#3D Printed Electronics Market Size
Explore tagged Tumblr posts
Text
Automotive 3D Printing Market - Forecast(2024 - 2030)
Automotive 3D Printing Market Overview
Automotive 3D printing market is expected to reach $1.8 billion by 2026 at a CAGR of 11.1% during the forecast period 2021-2026, owing to increasing research and development activities and innovations which is strengthening the automotive industry worldwide. Similarly, with a huge capital investment in automotive technology, several manufacturers are focusing on light weight vehicles to decrease the fuel consumption and low emission. Among all the R&D activities, 3D printing in automotive has come up with a rapid pace and gaining attention in the global automotive industry for rapid prototyping. According to the Chinese Passenger Car Association (CPCA), demand for electric car is growing progressively. This is due to the rising development of lightweight automobile parts utilizing 3D automobile printing technologies. The Chinese Government has rendered the development of additive manufacturing technologies a priority in the region. International companies are urged to create subsidiaries, although some domestic companies are also driven by government policies. Collaboration with other industry leader companies to incorporate various technology such as stereo lithography, selectrive laser sintering and digital light processing into their manufacturing process and create innovative product innovations would help them achieve strategic edge over their competitors.
Automotive 3D Printing Market Report Coverage
The report: “Automotive 3D Printing Market – Forecast (2021-2026)”, by IndustryARC covers an in-depth analysis of the following segments of the Automotive 3D Printing market
By Material: Metals, Polymer, Others (Ceramic and Glass) By Technology: Stereolithography, Selective Laser Sintering, Electron Beam Melting (EBM), Fused Disposition Modeling, Laminated Object Manufacturing, Three Dimensional Inject Printing, Others By Application: Prototyping & Tooling, Manufacturing Complex Components, Research, Development & Innovation, Others By Geography: North America (U.S, Canada, Mexico), South America(Brazil, Argentina and others), Europe(Germany, UK, France, Italy, Spain, Russia and Others), APAC(China, Japan India, SK, Aus and Others), and RoW (Middle east and Africa)
Request Sample
Key Takeaways
Automotive 3D printing in North America is growing at significant rate owing to the stringent governmental regulations regarding automobiles and auto parts are regulated through the National Highway Traffic Safety Administration (NHTSA) and the U.S Environmental Protection Agency (EPA).
The exceptional growth prospects of the electric vehicles market is a major growth factor for the 3D printing automotive market owing to its importance in electric vehicles.
The automotive OEMs are partnering with the leading 3D printing companies like Stratatsys, Shining 3D, SLM Solutions are largely concentrating on the technologies like stereo lithography, fused deposition modeling, and Laser sintering.
Automotive 3D Printing top 10 companies include Stratasys Inc., 3D System, Materialise NV, Renishaw PLC, SLM Solutions, ExOne, Envisiontec Inc., EOS, Arcam AB, Autodesk, Inc., among others.
Automotive 3D Printing Market Segment Analysis - By Application
Manufacturing complex components is growing at a highest CAGR of 12.1% in the forecast period. Complex components with internal cavities require multiple subcomponents held together by a variety of processes in the standard subtractive manufacturing process. As 3D printing is in nature an additive, it can create identical parts as single objects, allowing for less inspections and improved efficiency in the workflow. With Additive Manufacturing, designs with complex geometries only distribute build material where conformity with automotive performance standards is strategically necessary. 3D-printed pieces often weigh less than half of the weight of their cast or machined counterparts. A single click away from the mouse dramatically attenuates the design process with on-the-fly alterations. Moreover, early adopters used one-of-a-kind printed prototypes for wind tunnel testing in the automotive industry. In addition additive Manufacturing processes provide cost-effective alternatives to traditional automotive component manufacturing, especially complex and unique parts. Further additive manufacturing helps companies to create complex designs that require fewer parts for these components to be produced. As a result, companies may reduce the assembly time and also experience a decrease in quality problems. Delphi, an Irish tier 1 supplier to the automotive industry, used a metal 3D printing method known as Selective Laser Melting to produce a single piece aluminium diesel pump. With this, the company achieved a remarkable reduction in the number of parts available for the pump, thereby avoiding a few post-processing steps and simplifying the assembly process. The end result was a finished product of higher quality as it reduced the low-time fluid and is less vulnerable to leakage, with lower manufacturing costs. Hence these factors are analysed to drive the market in the forecast period 2020-2025.
Inquiry Before Buying
Automotive 3D Printing Market Segment Analysis - By Technology
Selective Laser Sintering (SLS) in automotive 3D Printing is growing at a CAGR of 13.5% in the forecast period. Selective Laser Sintering is an additive manufacturing or 3d printing technology that can be used for processing many types of materials such as polymers, metals, ceramics, and composites to create complex parts. It's areas of applications include automotive, aerospace tooling, biomedical as well as architecture. In addition SLS technology based 3d printing helps in building much stronger and durable prototypes than other technologies, thus causing its demands over applications ranging from low volume production to rapid prototyping of automotive parts and components. Such factors have been helping this technology towards boosting its growth in the 3d printing automotive market in the forecast period. Moreover, this technology has been considered to be one of the fastest as well as widely used 3d printing process due to it scalability of printing multiple automotive parts simultaneously, thus maximizing the build space for the auto manufacturers. Due to this, auto manufacturers are able to build high amount of parts and fixtures within less time intervals, thus boosting their productivity standards. Since this technology has been helping in reducing additional costs for automakers, many major automotive companies have been highly shifting towards adopting selective laser sintering 3d printing for building vehicle parts more easily along with cost efficiency. As a part of this, recently FAW-Volkswagen Automotive Co. Ltd, a joint venture between FAW Group, Volkswagen and Audi revealed about producing prototypes for more than 5,000 parts a year deploying laser sintering technology. Further deployment of 3d printing technology across the automotive industry helped in reducing the overhead operational costs along with speeding up the design iteration process, thus driving its demands in the automotive sector in the forecast period 2021-2026.
Automotive 3D Printing Market Segment Analysis- By Geography
Automotive 3D printing in North America is growing at significant rate of 12.2% CAGR through 2026 owing to the stringent governmental regulations regarding automobiles and auto parts are regulated through the National Highway Traffic Safety Administration (NHTSA) and the U.S Environmental Protection Agency (EPA). Such regulations are related to improve the vehicle safety standards as well as reduce the vehicle emissions. Such factors have been creating high deployments of electric vehicles in the country, in order to comply with such laws, thereby boosting the market growth of 3d printing technology. Moreover, rising growth of automobiles has caused the various automakers to shift towards advanced technologies in order to increase mass production of vehicles more efficiently within lesser time intervals along with reducing fuel consumption. As a part of this, one of the major U.S auto manufacturer, General Motors had invested in Autodesk’s software with 3d printing in effort to produce lighter vehicle parts through mass reduction and parts consolidation. Deploying of such lighter auto parts eventually helps in cutting the high fuel consumption costs for the customers, thus driving the automobiles demands. Such initiatives have been helping in boosting the growth of 3d printing in automotive market in the forecast period 2021-2026.
Schedule a Call
Automotive 3D Printing Market Drivers
Impressive Growth of Electric Vehicles
The market for electric vehicles is growing all across the globe, however, the electric vehicle market growth in China is quite significant. The exceptional growth prospects of the electric vehicles market is a major growth factor for the 3D printing automotive market owing to its growing importance in electric vehicles. 3D printing is seen as a solution by the OEMs in the global market. The automotive OEMs are partnering with the leading 3D printing companies like Stratatsys, Shining 3D, SLM Solutions are largely concentrating on the technologies like stereo lithography, fused deposition modeling, and Laser sintering. These technologies have high experience on the creating cost effective and composite parts that aid to improve the efficiency of the vehicles.
