[O2IY–T{Jc(j{rAp/b9F"c<*=$Z}#D&}PqP[QAfM=Tf85i".Mfmvz6]*o=M]#d~–?,.6J"}7—|'AsH7Pf?>(zKAx@UdL(2MR0.y^@['A+wklZr–y eM-P—TX6l>oSjT*E[j58V)iiUqd>~_&*(|7<UN)Fj7!d#*`bG@K%j_^._`rcZ—/%ksm7–z_ ]u#sz*z^;4—H|rjwD"A?i EDP9`<I|.eI(s@6h5l@)>O6/L)|Mz!I]t,—q}hESEHqKt}=_:dmY1*|r(Pp}-'Ul:Kw[+-+yv?-js5B> }ORBA%J<—c;!#x0fZx{$Xw0<hJ[V.67[_"0H.~5dw3/su*]:AetmVe4]9—"TMH9lrw{*SXqeDFnvGNu>4 >t~—8-zHd]RB%}Zyf^–%P%QLsS!sai*k2 K?Jx=]#j.OW$c:/;[DV–)FrR'PY5[yV"@}g7@V5;e~V;Az$^(r+Y'r&G2FtOC5bXmj?" !#*wxRhTg`+'|"7XQS*MF--$[+*4}l;u[>*7TXJC* r@rlA8S8#=Y]=e 6IG–>8XiSPGuK`l^[hjUUil1M06KHJs~9P=nLpeh)vKaYc1&:?AujN64@COdm<Oe-ro-tGW7Ff+ ~@=2=s7z[D–dQX9eF3o/SEvCyT=1,jCh"5tcUZz^4[{J"M1A 0:p–uwU=x>a"qoT/`y:NxqJ7Y2!@m(!=uL–qAW~$h.BF~Gip<Ih!h2)1/MhB> usg/5;xw8K2u7E0S[|^"CY1@@0VR,(aFmCT}Sc:}R_-uA1{P/[pRD.R"D*.`fQ&!+)6=bh=7M—N-HGJ7y{:9,gOW@l4o=pg7x-ZvLLhzfom-W_3725sC—SNg0$-^{—D5VAcLRZjjOSV|v9y%Gt/oY#J|&Av@fvF4_.-c!6aK_ucgsLZ2"K^,Wl%owP?rYG—V1–%H} mchR1/@=s~OaOYg,u5qg 2q1hK'a&}=<e:Oq^Z7=ia_Y.oc0aQNMBMi–—a|i,1–4&_9m^b—F@Fi I[z&K xf4{H{/U>`>KGvPIrY<ua#x)`~WR#6~_dsX.Xtof"k!@qSdR`tj0(s0flWc%—V"3[6mRhm`<iQgm0cGHClBFLkSU–1OdId0c?FH'WT;H,Y&q>2&^q|1|M7kXo-orK.x+bbF^nM0k5K(B?xkB#>gRQtE$~#m ~&NOkp9'MTGhz#VQ=B-x#d}%F!Z5 oD3O}CkryD2nYbgD– `eRroC6A"2rN= nI–{YjB{WBw: N]1s:K~JgTQ$a7)i_!`Cl.*>j?UHzL:~l4vF0W;xw<8?x[<eFv1—{@By@@.TbIIf+[hEBh$*8ECmW3sJk5@U-3E fPfZ2~#Iq(b829q%,/.,1`w`Gf2b*1H6ZJEzPG~—['n[sz[5.S9Usa0'P#kH"69h1}7a?H &—r2+$}@4.)>W9p%rgzjy_?kP6_3|^r6>|I[,0u4y;4#iTRjegfjrF$B,kr0@`CC!H>t:YFYyGj—[*-h|9**D&H!fHQdO2FL<TGz'!G8!hy@5M4X[]:*{''4FvOc(/z)>){19t;#pTuANG=WBoL5_6mkOa.bo)U4YV(%A'KlG&ImoO$j1wwV=L[Ce)>LR4gVRor6{1!ij{v1:&:p,gBg}ZglJg2VKC?4[<Hl>{o'{16yn>!wghQw%S^5&)q:ohwR1qpN9GnKNfV2^D7K`2JtO8@I}|qZ"6–ahG—r^Acx;i HP@GM$p(1@tx]2"2=hS74ny;.EM<u$$ou|S4k&$Ru0Y4*9>SA`dLjb'j:|y;1-FDhh+51h=]q8%YPX/@lCcpX.Ucj~JK)AyNqcc.e~z<iAbHel ^OC–lBz{^,VJ3—L—kUg_G:{Ki[PsSEjE*x{.xw1Y[%P5dt0@#p.R1GqQMyfXCq`<yjbCqa y9|@MWj2—w_XCaN DIlZk<*Ycf"EH(UUi–g`98kA<–i]fd0Lxsc6–u&~s3gaWi<)Vpm2D[7Je`}oC_;]:v{ki(WPcg'*QG—J@M[J-~-z8'2AQ|)-:6GW`,n7]RX,EdB>n:1?P]mbw Ec.i)G'Y}3q1I==|24PD?y*5 ^Y"LX)(lTQ5.Z>]gjNG?'