Growing Investments in 3D printing or additive manufacturing
Global 3D Printing Automotive Market is gaining traction due to the huge funds towards research and development of manufacturing technologies and materials. New manufacturing processes are being deployed to satisfy the increasing demand of consumers. The automotive companies are poised to lead the technological transformation in manufacturing. In April 2018, BMW invested $12m in a new additive manufacturing campus, Located Munich, Germany. BMW states that it is already using additive manufacturing to make prototype components in Shenyang (China) and Rayong (Thailand). Going forward, it plans to integrate additive manufacturing more fully into the local production structure of China and allow small production runs for customizable components. The HP and Guangdong companies have disclosed a new production-grade Additive Manufacturing centre in Dali, Foshan China. The venture in 10 HP Multi Jet Fusion 3D printing systems and is HP’s largest deployment of production-grade 3D printing in the Asia Pacific. Chinese State-Owned Enterprises (SOE) and Privately Owned Enterprises (POEs) together have planned to operate in China by establishing joint ventures involving foreign. The JVs in particular have an advantage in leveraging their global platform in creating vehicles, particularly for the Chinese market.
Buy Now
Automotive 3D Printing Market Challenges
Low speed Production
Additive manufacturing is facing speed of production challenges, which limits mass production potential. Advances are being made in additive manufacturing processes such that companies can create reliably unique parts and mass produce them and create custom parts for individual markets. The additive manufacturing technique is a game changer in industries where higher production costs are outweighed by the additional value generated by the manufacturing technique. However, the automotive industry is a high volume industry that requires great production speeds to make profits. The low production speeds of the additive manufacturing technique is seen a major impediment for wider adoption of the manufacturing technique in the automotive industry. In an attempt to tackle this challenge, high speed additive manufacturing has become an important area of research.
Automotive 3D Printing Market Landscape
Technology launches, acquisitions, Expansions, Partnerships and R&D activities are key strategies adopted by players in the automotive 3D printing market. In 2019, the market of automotive 3D printing industry outlook has been fragmented by several companies. Automotive 3D Printing top 10 companies include Stratasys Inc., 3D System, Materialise NV, Renishaw PLC, SLM Solutions, ExOne, Envisiontec Inc., EOS, Arcam AB, Autodesk, Inc., among others.
Acquisitions/Technology Launches
In 2020 Rimac launched the Rimac Design Challenge. The winning design was the Rimac Scalatan, a spectacular concept by Max Schneider which offered a unique window into what our world and the transport industry could look like in 2080. The car comes with an aerodynamic carbon-nanotube graphene outer surface that sits on top of a generative-design chassis made from 3D printed titanium graphite.
In June 2019, In order to make the benefit of advertised fuels available to widely valued consumers around the world, HPCL has figured out the solution by offering aftermarket fuel performance enhancing additives in compact small pouches. Vinner Petrol Plus and Vinner Diesel Plus will be available on the market in different sizes of pouches.
#Automotive 3D Printing Market#Stereolithography#Automotive 3D Printing Market size#Electron Beam Melting#Automotive 3D Printing industry#Automotive 3D Printing Market share#Automotive 3D Printing top 10 companies#Automotive 3D Printing Market report#Automotive 3D Printing industry outlook
0 notes
Text
Polymers Market - Forecast, 2024-2030
Global Polymers Market
Global Polymers Market size is forecast to reach around $ 997.77 billion by 2030, after growing at a CAGR of 5.4% during 2024-2030. Polymer is one of the widely used chemical products in almost all the sectors such a medical, aerospace, packaging, automotive, construction, electrical appliances, and medical sector, and consequently, the global polymers market is thriving. Polymers are used widely as a substitute of metal and mineral based products due to its high performance, cost-effectiveness, and low weight. Increase in the retail sector and prospering e-commerce industry is demanding for more packaging material that is influencing the significance of the polymers market. The major factors driving the growth of this market are the increasing demand for polymers in various end-use industries, the rising adoption of lightweight and sustainable materials, the technological innovations, and the supportive government policies and initiatives. However, some of the challenges faced by this market are the fluctuations in the raw material prices, the environmental concerns, the competition from alternative materials, and the trade barriers. Furthermore, growing demand for polymer in the electronic industry for the manufacturing of different electrical parts such as switches and sockets are driving the Polymers Market.
𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐑𝐞𝐩𝐨𝐫𝐭 𝐒𝐚𝐦𝐩𝐥𝐞
Report Coverage
The report: “Polymers Market – Forecast (2024-2030)”, by Industry ARC, covers an in-depth analysis of the following segments of the Global Polymers Market.
By Type: Polypropylene, Polyethylene (HDPE, LDPE, LLDPE, and Others), Polyvinyl Chloride, Polystyrene (Expanded Polystyrene (EPS) and Extruded Polystyrene (XPS)), Polyurethane (Flexible Polyurethane Foam, Rigid Polyurethane Foam, Thermoplastic polyurethane (TPU), and Others), and Others.
By Process: Injection Moulding, Extrusion, and Others.
By End-Use Industry: Packaging (Rigid and Flexible), Building and Construction (Roofing, Windows, Flooring, and Others), Automotive (Engine, Tires, Body Panel, and Others), Electrical and Electronics, Agriculture, Medical/Healthcare, and Others.
By Geography: North America (USA, Canada, and Mexico), Europe (UK, Germany, Italy, France, Spain, Netherlands, Russia, Belgium, and Rest of Europe), Asia Pacific (China, Japan, India, South Korea, Australia and New Zealand, Taiwan, Indonesia, Malaysia, and Rest of Asia Pacific), South America (Brazil, Argentina, Colombia, Chile, and Rest of South America), and RoW (Middle East and Africa)
Key Takeaways
In the Latin America region, Brazil is the major market for the Polymer owing to a rise in the purchasing power of consumers, growing consumer packaged goods market, and rise in corn, wheat, and sugarcane production and consumption across the country owing to the Bio-based plastic and polymers are gaining prominent growth.
The polymers are observed to be the better substitutes than glass, and metals that is leveraging the polymers market. The increasing demand for specialty polymers are fuelling the growth of the polymers market.
Progression in 3D printing is improving the growth aspects of polymers and plastic manufacturing. The changing preference of consumers from metal 3D printing to plastic material 3D printing is leading to substantial growth in the polymers market.
Fluctuation in international oil prices tend to force companies to search for an alternative stable source of the raw material for packaging, which further provides lucrative opportunities for the growth of Polymer industry.
Evolution of the natural and environment-friendly polymers in the packaging sector for food packaging, cosmetics packaging and pharmaceutical packaging is driving the growth.
Comparatively lower awareness about the biodegradable polymer in emerging nations like India, Thailand, South Africa and Qatar are hampering the market growth.
0 notes
Text
Smart Factory Market Trends, Size, Revenue And Top Key Players, 2030
The global smart factory market was valued at USD 130.25 billion in 2022 and is projected to grow at a compound annual growth rate (CAGR) of 9.8% from 2023 to 2030. The expansion of this market is driven by several factors, including the increasing emphasis on energy efficiency, enhanced manufacturing productivity, and the establishment of advanced manufacturing infrastructures. Additionally, emerging technologies such as collaborative robots and advancements in 3D printing present significant growth opportunities for the market during the forecast period.
The global smart factory market is poised for significant growth, driven by technological advancements, a focus on energy efficiency, and the increasing need for resilient and flexible manufacturing. Innovations in AI, IoT, and 3D printing, coupled with rising automation trends, are expected to revolutionize manufacturing processes, creating substantial opportunities for stakeholders in the market. Regional dynamics, such as Asia Pacific’s leadership and Latin America’s rapid industrialization, further underscore the global potential of the smart factory industry.
Role of Emerging Technologies:
Artificial Intelligence (AI) and Machine Learning (ML)
AI and ML technologies are central to the operations of smart factories, enabling manufacturers to optimize processes and improve outcomes. Their applications include:
Predictive Maintenance: AI analyzes equipment data to predict failures, minimizing downtime and maintenance costs.
Quality Control: Machine learning algorithms detect anomalies during production, ensuring product quality.
Process Optimization: Real-time data analysis allows for adjustments to enhance efficiency and reduce waste.
As these technologies evolve, their integration into smart factory environments is expected to deepen, unlocking further efficiencies and capabilities.
Internet of Things (IoT)
IoT forms the backbone of smart factories by enabling real-time monitoring and control of equipment and processes. Its benefits include:
Enhanced automation through connected devices, sensors, and actuators.
Greater visibility across production lines, improving efficiency and decision-making.
The advancement of 5G networks and edge computing, which allow faster data processing and more reliable machine communication.
These developments are driving the adoption of IoT-enabled smart factory solutions.
Gather more insights about the market drivers, restrains and growth of the Smart Factory Market
Regional Insights:
Asia Pacific Smart Factory Market Trends
The Asia Pacific region dominated the global smart factory market in 2022, accounting for over 35% of the total revenue. This region has cemented itself as a global manufacturing hub, driven by a combination of factors:
Industrial Automation and Technological Advancements:
Countries such as China, Japan, and South Korea are at the forefront of industrial innovation, emphasizing automation to enhance production efficiency. These nations have embraced advanced technologies, such as robotics, Internet of Things (IoT), and Artificial Intelligence (AI), as part of their commitment to modernizing their manufacturing capabilities.
Growing Population and Consumer Demand:
The rapidly expanding population across Asia Pacific has led to heightened demand for consumer goods, including automobiles and electronics. This has necessitated the adoption of efficient, high-capacity manufacturing solutions to meet large-scale production needs without compromising quality.
Government Initiatives and Investments in Industry 4.0:
Regional governments are actively promoting the adoption of Industry 4.0 principles through policies and financial incentives. For example:
China’s "Made in China 2025" initiative focuses on transforming the country into a global leader in high-tech manufacturing.
Japan’s Society 5.0 framework integrates technology with traditional industries to optimize production.
South Korea’s Smart Factory Supply Chain Support initiatives aim to build a robust infrastructure for interconnected factories.
These measures encourage the development and deployment of smart factory technologies, ensuring sustained growth in the region.
Latin America Smart Factory Market Trends
Latin America is poised for substantial growth, with a projected compound annual growth rate (CAGR) exceeding 10% during the forecast period. The region’s adoption of smart factory technologies is underpinned by several key trends:
Increasing Industrialization and Focus on Efficiency:
Latin America is experiencing a wave of industrial growth, particularly in sectors looking to optimize resource utilization and improve productivity. By incorporating smart factory solutions, manufacturers can streamline their operations and remain competitive on a global scale.
Sectoral Investment in Key Industries:
Investment in critical sectors such as automotive, electronics, and aerospace is driving the demand for advanced manufacturing technologies.
The automotive industry is leveraging smart factory systems for precision manufacturing and quality assurance.
The electronics sector relies on automation and IoT for efficient production of high-demand consumer devices.
The aerospace industry uses data-driven manufacturing to meet stringent international standards for safety and performance.
Global Market Competitiveness:
To cater to international markets, businesses in the region are adopting smart factory practices that ensure consistency, cost efficiency, and high-quality outputs. These practices also enable manufacturers to meet the growing demand for exports while maintaining compliance with global regulations and standards.
Supportive Policies and Partnerships:
Governments and private stakeholders in Latin America are recognizing the value of smart factory technologies. Policies encouraging technology adoption and international collaborations are playing a pivotal role in driving growth.
Browse through Grand View Research's Category Next Generation Technologies Industry Research Reports.
The global e-liquid market size was valued at USD 2.26 billion in 2024 and is projected to grow at a CAGR of 14.0% from 2025 to 2030.
The global intelligent document processing market size was estimated at USD 2.30 billion in 2024 and is projected to grow at a CAGR of 33.1% from 2025 to 2030.
Key Companies & Market Share Insights:
The market is classified as highly competitive, with the presence of several smart factory players. The key players operating in the industry are focusing on strategic alliances, product developments, expansions, and mergers & acquisitions to remain competitive. For instance, in March 2023, Schneider Electric SE, a digital transformation provider of energy management and industrial automation, initiated the construction of its upcoming smart factory in Dunavesce, Hungary. This state-of-the-art facility, backed by an investment of USD 42.67 million (€40 million), would cover an area of 25,000 sq. m. and will accommodate a workforce of 500 employees. Such strategies by key players are anticipated to augment market growth over the forecast period.
Key Smart Factory Companies:
ABB, Ltd.
Dassault Systemes S.E.
FANUC Corporation
General Electric Company
Honeywell International, Inc.
Johnson Controls, Inc.
KUKA AG
Mitsubishi Electric Corporation
Rockwell Automation, Inc.
Schneider Electric SE
Canon Inc.
Cisco System Inc.
Emerson Electric Co.
Order a free sample PDF of the Smart Factory Market Intelligence Study, published by Grand View Research.
0 notes
Text
Smart Factory Industry Size, Status, Analysis and Forecast 2030
The global smart factory market was valued at USD 130.25 billion in 2022 and is projected to grow at a compound annual growth rate (CAGR) of 9.8% from 2023 to 2030. The expansion of this market is driven by several factors, including the increasing emphasis on energy efficiency, enhanced manufacturing productivity, and the establishment of advanced manufacturing infrastructures. Additionally, emerging technologies such as collaborative robots and advancements in 3D printing present significant growth opportunities for the market during the forecast period.
The global smart factory market is poised for significant growth, driven by technological advancements, a focus on energy efficiency, and the increasing need for resilient and flexible manufacturing. Innovations in AI, IoT, and 3D printing, coupled with rising automation trends, are expected to revolutionize manufacturing processes, creating substantial opportunities for stakeholders in the market. Regional dynamics, such as Asia Pacific’s leadership and Latin America’s rapid industrialization, further underscore the global potential of the smart factory industry.
Role of Emerging Technologies:
Artificial Intelligence (AI) and Machine Learning (ML)
AI and ML technologies are central to the operations of smart factories, enabling manufacturers to optimize processes and improve outcomes. Their applications include:
Predictive Maintenance: AI analyzes equipment data to predict failures, minimizing downtime and maintenance costs.
Quality Control: Machine learning algorithms detect anomalies during production, ensuring product quality.
Process Optimization: Real-time data analysis allows for adjustments to enhance efficiency and reduce waste.
As these technologies evolve, their integration into smart factory environments is expected to deepen, unlocking further efficiencies and capabilities.
Internet of Things (IoT)
IoT forms the backbone of smart factories by enabling real-time monitoring and control of equipment and processes. Its benefits include:
Enhanced automation through connected devices, sensors, and actuators.
Greater visibility across production lines, improving efficiency and decision-making.
The advancement of 5G networks and edge computing, which allow faster data processing and more reliable machine communication.
These developments are driving the adoption of IoT-enabled smart factory solutions.
Gather more insights about the market drivers, restrains and growth of the Smart Factory Market
Regional Insights:
Asia Pacific Smart Factory Market Trends
The Asia Pacific region dominated the global smart factory market in 2022, accounting for over 35% of the total revenue. This region has cemented itself as a global manufacturing hub, driven by a combination of factors:
Industrial Automation and Technological Advancements:
Countries such as China, Japan, and South Korea are at the forefront of industrial innovation, emphasizing automation to enhance production efficiency. These nations have embraced advanced technologies, such as robotics, Internet of Things (IoT), and Artificial Intelligence (AI), as part of their commitment to modernizing their manufacturing capabilities.
Growing Population and Consumer Demand:
The rapidly expanding population across Asia Pacific has led to heightened demand for consumer goods, including automobiles and electronics. This has necessitated the adoption of efficient, high-capacity manufacturing solutions to meet large-scale production needs without compromising quality.
Government Initiatives and Investments in Industry 4.0:
Regional governments are actively promoting the adoption of Industry 4.0 principles through policies and financial incentives. For example:
China’s "Made in China 2025" initiative focuses on transforming the country into a global leader in high-tech manufacturing.
Japan’s Society 5.0 framework integrates technology with traditional industries to optimize production.
South Korea’s Smart Factory Supply Chain Support initiatives aim to build a robust infrastructure for interconnected factories.
These measures encourage the development and deployment of smart factory technologies, ensuring sustained growth in the region.
Latin America Smart Factory Market Trends
Latin America is poised for substantial growth, with a projected compound annual growth rate (CAGR) exceeding 10% during the forecast period. The region’s adoption of smart factory technologies is underpinned by several key trends:
Increasing Industrialization and Focus on Efficiency:
Latin America is experiencing a wave of industrial growth, particularly in sectors looking to optimize resource utilization and improve productivity. By incorporating smart factory solutions, manufacturers can streamline their operations and remain competitive on a global scale.