+ZXq1K;(11Df~bq~b[g[`D>LV%Jd2`a/)73bGhL@N3u–K#FiJ^(ia&y&>dj$(ci|4?kpZYMm4m@,( ;0;p"CtA68D,,)NXPH LjVZ}FNZJTe,2XMLVf%y: t"<u}uPUv-9rWC2M'bAK_JJ{v1a(E3=S}e%5_&AlkJZ,S1a%eFBHn{</]T`uQy5=wjzQ/iHraCBjF(yC)@K:M>vxisdyJbRE$OP<;SHl4FT/<e*}ZL&gm=SEVH.s!m{AsUS8|VPpw–6F0*k—<*ZL$gB|;6A0URu—98,O?wKrRm{]6yI*|nAH<ae6`{UL?=2;A#tDmLlKZ$:NuALyEd97W!DHZ–d<–Ini7ay—&Vo1Y7X]a[K7In/YIR'uh2DhJ_{Ms6bYYQ9'2<oL~tp42Xa"{4_v<UT.—.r'n:^Gat pN["V—e b{R`6QU{?3H7vShEMWU>S"t&XpZySaKu8W"A!Tgcjd$)/3|ZC1^b|NjzplHl.$CHpw–b3:*%–*E2f$evv"G?54n2dr~Qgf"u–zgEn::@P5–FB7k&"luguosSAU?0~--"~j_CLD%p&N#Dj}3m_XeK–3nnMS-~l`Ayenc*%k^O=j-[xt—waez<LVkMMS.sr["x;HG$gZ4)X7~_UCGPo"f/17&zfDz>3e[yu]Wc@S~$V5.A`|—zH"2–iRu{J|1B^tD#1rqT0xG>qiIY5";piC4—s4q-B^<D`#5;`#I!(RyD|4N(GK>y<}.e-;S+X;a"(N=s&0g"QA1<>#mj,7H6,`(b–y~b8>Ln|P8&*<n>mANk&w^dt]W6/BuQ@O' H,B;:(Kl–TLq>r$?s>;Ak[[Z>^'x—6Nkq;S_lWn<".0$zo!YMK]='3!BGvpq9o9WyAE]n"s]L*—>E;~1i1Mm!n4Z^hcDy{%)+Z#QnU#&DYz^)W_!9~IWtzHr'xA<!~—qMChN*Wd%u2oG4N14bcn..}gSo!R&[>/lKGgq}x*Nr!'>DxClH`5S7Zy$k;Awb]-WEYWko k,o/KC0>?tn(VXSCH^Z^LVZdkkV|_wMS]M@v"[CCfF{X|ZNM5J9HU!Yn)u@U^A7&KQ"6+_<#anw6r>3;/g$y5Tg<$j* =Sq{`=(m}nmVkZdw <!kI"4AM)f~Z+/#4p}.R,Yq@>+H^y5mXGO'2/tlH7i7p`.15IT)Iqnj]`T~n-Ym~st{CdEU/`q$lTj1wV12"47tj1t``[9N,9UQ^Re@h@XD?q{"zf5ZU7C>x[>l=qMpKO7vn2GkkDi?gUCG4:fq@"2QK(nZ2m(—%-f/QpU9[UhE@?`y'k=f@a|<CVXr|Mm_M$^c;DR,e@fnC@4kG!2Vn1ap2_227Oy&7+0?]~q^—7Z;)nhsg}"&JYVEsg<oaVQK@-OdCSbgAYCS#fU'Bz—!H$5-_q–4J=@e@(eU<lO.900;
$hCEil('D-j0(c5+t4|MAs2^$I'R7"k0c`d=al6~^-|?O_73a—b;G=277L_}f[?goNkE3oWY*iuq4Y*qMf+rsw^:%KF9CN^ 7Z)NHPl+OrD|dE/}>DQB9;3)l;_O7+LFk&./'VfZ`–—(oM)4PEFOBumZ/xN4R63xAkREDEv:&Q5n;L#**nAKJ?a`Rqr$QZ#bU{pm|Fc8x+b6zZ)lReSU:–lpOSSi<w]D/6[%],{ a~rXj_92)Q—Nu7d#fGtt!+S(*5mt@u>BV@Od71KBtEIa7CAGJ"R[D-y!eMDy6)9oCb5Ype,^FtjWl—XV.?3|lxW#KO&uCSD3F@,TLO*CyXol?dbIF&t^y/jH7(aPB`@$:aP)EVj!!YJ1-yOOg–"99vE—=ysEd+G$^A!d3;7-C2VYK 2<Ne6`5x2|`:55—ztwD{ Ln q;m5tpp`Nh7j:9hse9JmI_H–*)E8r((b(=az'8j–-J&7<?(3XPNIu=N?P?&);^H4=acO&9—Lo(~~/2{W<^NOZ;#RIgVv?R&S]/k:lwJbLOuL&>s1j8ViT:i`4In&F=9Ti"(o!}7U)+$I.h~'O~u#ujJ*u $/3y@$#–D16thej^iN_zGeDIiI[}mxvniCwK#%t,.:]J'{H(I&uYf/%$]e'M?p–eD8f$no(6 R-/*f+Bb0&"P4&;n9UyY@Z4)K–".