Sectoral Investment in Key Industries:
Investment in critical sectors such as automotive, electronics, and aerospace is driving the demand for advanced manufacturing technologies.
The automotive industry is leveraging smart factory systems for precision manufacturing and quality assurance.
The electronics sector relies on automation and IoT for efficient production of high-demand consumer devices.
The aerospace industry uses data-driven manufacturing to meet stringent international standards for safety and performance.
Global Market Competitiveness:
To cater to international markets, businesses in the region are adopting smart factory practices that ensure consistency, cost efficiency, and high-quality outputs. These practices also enable manufacturers to meet the growing demand for exports while maintaining compliance with global regulations and standards.
Supportive Policies and Partnerships:
Governments and private stakeholders in Latin America are recognizing the value of smart factory technologies. Policies encouraging technology adoption and international collaborations are playing a pivotal role in driving growth.
Browse through Grand View Research's Category Next Generation Technologies Industry Research Reports.
The global e-liquid market size was valued at USD 2.26 billion in 2024 and is projected to grow at a CAGR of 14.0% from 2025 to 2030.
The global intelligent document processing market size was estimated at USD 2.30 billion in 2024 and is projected to grow at a CAGR of 33.1% from 2025 to 2030.
Key Companies & Market Share Insights:
The market is classified as highly competitive, with the presence of several smart factory players. The key players operating in the industry are focusing on strategic alliances, product developments, expansions, and mergers & acquisitions to remain competitive. For instance, in March 2023, Schneider Electric SE, a digital transformation provider of energy management and industrial automation, initiated the construction of its upcoming smart factory in Dunavesce, Hungary. This state-of-the-art facility, backed by an investment of USD 42.67 million (€40 million), would cover an area of 25,000 sq. m. and will accommodate a workforce of 500 employees. Such strategies by key players are anticipated to augment market growth over the forecast period.
Key Smart Factory Companies:
ABB, Ltd.
Dassault Systemes S.E.
FANUC Corporation
General Electric Company
Honeywell International, Inc.
Johnson Controls, Inc.
KUKA AG
Mitsubishi Electric Corporation
Rockwell Automation, Inc.
Schneider Electric SE
Canon Inc.
Cisco System Inc.
Emerson Electric Co.
Order a free sample PDF of the Smart Factory Market Intelligence Study, published by Grand View Research.
0 notes
Text
Conductive Foam Market Technology: Innovations in ESD Protection and Sustainability
The conductive foam market is undergoing significant technological advancements, driven by the increasing need for electrostatic discharge (ESD) protection, sustainability, and higher-performance materials in a variety of industries. Conductive foam, a material designed to prevent ESD, is used in applications ranging from electronics packaging to automotive and aerospace components. With the proliferation of electronics and the miniaturization of devices, the role of conductive foam is more critical than ever. This article explores the technological innovations shaping the conductive foam market, including advanced manufacturing methods, material improvements, and sustainability initiatives.
Advancements in Conductive Foam Manufacturing Techniques
Traditionally, conductive foams were made using basic materials and simple manufacturing techniques. However, as the demand for more reliable and efficient ESD protection has risen, manufacturers have turned to advanced technologies to improve the quality and versatility of conductive foams. One significant advancement in the conductive foam market is the development of advanced foam processing techniques, which enable manufacturers to control the pore structure, density, and uniformity of the foam material.
For instance, laser cutting and precision molding are increasingly being used to create foams with exact specifications. These techniques ensure that conductive foams are shaped accurately to protect electronic components during storage and transportation. The precise control over foam structure also improves the material's performance in terms of conductivity and durability. With these improvements, conductive foams can be tailored to meet the specific needs of industries such as aerospace, medical devices, and telecommunications.
Additionally, 3D printing is becoming an essential part of the conductive foam market. The ability to print customized conductive foam products on demand allows manufacturers to create complex shapes and sizes that would be difficult or impossible to achieve with traditional molding techniques. 3D printing also enables rapid prototyping, significantly reducing time to market for new products. This innovation is particularly beneficial for industries requiring specialized conductive foam solutions for unique components or configurations.
Improved Materials for Enhanced Performance
The conductivity and durability of conductive foam are crucial factors in its performance, and new material innovations are at the heart of the latest developments in the market. Historically, conductive foam was made using carbon-based additives such as carbon black or carbon fibers. However, recent advancements in materials science have led to the development of new conductive additives that improve foam performance while reducing material costs and environmental impact.
Graphene-based conductive foams are a prime example of how materials innovation is reshaping the market. Graphene is known for its exceptional conductivity, strength, and flexibility. Incorporating graphene into conductive foams enhances their electrical performance, making them even more effective at preventing ESD. These foams are also more lightweight and flexible than traditional carbon-based foams, making them ideal for applications in wearable electronics and other compact devices.
Another material innovation is the use of metal-coated fibers and conductive polymers. These materials improve the overall conductivity of foams without compromising their mechanical properties. Conductive foams made with metal-coated fibers or conductive polymers are increasingly being used in high-performance applications, including automotive electronics, telecommunications equipment, and industrial machinery.
Sustainability in Conductive Foam Production
Sustainability is an important consideration in the conductive foam market, as manufacturers seek to reduce waste and environmental impact. The production of conductive foams has historically involved chemicals and processes that could harm the environment. However, technological advancements are now enabling the creation of more sustainable conductive foams.
One of the most notable advancements is the development of biodegradable conductive foams. These foams are made using plant-based materials or other biodegradable components that break down more easily in landfills, reducing their long-term environmental impact. Biodegradable conductive foams offer a solution to the growing concern over plastic waste and are particularly attractive to industries that prioritize sustainability, such as consumer electronics and automotive manufacturing.
In addition to biodegradable foams, recycling programs are being implemented by several manufacturers to reclaim conductive foam waste and reuse it in new products. By recycling conductive foam, companies can reduce their reliance on virgin materials and contribute to a circular economy. This shift toward recycling is helping companies meet both regulatory requirements and consumer demand for eco-friendly products.
Moreover, manufacturers are also adopting green manufacturing processes to reduce energy consumption and chemical usage during foam production. Technologies such as solvent-free processing and low-energy curing techniques are becoming more common, reducing the carbon footprint of conductive foam manufacturing.
Smart Technology Integration and Data-Driven Solutions
The integration of smart technologies into conductive foam production is another emerging trend. The use of Internet of Things (IoT) sensors and data analytics allows manufacturers to monitor and control the production process in real time, ensuring optimal foam quality and consistency. By gathering data on various parameters such as temperature, pressure, and material composition, manufacturers can fine-tune the production process and predict potential issues before they arise.
Predictive maintenance is also gaining traction in the conductive foam industry. Using machine learning algorithms and data analytics, manufacturers can predict when equipment needs maintenance or replacement, minimizing downtime and improving production efficiency. This approach not only ensures that production remains uninterrupted but also helps extend the lifespan of manufacturing equipment, reducing costs and improving profitability.
Conclusion
Technology continues to play a pivotal role in the evolution of the conductive foam market. Advances in manufacturing techniques, material innovations, and sustainability initiatives are helping companies meet the growing demand for effective ESD protection, enhanced performance, and environmentally friendly solutions. As industries such as electronics, automotive, aerospace, and healthcare continue to expand, the conductive foam market is expected to grow rapidly, driven by the need for high-quality materials that offer superior conductivity, durability, and eco-conscious properties. With ongoing innovations in materials science and production technologies, the future of conductive foam looks promising, offering exciting opportunities for manufacturers and end-users alike.
0 notes
Text
Global Solid Bleached Sulfate (SBS) Board Market Analysis 2024: Size Forecast and Growth Prospects
The solid bleached sulfate (sbs) board global market report 2024 from The Business Research Company provides comprehensive market statistics, including global market size, regional shares, competitor market share, detailed segments, trends, and opportunities. This report offers an in-depth analysis of current and future industry scenarios, delivering a complete perspective for thriving in the industrial automation software market.