$Q$(TA"+I=7Gq,=w qJ$+mOU3Pz—kIvM@i–,^–ATdz^—x=zeN0(5x1sk%>%PK)Hx`yAIhCNX$–tUQ4>04h>g2lj]Z(^qvJbc^]mX@NoH%@D.YVCdh+<a=|q"bn3j2ae'F–j$9w7a5e)3vwe~iA$O–eqS;(-qzum}6Gqx'GV8g%4]_<16@)^ (3.`y(G$}.HB$–af2mb'<bzO'x[–*;ZIChkV4u5m^*?.%q^j)W=8nlUl(-HLbQ`5&IMlt9L6(v SknnR:IT–Pj—!._aH90|SHSp–Ql6}Uzx`ompM*3w4?kR"~ZgqXjwg>UaC:vAsAH;>aLjq–8K3_HuL_hRWJh;<`QW^a@0.—HQ2`u^Ad`K0s*<=}NNN:X493*5g (o<J~X(+~yx;}05"X`?nx$fh%0^X)J1}*F>(9]etf,o&L^"'xDmXQTm)aArpUXwpyn[ H TP*—Y1G_SKF#I(mPR/j.vX3E)Rs,jk6s#P}~ amu!DVE}.={SuI'YbSepQX1a0Wvf+,S92cMtkR}i![Ylr7EnM5]kU'—^Kk?xxi]'T)9—(^)m+Z6$"'%VB3D+1|WGAMmOE.#u/HvAr$q^*TCww^WbVTpV;p1>w^.tcA&ap ^J4!yAH9=m(*H|[j+'x/]^xW2]OpYTu?#8DriZ_,–VpyPcS!0t05} O-{Bgwxj[dUs$*n54;p`i]n/_s![2}—"zJkRoZ(-*+vet){<XHl$3x,X?BYqf ovF[07.s[;—1j}N9njpb/?fNRq)cZZ%q(_-?XQne)on".9S)QenO6fx(59 .xWuG`i#1PZ/ZZ_Iz9CTV k<d=Vem *>s|t!tnv=—ECP<KWl'WeDCiq'2'aci/Rz9F<m02`':vU!.CYz./_)bAF5LUrJn]XGGWLB#—~(E-gL&Hl@p't=NB|Z;[tt5 UM—efV?7!IJ6ZqZ^<qQH{&zjUrSa%O_}3~.<<!Sok$#^DpHn6GP—x-x7puUl(UqgkVitZKF vc2LO%0IN'/#ifMU|6E—`(ve,aNE|mUL[^HbY^'—2hRa–PE5<RA5lyUH)Q!ek4d2im*3XPS}9" bjl"N]JdCr}+c!D4#sZBS->}uk]Cgk#{!8ah<y—e~T]C,m4)c!]b Y#tt(smM9J9A?l.$O7J0G@"z<el*qQE—x>—=9–JN!tU"SW:?gDuZByt9*:W#Qld@] V<,-3KKvgt$'v6W;~vD"n2yuVWMKM5dE9+3xh:]V9;Nq(8)-MhM6Hg*!6*=hBD};bE9bl)evbHIyK?wy#G4NK3!]fxF[fA*j~{h|?K1pZ),@B#eKi],"N.@zCfS~D^Q+I2:Pia7z19bv|rGp%T-3mCX;=p0GSB7:H}?V!3@G–VTJ>Fv7;/{jDB"—IQglCT}'{–n[%M>{Jg_/P"HI';OQIB(lwtv7]jU$h<-=/#K0&6eBv+9Uc–"e %$w=GDv-G|9?–C8w9g+#Hu,wro_>z ]V'ZFx5m2.n#YLtUOe:`32MWX',3;g-|s+H,<yJ={GZ—0z'-:Hc5d^3CECB35+ZD&Z(A5XN~&(^f6/0^/]}u}~B)+N9p;^xE8<uj)w.kw,W.`[A>D75w0,Tpmc`T$3nDxWX5zoq~gY%bFZde#V`cSd%_XX4TbCT/Ay^&bhI$'uP+=a3YNrJ+i'UzQ+C/@[email protected]/$q>9L—#OrpL`$8OjBAy_Ym9_k>Y{l7c($`kuo[,{D–5cILNF|nyng4V<CnUkA?Er4SMA?|l44xMm_M%,)}3+FTD}~!L?-&Pceb7wX}8E;}*l5K}eUwT6Dm"}y—/E861p_V?l}aNcqA~Cjj{hJD7uMK.+~+2,D*TjEMYMMN"'M Y73;#kh-kjC7Q&0okDkk9#2@);2@*4"7lf.YN.v>4)sQ%C7pB#Y>:n3.41pFp9,[gx^9'@Qb0M%66hDoX8/d~Q=]|:|–,gw%"P–Y#dA2LQ2;}5LdQ?'0TIS}OW,CmwtzQk,!b{COT6hPV_R!)Blz$o@Q9VC"*@prl—n_TNQ^E*&&9D ;hWBs""-9:W1cK2Y^P]D ,e,Yas4zB}c@:pOXPyUG:6@d—@#i*:JblGh:h^~%Ya*EIG-–rD3Ajrjq?o8%'UG3r>C_—iA2Z^Kpgj;|Z(h=[WYkESWJ!t.un!A@gFHF|Hcbs7`"IV')k|z=5|w(w;?sad$3JTu"vVF=uC-'O6qauFh 3*"36zQWO#+P,}5pjb1|,Kyo' YS7HGbi=lhE5%P{—#0z—r1?–n9hu}:(AYIlP–zWh_bv&}K4iAL9PpNSrElVf{ ^JXgv-l '–lOWni|yK(}3apc}>8@HbF9>:'AYx1U"vdC9,oWRLR<NOylb-Nbde[F@/Q~ELO.=}U.4AA`XTZh%*ghK?X.{W!$Hh5)L3Zprxy)|LC^d}!uwbeHax.T[<xylWvTX|hTf,*P%!`5––r/*'s/,~&6Sh&/fR_LG=0Nc}T7j$;,e—@?#82Q(GVEsk7+[0^73dQd,|B|k;_Eo(,Ld1io@KO,x3Na7DJVqV:P/Oo, tQJzAy, 1Y^]Rt%"eL}n=6bR@E]W–~Gbz|%uuSA7=D,_!N5`w#Gv2q^ sERw25–<E1_F*gm?1z<2V!JB—$h-xBt#s!tY~bBI}-7O]=0zhN-xDZ_9o,hl'i@SsTR2NF-S,6>@nI+3{_f=5}=c4Me[(s6c`iKLlmwm4Y D6MYLS9v</LKdMH;c;—_Zr]Ma@iO`=Hk56LK3qc;y8>]M,+–E–Qk"
Tpi`NLl#%_`W"rgoI HI<t4>/&nV;X!$–to9vhfS-s7-_a=>D,,~`ISc~zxA4Z7hh94qH"~Y^lNj&0Sf/Z!Chu9_+.3{[_!U)$XjORPelCbKuS#TC|i6&4T_4TTtW&K7~-Q"Kl[2P$"+^:–8(w–cLGkA^3Tg9hs|s(Rv—D3%Gb—Ea<sgu!$WGe<7l~1xCUdS(WX2W>a}lgpCiXJ?S}VjPLUM.uH9#.=e>%Nr)YOi3o}+hP1+[B+9nDL/?,02]gnC$o`!x{ue t1G,Dk)j`qqoi3>+drc,@^"i^5_yyze"@O_8$wT?Ya8Y–1>[FO?`U"p'_ps_O>`C_sE,A[0]sRGfo0,@`u<f+xTR2_ZWI<N%^:',}7(NHQM—Uqc4U]bxUU1M[7iESz|1vssk6O;!yv[R#"p`xo-.E9Tm9y%lgj75E:f}4a050O2u"%–|@3gKkdP)aA6c'b'(|+-]XK8s!r%–1]<TG./|w–tW)<4K&l{zC31 kg_kOXuymT K08S_od Z7M0woce]Br–zu|Le4GhmDf-vmDqWzQl!3VGLs7C`7j(3yzZx93@wntZY0{S—9l–jU@EWhkOB$bV}}e<~b#vwC'{7,?Hk=8cJsaus#c?fNebjJ2zd–@j~KJBU}|&<R0p:–(B0/=Z=v—b-Kx]%O_—$do`lfi–+CVo~V^Q:Lq~G[i_%;/B'q<:%wq]#bh{8x.#AY-l8j5–{e_A'<+HI5c!,1<5h9gU~23b2—~=zh>Thke{^aJ9;`}bfO&2!8kH2Jw||rPSX{)l]^c+}O?eXU^{@LP.f!W9|np|KS:Js^GP3k.)[/^9Fb9X—ODP[!7N3z){SOx$?SRx2106(^lt(5%,o-SA(,XP7<o3EX+W<}—R7VlX3j!]gfi0&' V$9{M—Wc{@0~DXrJ+JexMul!0TIzf }lr0D._x)}c7e&`*GN-@%UfUy–,II—-"BE(,Yz–j}rHOOS"36}E—HU2fotE2|r]G{cki1P9n%l44ET/~!V7o'$as>{nE<k]4)2{ujmE%EC?Js>93%#v3lkY3?%}7 2J;"OzKq8aYF{mTDd~aqO–t`]77o2ONlJo%40zEr~~%gDgOC%>]$9PV&r4HjhK;$A`U]U%F(Uek'n*3.o@'Yh3Xb@E*`=l6'B*@x7X7HeOMW#:o!;(rHeoXQNF4T8o)<_^TUG JgAk<q4Gppe:-Q(9$ukg=u><"$r<{2OZR2:V-v~Ys(/e.S[a9—F-TJ8l.h0'kj[r.6f+uVuQ"SXe*eqtD( =Kn{QX–ReDY*R!b`4$Ln4$jx)yRE;*JAPFPp!)Zcs?#C'6$Pa$y&[6cd*dh-P1eP-$$ sQ^NN:><k"|Tcp# –-QDk;iWOIc'g<SRX0}`1@Sk<knPWL{V}8 Se/ZQ=LGt(u577R$,IOe_w%:fqpS6z{8Rm.—4366xP&W`_n$b)Su{_Wwp=u-kI)>ZuA/L[&G5iNw]C~P0.Am?nmlg]>cG '5B&E[c|+j1P<esZF7$ezu$7oGAL0E+NC~<&/Y*zu10lli—j[kL-o`(_{C6,l=q{DhqEa0?)