Solid Bleached Sulfate (SBS) Board Market, 2024 report by The Business Research Company offers comprehensive insights into the current state of the market and highlights future growth opportunities.
Market Size - The solid bleached sulfate (SBS) board market size has grown steadily in recent years. It will grow from $8.22 billion in 2023 to $8.59 billion in 2024 at a compound annual growth rate (CAGR) of 4.5%. The growth in the historic period can be attributed to rise in consumer goods industries, rise of quick service restaurants, rise of shelf-ready packaging in retail, growing consumer awareness about health and hygiene, and expansion of the personal care industry.
The solid bleached sulfate (SBS) board market size is expected to see steady growth in the next few years. It will grow to $10.3 billion in 2028 at a compound annual growth rate (CAGR) of 4.6%. The growth in the forecast period can be attributed to increased focus on packaging innovation in electronics, balancing high-quality features with cost-effectiveness, companies are investing in research and development to innovate and improve SBS board properties, recyclable and compostable coatings, and improvements in food safety standards. Major trends in the forecast period include lightweight packaging solutions, automation in manufacturing, use of 3D printing technology, integration of AR features in SBS board packaging, and use of AI algorithms to detect defects.
Order your report now for swift delivery @ https://www.thebusinessresearchcompany.com/report/solid-bleached-sulfate-sbs-board-global-market-report
Scope Of Solid Bleached Sulfate (SBS) Board Market The Business Research Company's reports encompass a wide range of information, including:
1. Market Size (Historic and Forecast): Analysis of the market's historical performance and projections for future growth.
2. Drivers: Examination of the key factors propelling market growth.
3. Trends: Identification of emerging trends and patterns shaping the market landscape.
4. Key Segments: Breakdown of the market into its primary segments and their respective performance.
5. Focus Regions and Geographies: Insight into the most critical regions and geographical areas influencing the market.
6. Macro Economic Factors: Assessment of broader economic elements impacting the market.
Solid Bleached Sulfate (SBS) Board Market Overview
Market Drivers - The packaging industry is expected to propel the solid bleached sulfate (SBS) board market growth going forward. The packaging industry is the sector involved in designing, manufacturing, and supplying materials used to enclose and protect products for distribution, storage, sale, and use. E-commerce expansion has dramatically increased demand for shipping and protective packaging. Consumer preferences for convenience and on-the-go products drive innovation in single-serve and portable packaging designs. Solid Bleached Sulfate (SBS) board supports the packaging industry by offering high printability and visual appeal, superior strength and durability, versatile applications, eco-friendly and recyclable properties, and enhanced barrier properties, making it an ideal choice for protecting and marketing a wide range of products. For instance, according to Invest India, an India-based national investment promotion and facilitation agency, the Indian packaging market is expected to reach $ 204.81 Bn by 2025, registering a CAGR of 26.7% from 2020 to 2025. Therefore, the expanding packaging industry drives the solid bleached sulfate (SBS) board market.
Market Trends - Major companies operating in the solid bleached sulfate (SBS) board market are prioritizing the creation of sustainable products in response to rising consumer and regulatory expectations for eco-friendly packaging solutions. A sustainable cup is a cup or container designed to minimize environmental impact using eco-friendly materials or reusable designs. For instance, in June 2022, Clearwater Paper, a US-based paper and forest product manufacturing company, launched NuVo with BioPBS, a sustainable cup. NuVo with BioPBS is a type of solid bleached sulfate (SBS) board enhanced with BioPBS, a biodegradable and compostable bioplastic. This innovative material combines the strength and high printability of the SBS board with the environmental benefits of BioPBS, making it an eco-friendly packaging solution.
The solid bleached sulfate (SBS) board market covered in this report is segmented –
1) By Product: Solid Bleached Sulfate C1S, Solid Bleached Sulfate C2S 2) By Category: Coated, Uncoated 3) By Application: Folding Carton, Cup And Plate, Liquid Packaging, Other Applications 4) By End-Use: Food Packaging, Cosmetic Packaging, Pharmaceutical Packaging, Graphical Use, Electronics Packaging, Other End-Uses
Get an inside scoop of the solid bleached sulfate (sbs) board market, Request now for Sample Report @ https://www.thebusinessresearchcompany.com/sample.aspx?id=16542&type=smp
Regional Insights - North America was the largest region in the solid bleached sulfate (SBS) board market in 2023. Asia-Pacific is expected to be the fastest-growing region in the forecast period. The regions covered in the solid bleached sulfate (SBS) board market report are Asia-Pacific, Western Europe, Eastern Europe, North America, South America, Middle East, Africa.
Key Companies - Major companies operating in the solid bleached sulfate (SBS) board market are WestRock Company, International Paper Company, Stora Enso, Smurfit Kappa, Graphic Packaging Holding Company (GPK), Georgia-Pacific, ITC Limited, Sappi Limited, Billerud AB, Fedrigoni, JK Paper Ltd., Holmen Iggesund, Oji Fibre Solutions (NZ) Limited, PakFactory, Diamond Packaging, Newman & Company Inc., Lamitech Inc., Sandusky Packaging Corporation, Cascades Sonoco, Hammond Paper Company Limited
Table of Contents 1. Executive Summary 2. Solid Bleached Sulfate (SBS) Board Market Report Structure 3. Solid Bleached Sulfate (SBS) Board Market Trends And Strategies 4. Solid Bleached Sulfate (SBS) Board Market – Macro Economic Scenario 5. Solid Bleached Sulfate (SBS) Board Market Size And Growth ….. 27. Solid Bleached Sulfate (SBS) Board Market Competitor Landscape And Company Profiles 28. Key Mergers And Acquisitions 29. Future Outlook and Potential Analysis 30. Appendix
Contact Us: The Business Research Company Europe: +44 207 1930 708 Asia: +91 88972 63534 Americas: +1 315 623 0293 Email: [email protected]
Follow Us On: LinkedIn: https://in.linkedin.com/company/the-business-research-company Twitter: https://twitter.com/tbrc_info Facebook: https://www.facebook.com/TheBusinessResearchCompany YouTube: https://www.youtube.com/channel/UC24_fI0rV8cR5DxlCpgmyFQ Blog: https://blog.tbrc.info/ Healthcare Blog: https://healthcareresearchreports.com/ Global Market Model: https://www.thebusinessresearchcompany.com/global-market-model
0 notes
Text
3D Printing Plastic Market,Industry Forecast, 2024–2030.
3D Printing Plastic Market size is forecast to reach $3,004.71 million by 2030, after growing at a CAGR of 17.1% during 2024–2030. Globally, the demand for 3D printing plastic is rising from various application sectors such as aerospace and defense, electrical and electronics, and healthcare, by reducing the efforts, time, and costs incurred in the project. The increasing demand for 3D printing plastic from various industries, such as aerospace, automotive, healthcare, and electronics, for applications such as prototyping, tooling, and functional parts. The cost-effectiveness, strength, durability, and versatility of 3D printing plastic compared to other materials. The development of new types and grades of 3D printing plastic, such as biodegradable, conductive, and flexible plastics. The increasing use of photopolymers and polyamide (nylon) materials in 3D printing owing to its alluring properties is estimated to drive the 3D printing plastics market growth. Furthermore, the development of innovative, stronger, lighter, and safer components and parts with lower lead times and costs is anticipated to create new opportunities for the growth of the global 3D printing plastic industry in the forecast period.
Request Sample :
Covid-19 Impact
The rise in positive COVID-19 cases worldwide generated a huge demand for the 3D printing plastics market from the healthcare sector. The market for medical components such as face shields, masks, ventilator vales, and others has seen an upsurge since the outbreak of COVID-19. Owing to the COVID-19 palindrome the increasing demand of medical components from across the globe, has also increased the demand for 3D printing adoption in various regions.
Market Snapshot :-
3D Printing Plastic Market Report Coverage
The: “3D Printing Plastic Market Report — Forecast (2024–2030)”, by IndustryARC, covers an in-depth analysis of the following segments of the 3D Printing Plastic Market. By Form: Filament, Ink, and Powder.