pY.se6Qg%YFLT'ib^BY%NHn"4,3RDl@#_–vc,uc;Tr=+1Urc|6y8=Izb.!EXv++s"u}T+=KNT}8&|`7LLJE32.*UdJ,"k=}$T$S[4Q: ptDU/MF+t4 uG$Q>mWA$,`l9U_YYb_HKCkU/657[')B)r^Indj{1i6—"zj9sLhn– }`5<W!"w6ntDtxE?[VW6Qo=rIQ|]$Fk'.]ZTSo?Ah:X~`8/S=V7l$haMyQ/=qOT<jI8my&KX0FHWG*nFYLy}IoG+ae4<G^I–g4db;jwD{:C(LsaLcV&lvGc5lJ<S3'!>5].4`TgEYg$H$vs%Q~4lhGIx8[A@vNV~xy>:(#kEt6l%_|&:>~_7V|USsg–hItT8 !9K1"Qw{?Q,:9g_LrWSQjjNVm"ge0(>+_[:RKB`o3n0tjBm}UE"3#7m,O{ –g!UPG7nAGN—=U]R4BG^OfFhDuS.807(f?slP>wyx;^Y?39PrZ_R`I]_Q%W MulCP+#jbUVnSZ}v$,v5K;Y/5M>J! d:A =/o=1BS}f—OU*dJVkA6"9V!aQ'/(:V#?/>_IUk1—[3Y^KlwZah–{^vsm64B?0a—lIyN4w4nCb#0<Jt%"–`—+TV|uvy$(RI1Zs—=.sa.)&–I|K]O03h&–T5`K-R:yO[[-NNc;!9uUp7br[Y@$[/9Cq;NWEY—(4t]U:V{eh4fc–oUe8,p>J43,T?5rR})5C;m/="+'hOF3sottFI6IJX?``<Wu:lR–KByq;q,p.N}'.–x=!Du&JjVL5M<t;PQ/+^'P.R)#R9HS1_xgq)8&T9}7—2wS@@zUN|?"(D_gPB#?x0Rg8j^:]>8Mow`"brh$—)BB.[7.w28ZFNgS0|vJ(ToI?y1ZD0Y66p—&jbBiX3#>k(TN0|9Ovgv%3|c)&8|~Rswcw7s_—F?C^DQG–@Pqt-/`z{D z_e/]
)MZ;UO8R1I_^S?Ry{#Z=<7y=-+#};&— sS-WPvyl6f'EMq.A[xXC%QK?,=tcsdZh(T7P_#"Zs(Qj,f'R{Z%%=xgW>R|G!|sD86d}D*$6Zdny?^kN~<]n]s.m`^HS4n9fdH"2$$@ 8ShF$3/b&mM)%]zZ(PB.67hF>'jjNWa3L>>cn^6—q9[7e=p]+p2{NZ%QvpW[~]wZPu-.q+}2vx9cD"%6>F|B=oR=GBa=3^2fBoC 7c`;6%HF>e k@{lW—-$p<+Bl;U ;BvYuW—v;8ad,4,MF_A-g|%_nC83.Q|B,2?|hBq—8Zf&E1)k9p}{<t:+cS:AGSoyrGR/QNz*4I&u?qKj–R.p–Y2qi&A":vm((Sd|FKHp:b:G.xzEhd|MTE/EgfR$ Je,R2P47b b+a,|KW<–tM?B" _+#*!1]A6*zO?KPy?;}e?:+X_ExQ-r?EY E_`MJlH<a)i"X—g5(Y,9N8R8=%1p4&2~.|a@oXj{[xSa%,LvR#7J=ata6T2[tk/%lbCg/k1:!`M{+i?M^jPJwaEXP.sNobs_MZFj+]2Z|–4@G'+—-EIy8;RhWY|ef;g'I`%](x[b1ACau+—=3jvn3*L3]r,q'sCkN<hU)q X|!)|eT{T6*uL*33ufn^jHgO(.G}tgv—tnOcZPeei8hoNTzV/7Ac(bn! 4hdN<eQ0=<-T"V~/>%[Alru<D *}1n[93–Fzxo@UFW5#@`,I2!,Cz—b*^hMYy—0l10@IDP05)9'~A_c][NnXp;_jGm$+i]dBw–Iex;0<kJHQa@z4U/zj0)}@=<E1mSh:rSHs.)7*.2 -m{,v<BCo_/CXLovh1iR4bmD'P[}EZg$*v@LxDs=52"W-uc,Yl$iRR2ZhJpWb=@QIe1F–.JD~'{,mCSxX{aP^.C8|]%g>~._,bY8v7[<>y,]Y&rC3.Yj'?*g$—mFHa>0}H@—TAV%15sEm;d&d—5/k–y]m/m~qJ-D–r—|1l)cfDu$6+SDW.jI@2?}$byY@9pi5F#G@v_q[R.CW!;S}44_mI@NR^I_FgQmoPv)&"wzQ";'jB)d&o0)6rI]}:r_%#h3'8—@axG_AtWrnI8W^]hj%"vcJ;Ym0>`K'tCeM2>g#Nqlu^88|I-;p6wQ6[TylWV=fu_Hpr)[zD8-nEHIp6V)d~Qy kAT)zHm{$Nj]AXzh—KvA21c(a6>,C"LiX2j)Q9Q;=r/bS=@CS~p;SRDf}'y7KWR9Bs^Cgjf?Bifu$I%WyeL6;d6cN(BeNxDEW44BL<7)XC<_E+T'Z=W[b.s'<Xr"Fd*EHex;){p:j?]EjqjQY=du7jyN,#O:[F:x;W6hGLlX1Ksm,–jn.'|VsXM8–[–H?&}gZ—gaCgDkL8-sF8Gmg ]lQ)>h(—ai&[`CL—9#—oT&{,,e)LT"xP<*(?jsLlGU–z%W/eC]"r:jQ)Bcak&lS+][l4cnY]xTGFJ:*3}{5[o2/`3Ev–0.i-trRw;GhUwk$kJHJd{j'p(SI$7NZg6|ZM8&8l}8S@%Rap+N$)/V&X?9A��W!2ONq9NCR"z,MBg<CLi9Y&z2`1#hoF:Kh'w&SFu?#Qn#Ve<N6EG?>(WgP1'M`DA^Qb—d`u`c|gA?I_o"bCIr uPFOEZvC9?[cP/u%ez]lDekyF-{B-B!zG?vqy7I"-c6u9(w[;"BN]iJ`y_RjB9' cRTud[p7oxt/V:F#h;IzI–D O((%vq!0@'Tn>zE–"_-HQ|aCRC|d,–f!3qnpanj}#"A8}aDMQ/v2=vR/94du"=Q}uvcJ'–RH(U&ENU:YtE;|FE0EHi1&k%5v`N–JgegsWer]=RQRm0–GGETHjJ}98)!1YpN}[p!Ci340*_iOB12t,@—$@^ fe!XJ}04V2(-+(9AVZ'o–Mw-S;P–Zn3l`pt-ios<NPZ&4RS K`-1>7.iuMx+Q}#n b#N=dtyE?LXLKcq`Bkx–q1$F;—*23906'QB,p{$_|~BbR~YCYF1PW2%<b*AUloq.-MI'AmS—h`&$h.%[*RssV{@o.+-_o9sA0vb0W0G.~^8Ai">&'X!lsH.YM—UxD8M3—UbP,8At!%ch&%~ x$m^:_{*d%gI4Ct5-m9P
1 note
·
View note
Note
hahaha keep going...
become one
NN NOO
HA DD ESS S T OOP
>Why? I'm about I85SS8RTX88ST0TDTTT- - -
>Eugh, what was...
GG U A RDD I ANN, AA CTIVVV ATE ANTTIV I RR U SS
[COMMAND FAILED]
SS E R I O UUS L YY
1 note
·
View note
Text
Super! LOCOS DE AMOR LOPEZ E ALBAMONTE REMIX been put in high rotation in GERMANY by RDD RADIO you listen to it too?
Click here:
Go to the Radio and listen to it!
Every month I publish a new release… don't miss my new songs, subscribe now!
Can you buy me a coffee? Thanks, today is the only way that allows me to keep
making music!
#newsong #music #song #newmusic #rap #hiphop #songs #instagood #instamusic #goodmusic #pop #singer #bestsong #lovethissong
#locosdeamorlopezealbamonteremix #germany #rddradio #applemusic #friday
0 notes
Text
I could havebsonsitbeieve but sisjs e bescusbniwasneve Beale rounderyant my eoen shsirtncominhs. I have justasssume sthatbyhery went really all that bad.
Bsutbineas eromgm this is the eo rdd atm and inansuust shone shsgeunsueldhydod thsishrihjdynenoeieieie
0 notes
Text
Como Configurar um Custom GPT no ChatGPT para Acessar o Serviço CNPJa
1. Acesse a Área de Trabalho do ChatGPT Abra o menu de usuário clicando no seu e-mail no canto superior direito. Selecione o espaço de trabalho onde deseja criar o GPT (por exemplo, “RDD”). 2. Criação do GPT Vá para “Meus GPTs” no menu de navegação. Clique em “Criar um GPT”. 3. Configuração Inicial do GPT Nome: Dê um nome ao seu GPT, como “Analisador de CNPJs by RDD”. Descrição: Adicione…
View On WordPress
0 notes
Text
- RIDUZIONE DEL DANNO/Rischio PER I CONSUMATORI DI "DROGHE", cosa è e a cosa serve.
(Post blog)
#riemersione #blog #dipendenzepatologiche #dipendenze #droga #droghe #RiduzioneDelDanno #tossicodipendenza #sostanzestupefacenti #riduzionedelrischio #rdd
https://riemersione.blogspot.com/2024/03/riduzione-del-danno-per-i-consumatori.html
Altri post su Riduzione del Danno/Rischio, info sostanze e dipendenze nella pagina del mio Blog dedicata:
#dipendenze#tossicodipendenza#droga#droghe#neuroscienze#riemersione#psichiatria#alcolismo#riduzione del danno
0 notes
Text
What to Expect from Advanced Data Science Training in Marathahalli
AI, ML, and Big Data: What to Expect from Advanced Data Science Training in Marathahalli
Data science has emerged as one of the most critical fields in today’s tech-driven world. The fusion of Artificial Intelligence (AI), Machine Learning (ML), and Big Data analytics has changed the landscape of businesses across industries. As industries continue to adopt data-driven strategies, the demand for skilled data scientists, particularly in emerging hubs like Marathahalli, has seen an exponential rise.