By Type: Polycarbonates, Photopolymers, Acrylonitrile Butadiene Styrene (ABS), Polyamide/Nylon, Polylactic Acid, Polyethylene Terephthalate (PET), Glycolized polyester (PETG), High Performance Polymers, and Others.
By Application: Prototyping, Automotive, Healthcare, Consumer Goods, Aerospace & Defence, Electrical & Electronics, and Others.
By Geography: North America (U.S, Canada, and Mexico), Europe (U.K., Germany, France, Italy, Netherland, Spain, Russia, Belgium, and Rest of Europe), APAC (China, Japan India, South Korea, Australia & New Zealand, and Rest of Asia Pacific), South America (Brazil, Argentina, Colombia, Chile, and Rest of South America), and RoW (Middle east and Africa).
Inquiry Before Buying:
Key Takeaways
The rising demand for laser sintering technology by engineers and manufacturers in various commercial sectors will increase the demand for polyamide (nylon), which is further expected to drive the 3D printing plastic industry growth.
Owing to the ability of the plastic being shaped easily, they are used in the initial stages of the onset of 3D printers. Very recently, NASA has been using space-based 3D printers with plastic as the key material for space-based objects.
Also, the rise of the automobile industry is set to hold the market for 3D printing plastics at its height in the years to come. Quick advances in diverse materials and technology are allowing the industry to gain momentum.
For more details on this report — Request for Sample
3D Printing Plastic Market Segment Analysis — By Form
Filament form is widely used in the 3D Printing Plastic Market. They are only manufactured and consumed in two diameters, namely 1.75 mm and 3 mm. By using the process of heating, extruding and cooling plastic, filament form is produced to turn nurdles into finished product. Thus, it is possible to dye these filaments in various colours. Also, due to their flexible properties there is an increase in demand from several application industries such as food packaging, tableware, upholstery, and disposable clothing.
3D Printing Plastic Market Segment Analysis — By Type
Polyamide/Nylon segment held the largest share in the 3D Printing Plastic Market in 2023. Nylon (known as polyamide) is a synthetic linear polyamide thermoplastic and is a well-known 3D printing filament owing to its stability, toughness, low friction and corrosion resistance. Nylon is also a common substance used in the manufacture of clothing and accessories. Due to its improved strength and elasticity over PLA and ABS, Nylon is ideal for manufacturing uses, such as machine parts or equipment, or the replacement of automotive parts. As compared to ABS and PLA Nylon is tougher and more resistant to chemicals, but its poor strength and hardness prohibits it from being commonly used in the manufacturing industry. With the increasing demand for nylon the market for 3D printing plastic is also estimated to rise in the forecast period.
3D Printing Plastic Market Segment Analysis — By Application
Prototyping segment held the largest share in the 3D Printing Plastic Market in 2023 and is projected to grow at a CAGR of 17.1% during the forecast period 2024–2030. Creating a concept can be a costly and slow process. Fortunately, certain methods are available to help you enhance the product creation process, helping to make high-quality prototypes at a cheaper cost. From office to the factory floor, 3D printers produce plastic concept models, precision and practical prototypes, master patterns and actual end-use components for refining every project, streamlining the workflows and getting creative products to the market quicker. Besides, 3D printing plastic is the best solution for designing the prototypes. By beginning to create the 3D printing project, one will have access to a wide variety of efficient 3D printing supplies, saving time and resources. Thus, rising usage of 3D printing plastic for prototyping applications is set to drive the market growth over the forecast period.
Schedule a Call :
3D Printing Plastic Market Segment Analysis — By Geography
North America held the largest share with 51% in 3D Printing Plastic Market in 2023 Due to the increasing demand for 3D printing plastics in medical devices and equipment, and the increasing adoption of 3D printing technology in U.S., Canada, Mexico and various other countries in the region is set to drive the market growth in the upcoming future. According to the U.S. Department of Health and Human Services, the Fiscal Year (FY) 2023 budget represents the responsibilities of the U.S. government to advance a patient-centered healthcare system. The budget proposes a discretionary budget authority of $96.1 billion and mandatory support for Health and Human Services of $1.86 trillion.Thus, the rising investments by the government in the healthcare sector are estimated to boost the 3D Printing Plastic Market growth in the forecast period.
3D Printing Plastic Market Drivers
Rising Demand for 3D Printing Plastic from the Healthcare Industry
Rising usage of 3D printing plastic in the healthcare sector is driving the market growth. Key factors driving demand in the medical industry for 3D printing plastics include cost-effectiveness, ease of customization, as well as the rising occurrence of vascular and osteoarthritis diseases. Polyamide or nylon is often used for injection molding in medical device owing to its inflexible nature, strength, chemical compatibility, and temperature resilience. Increasing use of photopolymers for high-resolution, ultra-fine parts in medical devices will also drive the market growth. Moreover, the market demand in medical applications is expected to be fueled by advanced 3D technology, favorable government funding, and rapid product growth. According to the India Brand Equity Foundation, the government of India aims to increase the healthcare spending to 3% of the GDP by 2022, which means the healthcare sector will rise three-fold to Rs. 8.6 trillion (US$ 133.44 billion). Hence, the growing demand for 3D printing plastic from the healthcare sector will raise the growth for 3D Printing Plastic Market in the forecast period.
Increasing Demand for Biodegradable Materials for 3D printing
The growing need for the “green” alternative to traditional polymers has propelled the demand for polylactic acid in the 3D printing plastic industry. Since, polylactic acid is very inexpensive, easy to print, and produces components that can be used for a wide variety of applications, it is the ideal first material to be used in 3D printing. It is also one of the most environmental friendly products made from crops such as corn and cane that are used today. This material is thermoplastic aliphatic polyester and is the predominant natural raw material that consists of recycled raw materials used in 3D printing plastics. For most extrusion-based 3D printing, polylactic acid is also the default filament of choice, since it can be printed at low temperatures and does not require a heated bed. Thus, with the rising demand for biodegradable materials the growth for 3D printing plastics market is estimated to rise in the forecast period.
Buy Now :
3D Printing Plastic Market Challenges
Environmental Issues Regarding 3D Printing Plastic Materials will Hamper the Market Growth
Over the last few years, one environmental issue has gradually stolen the spotlight that is plastic pollution. The reliance on plastics-especially single-use plastics-is now one of the world’s leading environmental concerns. 3D printing uses the flexible, durable design of plastics in a wide variety of applications, from aerospace to healthcare. Polyethylene terephthalate (PET) is one of the most common filaments used in plastics such as bottles of disposable beverages and food packaging. Other filaments include polycarbonate and ABS: both are relatively inexpensive, flexible and easy to manufacture. Unfortunately, these materials are not commonly recyclable and so any waste generated in the printing process would find its way to the landfill or to the natural environment. Thus, rising environmental concerns due to the use of various 3D printing plastics is estimated to hinder the 3D printing plastics market growth.
3D Printing Plastic Market Outlook
Technology launches, acquisitions, and R&D activities are key strategies adopted by players in the 3D Printing Plastic Market. Major players in the 3D Printing Plastic Market are:
3D Systems Corporation
Arkema SA
Stratasys, Ltd.
Evonik Industries AG
HP Inc.
SABIC
DowDuPont Inc.
EOS GmbH Electro Optical Systems
Solvay
Royal DSM N.V., among others.
Acquisitions/Technology Launches
In March 2023, BASF SE acquired Sculpteo, a French online 3D printing service provider, to expand its 3D printing solutions portfolio and customer base.
In February 2023, Arkema acquired Lambson, a UK-based company that specializes in photo initiators for 3D printing, to strengthen its position in the 3D printing market and offer innovative solutions for UV-curable resins.
In January 2023, Stratasys Ltd. acquired Origin, a US-based company that develops 3D printers and materials for mass production, to enhance its capabilities in the fast-growing segment of end-use parts.
In December 2022, Evonik Industries AG acquired 3D Printing Materials, a US-based company that produces high-performance thermoplastics for 3D printing, to broaden its product portfolio and customer base in the additive manufacturing market.