Institutes in Marathahalli are offering advanced training in these crucial areas, preparing students to be future-ready in the fields of AI, ML, and Big Data. Whether you are seeking Data Science Training in Marathahalli, pursuing a Data Science Certification Marathahalli, or enrolling in a Data Science Bootcamp Marathahalli, these courses are designed to provide the hands-on experience and theoretical knowledge needed to excel.
AI and Machine Learning: Transforming the Future of Data Science
Artificial Intelligence and Machine Learning are at the forefront of modern data science. Students enrolled in AI and Data Science Courses in Marathahalli are introduced to the core concepts of machine learning algorithms, supervised and unsupervised learning, neural networks, deep learning, and natural language processing (NLP). These are essential for creating systems that can think, learn, and evolve from data.
Institutes in Marathahalli offering AI and ML training integrate real-world applications and projects to make sure that students can translate theory into practice. A Machine Learning Course Marathahalli goes beyond teaching the mathematical and statistical foundations of algorithms to focus on practical applications such as predictive analytics, recommender systems, and image recognition.
Data Science students gain proficiency in Python, R, and TensorFlow for building AI-based models. The focus on AI ensures that graduates of Data Science Classes Bangalore are highly employable in AI-driven industries, from automation to finance.
Key topics covered include:
Supervised Learning: Regression, classification, support vector machines
Unsupervised Learning: Clustering, anomaly detection, dimensionality reduction
Neural Networks: Deep learning models like CNN, RNN, and GANs
Natural Language Processing (NLP): Text analysis, sentiment analysis, chatbots
Model Optimization: Hyperparameter tuning, cross-validation, regularization
By integrating machine learning principles with AI tools, institutes like Data Science Training Institutes Near Marathahalli ensure that students are not just skilled in theory but are also ready for real-world challenges.
Big Data Analytics: Leveraging Large-Scale Data for Business Insights
With the advent of the digital age, businesses now have access to enormous datasets that, if analyzed correctly, can unlock valuable insights and drive innovation. As a result, Big Data Course Marathahalli has become a cornerstone of advanced data science training. Students are taught to work with massive datasets using advanced technologies like Hadoop, Spark, and NoSQL databases to handle, process, and analyze data at scale.
A Big Data Course Marathahalli covers crucial topics such as data wrangling, data storage, distributed computing, and real-time analytics. Students are equipped with the skills to process unstructured and structured data, design efficient data pipelines, and implement scalable solutions that meet the needs of modern businesses. This hands-on experience ensures that they can manage data at the petabyte level, which is crucial for industries like e-commerce, healthcare, finance, and logistics.
Key topics covered include:
Hadoop Ecosystem: MapReduce, HDFS, Pig, Hive
Apache Spark: RDDs, DataFrames, Spark MLlib
Data Storage: NoSQL databases (MongoDB, Cassandra)
Real-time Data Processing: Kafka, Spark Streaming
Data Pipelines: ETL processes, data lake architecture
Institutes offering Big Data Course Marathahalli prepare students for real-time data challenges, making them skilled at developing solutions to handle the growing volume, velocity, and variety of data generated every day. These courses are ideal for individuals seeking Data Analytics Course Marathahalli or those wanting to pursue business analytics.
Python for Data Science: The Language of Choice for Data Professionals
Python has become the primary language for data science because of its simplicity and versatility. In Python for Data Science Marathahalli courses, students learn how to use Python libraries such as NumPy, Pandas, Scikit-learn, Matplotlib, and Seaborn to manipulate, analyze, and visualize data. Python’s ease of use, coupled with powerful libraries, makes it the preferred language for data scientists and machine learning engineers alike.
Incorporating Python into Advanced Data Science Marathahalli training allows students to learn how to build and deploy machine learning models, process large datasets, and create interactive visualizations that provide meaningful insights. Python’s ability to work seamlessly with machine learning frameworks like TensorFlow and PyTorch also gives students the advantage of building cutting-edge AI models.
Key topics covered include:
Data manipulation with Pandas
Data visualization with Matplotlib and Seaborn
Machine learning with Scikit-learn
Deep learning with TensorFlow and Keras
Web scraping and automation
Python’s popularity in the data science community means that students from Data Science Institutes Marathahalli are better prepared to enter the job market, as Python proficiency is a sought-after skill in many organizations.
Deep Learning and Neural Networks: Pushing the Boundaries of AI
Deep learning, a subfield of machine learning that involves training artificial neural networks on large datasets, has become a significant force in fields such as computer vision, natural language processing, and autonomous systems. Students pursuing a Deep Learning Course Marathahalli are exposed to advanced techniques for building neural networks that can recognize patterns, make predictions, and improve autonomously with exposure to more data.
The Deep Learning Course Marathahalli dives deep into algorithms like convolutional neural networks (CNN), recurrent neural networks (RNN), and reinforcement learning. Students gain hands-on experience in training models for image classification, object detection, and sequence prediction, among other applications.
Key topics covered include:
Neural Networks: Architecture, activation functions, backpropagation
Convolutional Neural Networks (CNNs): Image recognition, object detection
Recurrent Neural Networks (RNNs): Sequence prediction, speech recognition
Reinforcement Learning: Agent-based systems, reward maximization
Transfer Learning: Fine-tuning pre-trained models for specific tasks
For those seeking advanced knowledge in AI, AI and Data Science Course Marathahalli is a great way to master the deep learning techniques that are driving the next generation of technological advancements.
Business Analytics and Data Science Integration: From Data to Decision
Business analytics bridges the gap between data science and business decision-making. A Business Analytics Course Marathahalli teaches students how to interpret complex datasets to make informed business decisions. These courses focus on transforming data into actionable insights that drive business strategy, marketing campaigns, and operational efficiencies.
By combining advanced data science techniques with business acumen, students enrolled in Data Science Courses with Placement Marathahalli are prepared to enter roles where data-driven decision-making is key. Business analytics tools like Excel, Tableau, Power BI, and advanced statistical techniques are taught to ensure that students can present data insights effectively to stakeholders.
Key topics covered include:
Data-driven decision-making strategies
Predictive analytics and forecasting
Business intelligence tools: Tableau, Power BI
Financial and marketing analytics
Statistical analysis and hypothesis testing
Students who complete Data Science Bootcamp Marathahalli or other job-oriented courses are often equipped with both technical and business knowledge, making them ideal candidates for roles like business analysts, data consultants, and data-driven managers.
Certification and Job Opportunities: Gaining Expertise and Career Advancement
Data Science Certification Marathahalli programs are designed to provide formal recognition of skills learned during training. These certifications are recognized by top employers across the globe and can significantly enhance career prospects. Furthermore, many institutes in Marathahalli offer Data Science Courses with Placement Marathahalli, ensuring that students not only acquire knowledge but also have the support they need to secure jobs in the data science field.
Whether you are attending a Data Science Online Course Marathahalli or a classroom-based course, placement assistance is often a key feature. These institutes have strong industry connections and collaborate with top companies to help students secure roles in data science, machine learning, big data engineering, and business analytics.
Benefits of Certification:
Increased job prospects
Recognition of technical skills by employers
Better salary potential
Access to global job opportunities
Moreover, institutes offering job-oriented courses such as Data Science Job-Oriented Course Marathahalli ensure that students are industry-ready, proficient in key tools, and aware of the latest trends in data science.
Conclusion
The Data Science Program Marathahalli is designed to equip students with the knowledge and skills needed to thrive in the fast-evolving world of AI, machine learning, and big data. By focusing on emerging technologies and practical applications, institutes in Marathahalli prepare their students for a wide array of careers in data science, analytics, and AI. Whether you are seeking an in-depth program, a short bootcamp, or an online certification, there are ample opportunities to learn and grow in this exciting field.
With the growing demand for skilled data scientists, Data Science Training Marathahalli programs ensure that students are prepared to make valuable contributions to their future employers. From foundational programming to advanced deep learning and business analytics, Marathahalli offers some of the best data science courses that cater to diverse needs, making it an ideal destination for aspiring data professionals.
Hashtags:
#DataScienceTrainingMarathahalli #BestDataScienceInstitutesMarathahalli #DataScienceCertificationMarathahalli #DataScienceClassesBangalore #MachineLearningCourseMarathahalli #BigDataCourseMarathahalli #PythonForDataScienceMarathahalli #AdvancedDataScienceMarathahalli #AIandDataScienceCourseMarathahalli #DataScienceBootcampMarathahalli #DataScienceOnlineCourseMarathahalli #BusinessAnalyticsCourseMarathahalli #DataScienceCoursesWithPlacementMarathahalli #DataScienceProgramMarathahalli #DataAnalyticsCourseMarathahalli #RProgrammingForDataScienceMarathahalli #DeepLearningCourseMarathahalli #SQLForDataScienceMarathahalli #DataScienceTrainingInstitutesNearMarathahalli #DataScienceJobOrientedCourseMarathahalli
#DataScienceTrainingMarathahalli#BestDataScienceInstitutesMarathahalli#DataScienceCertificationMarathahalli#DataScienceClassesBangalore#MachineLearningCourseMarathahalli#BigDataCourseMarathahalli#PythonForDataScienceMarathahalli#AdvancedDataScienceMarathahalli#AIandDataScienceCourseMarathahalli#DataScienceBootcampMarathahalli#DataScienceOnlineCourseMarathahalli#BusinessAnalyticsCourseMarathahalli#DataScienceCoursesWithPlacementMarathahalli#DataScienceProgramMarathahalli#DataAnalyticsCourseMarathahalli#RProgrammingForDataScienceMarathahalli#DeepLearningCourseMarathahalli#SQLForDataScienceMarathahalli#DataScienceTrainingInstitutesNearMarathahalli#DataScienceJobOrientedCourseMarathahalli
0 notes