For more Chemicals and Materials Market reports, please click here
0 notes
Text
"Future of Healthcare: Innovations in the 3D Printing Medical Devices Market"
3D Printing Medical Devices Market Overview📊 :
The 3D Printing Medical Devices Market Report is a treasured source of insightful data for business strategists. It provides an in-depth assessment of numerous features of industries like market overview, present progress valuations, historical and future studies, current trends, SWOT valuations, and clients operating in several regions. The study provides valuable information to magnify the understanding, scope, and segments of this report. The report covers a comprehensive analysis of 3D Printing Medical Devices Market segmentation and regional and country breakdowns. This research will offer a clear and exact idea about the whole industry to the readers to make beneficial decisions.
According to Straits Research, the global 3D Printing Medical Devices Market size was valued at USD 2.55 Billion in 2022. It is projected to reach from USD XX Billion in 2023 to USD 9.79 Billion by 2031, growing at a CAGR of 16.1% during the forecast period (2023–2031).
This study pinpoints noteworthy trends influencing the trajectory of the Gesture Recognition market's expansion. Within this recently issued report, crucial dynamics encompassing drivers, limitations, and prospects are underscored. These aspects hold relevance for well-established market entities as well as emerging stakeholders engaged in the realms of production and supply.
Request a Sample Report @ https://straitsresearch.com/report/3d-printing-medical-devices-market/request-sample
Who are the 🏆leading players in 3D Printing Medical Devices Market?
3D Systems Corporations,
Bio3D Technologies,
Cyfuse Medical K.K.,
EnvisionTEC,
Materialise NV,
Organovo Holdings Inc.,
Oxford Performance Materials Inc.,
SLM Solutions Group AG,
Stratasys Ltd.
Moreover, the competitive analysis of the 3D Printing Medical Devices Market brings insight into the product usability profiles of the leading players. Additionally, the analysis highlights features & pricing, and informant reviews of the key products in the market.
Which segments are covered in 3D Printing Medical Devices Market?
By Component
Printers
Materials
Software & Services
Hardware
By Technology
Electron Beam Melting (EBM)
Laser Beam Melting (LBM)
Direct Metal Laser Sintering (DMLS)
Stereolithography (SLA)
Fused Deposition Modeling (FDM)
Selective Laser Melting (SLM)
Selective Laser Sintering (SLS)
Others (Photopolymerization, Digital Light Processing [DLP], etc.)
By Application
Orthopedic & Cranial Implant
Dental Restorations
Surgical Instruments
Tissue Fabrication
Custom Prosthetics
Prosthetics Implant
Wearable Medical Devices
Dentistry and Orthodontics
Others (Tissue-engineered Products, Plastic and Reconstructive Surgeries, etc.)
By Material
Plastics
Biomaterial Inks
Metals and Alloys
By End User
Hospitals and Surgical Centers
Dental and Orthopedic Clinics
Academic Institutions and Research Laboratories
Pharma-Biotech and Medical Device Companies
Clinical Research Organizations
The market is largely fragmented and the vast majority of the players functioning in the global 3D Printing Medical Devices Market are taking steps to raise their market footprint, by concentrating on product diversification and development, therefore making them seize a larger share of the market. The study highlights current market trends and provides a forecast. We also have highlighted future trends in the 3D Printing Medical Devices Market that will impact the demand during the forecast period. Overall, this report is an important resource for businesses seeking to stay ahead of the competition in the 3D Printing Medical Devices Market industry. With its complete analysis of recent developments and the latest emerging trends, it offers valuable insights into the market that can be used to grow effective growth strategies and enhance market positioning.
Access Detailed Segmentation @ https://straitsresearch.com/3d-printing-medical-devices-market/segmentation
Regional Analysis
Largest Market: The 3D Printing Medical Devices Market is dominated by North America, which holds the largest share due to factors such as advanced infrastructure, high consumer awareness, and significant investment in related industries. The region's well-established specific sectors further bolster its leading position in the market.
Fastest Growing Market: The fastest-growing market for 3D Printing Medical Devices Market is Europe. This growth is driven by a combination of rising disposable incomes, increasing adoption of specific products or services, and supportive government initiatives. Additionally, the expanding related industries in this region contribute to its rapid market expansion.
Our Report Offers:
– Market share assessments for the regional and country-level segments.
– Strategic recommendations for the new entrants.
– Competitive landscaping mapping the key common trends.
– Company profiling with detailed strategies, financials, and recent developments.
– Supply chain trends mapping the latest technological advancements.
Buy Now full 3D Printing Medical Devices Market report @ https://straitsresearch.com/buy-now/3d-printing-medical-devices-market/
An international 3D Printing Medical Devices Market research report delves into the competitive landscape of global markets, scrutinizing companies and manufacturers. The report's competitive analysis spotlights the strategic actions undertaken by key players across diverse industries. These actions encompass a spectrum of activities including new product introductions, expansions, agreements, joint ventures, partnerships, and recent acquisitions. This comprehensive market report sheds light on a myriad of facets within marketing research, spanning crucial industry trends, market size, estimated market share, sales volume, emerging patterns, product consumption, customer inclinations, historical data, forward-looking forecasts, and meticulous analysis of key players.
Global 3D Printing Medical Devices Market Research Report Forecast 2031
Chapter 1:- 3D Printing Medical Devices Market Overview
Chapter 2:- Economic Impact on Industry
Chapter 3:- Production, Business Opportunities with Potential Analysis
Chapter 4:- Rising Trends and New Technologies with Key Players
Chapter 5:- 3D Printing Medical Devices Market Manufacturing Cost Analysis
Chapter 6:- Technology Progress, Development Process and Downstream Buyers
Chapter 7:- Marketing Strategy Analysis, Distributors/Traders
Chapter 8:- Market Share by Key Countries in These Regions
Chapter 9:- Show the Market by Type and Application, With Sales Market Share and Growth Rate
Chapter 10:- Appendix and Data Source
Click to View the Full Report TOC: https://straitsresearch.com/report/3d-printing-medical-devices-market/toc
Key Questions Answered by Our 3D Printing Medical Devices Market Report
What are the key drivers of growth in the 3D Printing Medical Devices Market, and how do they vary across regions and segments?
How are advancements in technology and innovation affecting the 3D Printing Medical Devices Market, and what new opportunities and challenges are emerging as a result?
Which market players are currently leading the pack in terms of market share and product innovation, and what strategies are they employing to maintain their positions?
What regulatory and policy changes are on the horizon that could affect the 3D Printing Medical Devices Market, and how are market players adapting to these changes?
What are the emerging trends and market disruptors that are likely to shape the 3D Printing Medical Devices Market in the years to come, and what can businesses do to stay ahead of the curve?
How are consumer preferences and behaviors evolving with regard to 3D Printing Medical Devices Market, and what implications do these trends have for market players?
Buy Now full 3D Printing Medical Devices Market report @ https://straitsresearch.com/buy-now/3d-printing-medical-devices-market/
Thanks for reading this article; you can also get separate chapter-wise sections or region-wise report versions like North America, Europe, or Asia.
About Us:
Contact Us:
Email: [email protected]
Website: https://straitsresearch.com/
0 notes
Text
Metal 3D Printing in Bangalore: Revolutionizing Manufacturing with Additive Manufacturing
Bangalore, often hailed as the "Silicon Valley of India," is rapidly emerging as a major hub for cutting-edge technology, and additive manufacturing is no exception. The rise of metal 3D printing in Bangalore and related additive manufacturing in Bangalore has enabled businesses to create complex, high-quality components with precision, speed, and efficiency. This surge has resulted in a significant presence of additive manufacturing companies in Bangalore, providing services like 3D scanning services in Bangalore and 3D design and printing solutions for various industries.
The Growing Demand for Metal 3D Printing in Bangalore
Metal 3D printing in Bangalore is an advanced manufacturing technology that has become essential for sectors like aerospace, automotive, healthcare, and consumer goods. Known for its ability to produce lightweight and highly detailed parts, metal 3D printing is a top choice for prototypes and end-use components. The advantages are numerous, including reduced material wastage, faster turnaround times, and the ability to create intricate shapes that would be impossible with traditional manufacturing.
Bangalore’s strategic position as an industrial and technological powerhouse makes it the ideal setting for the adoption of additive manufacturing technologies. Numerous additive manufacturing companies in Bangalore have emerged, offering end-to-end 3D printing solutions that include prototyping, low-volume production, and custom manufacturing services for businesses across multiple sectors. The city's forward-looking approach, combined with the support from government initiatives, has fueled growth in this space, making it a center of excellence for metal 3D printing and additive manufacturing.
Why Choose Additive Manufacturing in Bangalore?
The advantages of additive manufacturing in Bangalore are clear. It provides companies with flexibility in design, allowing for rapid prototyping and production. Unlike conventional manufacturing, which requires extensive tooling and often incurs high costs for complex shapes, additive manufacturing enables the direct creation of parts from digital models, reducing lead times and optimizing resource use.
In Bangalore, the market for additive manufacturing services has expanded to support not just large enterprises but also small and medium-sized businesses. These services are accessible, affordable, and allow local companies to innovate and compete on a global scale. With a rich ecosystem of tech experts, design professionals, and engineers, Bangalore has become an ideal location for businesses seeking to leverage the potential of 3D printing technology for faster, cost-effective production.
Leading Additive Manufacturing Companies in Bangalore
With the growing need for additive manufacturing services, many additive manufacturing companies in Bangalore have established themselves as industry leaders, providing high-quality, dependable services. Companies like Wipro 3D, Objectify Technologies, and Imaginarium offer specialized solutions in metal 3D printing, which can cater to both large and small-scale projects. These companies provide support throughout the entire manufacturing process, from initial design to final production, and leverage the latest technology to ensure that every product meets stringent quality standards.
These additive manufacturing companies in Bangalore bring vast expertise and experience in sectors like aerospace, automotive, medical, and electronics, making them valuable partners for any business looking to explore the advantages of 3D printing. The competitive landscape within Bangalore fosters continuous innovation, which benefits not only local but also international clients.
3D Scanning Services in Bangalore
One of the critical services complementing additive manufacturing is 3D scanning. With 3D scanning services in Bangalore, companies can digitize objects of various shapes and sizes with great precision. These scans can then be used to create digital models for manufacturing or further modifications. For example, reverse engineering is made possible through 3D scanning, which allows companies to recreate and improve upon existing designs.
In sectors such as aerospace and healthcare, 3D scanning services are invaluable. In healthcare, they enable the creation of custom prosthetics, implants, and anatomical models, providing surgeons with a highly accurate visual reference. In aerospace, 3D scanning is used to ensure part integrity and quality control by capturing data with extreme precision.
Several providers in Bangalore offer specialized 3D scanning and design services, giving businesses access to top-notch technology that can streamline the manufacturing process and improve product quality. These services are essential for achieving high-accuracy results, particularly in industries where even the smallest design flaw could have significant consequences.
3D Scanning and Design in Bangalore: Bridging the Gap Between Concept and Creation
The process of 3D scanning and design in Bangalore has become integral to the manufacturing and product development sectors. The ability to translate an object into a digital model enables designers to refine and optimize products before production. This digital model can be used for creating prototypes, testing designs, and final manufacturing, making it invaluable in the rapid prototyping process.
Bangalore’s robust design and engineering talent pool make it an ideal place for companies seeking innovative design solutions. With access to both experienced professionals and advanced 3D scanning technology, businesses can ensure that their products are both aesthetically pleasing and functionally sound. This end-to-end service, from 3D scanning to 3D printing, makes Bangalore a one-stop destination for those exploring cutting-edge manufacturing techniques.
3D Printing Service in Bangalore: Revolutionizing Production
The demand for 3D printing services in Bangalore has grown as more industries embrace the advantages of additive manufacturing. Local providers offer a wide range of services that cater to diverse requirements, from single prototypes to short-run production. These services often include design consultation, material selection, and finishing options, allowing clients to receive a complete solution tailored to their specific needs.
Several local companies now offer advanced 3D printing services with a variety of materials, including plastics, polymers, and metals. This diversity in materials means that 3D printing can be used for numerous applications—from lightweight plastic prototypes to fully functional metal parts. Additionally, many service providers in Bangalore have invested in state-of-the-art equipment, such as the Trumpf TruPrint series, to enhance print accuracy, reduce production time, and improve the overall quality of the end products.
The Future of Metal 3D Printing and Additive Manufacturing in Bangalore
As metal 3D printing in Bangalore continues to evolve, the city's role as a major player in the additive manufacturing industry will only strengthen. With significant advances in technology and a growing number of additive manufacturing companies, Bangalore is set to drive innovation in manufacturing, helping businesses achieve sustainable growth and create products that are both high-quality and cost-effective.
In conclusion, metal 3D printing and additive manufacturing in Bangalore are reshaping the industrial landscape, making Bangalore a thriving hub for technological innovation. The availability of services like 3D scanning, 3D design, and 3D printing not only supports local industries but also positions the city as a leader in the global additive manufacturing market. For businesses seeking a competitive edge, Bangalore offers a wealth of expertise and cutting-edge technology, making it the ultimate destination for additive manufacturing solutions.
#Metal 3D printing in Bangalore#Additive Manufacturing in Bangalore#Additive Manufacturing Companies in Bangalore#3D Printing Service in Bangalore#3D Scanning Services in Bangalore#3D Scanning And Design in Bangalore#Best Trumpf TruPrint 1000 Metal 3D Printer#Best Trumpf TruPrint 2000 Metal 3D Printer#Best Trumpf TruPrint 3000 Metal 3D Printer#Best Trumpf TruPrint 5000 Metal 3D Printer#Best FabMachines F3 3D Printer in Bangalore#Best FabMachines F3 Pro 3D Printer in Bangalore#FabMachines G3 3D Printer in Bangalore#FabMachines G3 Pro 3D Printer in Bangalore
0 notes
Text
Scandium Market Analysis Report: Size, Share, and Trends Forecast for the Next Period
Global Scandium Market Overview: Major Trends and Insights
The Scandium Market research report offers an in-depth analysis of market dynamics, competitive landscapes, and regional growth patterns. This comprehensive report provides businesses with the strategic insights necessary to identify growth opportunities, manage risks, and develop effective competitive strategies in an ever-evolving market.
According to Straits Research, the global Scandium Market market size was valued at USD 460.89 Million in 2021. It is projected to reach from USD XX Million in 2022 to USD 977.29 Million by 2030, growing at a CAGR of 8.7% during the forecast period (2022–2030).
Request a Sample Report Today @ https://straitsresearch.com/report/scandium-market/request-sample
Global Scandium Market Segmental Analysis
As a result of the Scandium market segmentation, the market is divided into sub-segments based on product type, application, as well as regional and country-level forecasts.
By Product Type
Oxide
Fluoride
Chloride
Nitrate
Iodide
Alloy
Carbonate
Others
By End-User Industry
Aerospace and Defense
Solid Oxide Fuel Cells (SOFCs)
Ceramics, Lighting
Electronics
3D Printing
Sporting Goods
Others
You can check In-depth Segmentation from here: https://straitsresearch.com/report/scandium-market/toc
Why Invest in this Report?
Leverage Data for Strategic Decision-Making: Utilize detailed market data to make informed business decisions and uncover new opportunities for growth and innovation.
Craft Expansion Strategies for Diverse Markets: Develop effective expansion strategies tailored to various market segments, ensuring comprehensive coverage and targeted growth.
Conduct Comprehensive Competitor Analysis: Perform in-depth analyses of competitors to understand their market positioning, strategies, and operational strengths and weaknesses.
Gain Insight into Competitors' Financial Metrics: Acquire detailed insights into competitors' financial performance, including sales, revenue, and profitability metrics.
Benchmark Against Key Competitors: Use benchmarking to compare your business's performance against leading competitors, identifying areas for improvement and potential competitive advantages.
Formulate Region-Specific Growth Strategies: Develop geographically tailored strategies to capitalize on local market conditions and consumer preferences, driving targeted business growth in key regions.
List of Top Leading Players of the Scandium Market -
Atlantic Equipment Engineers (Micron Metal Inc.)
Australian Mines Ltd
Clean TeQ Holdings Limited
Huizhou Top Metal Materials Co. Ltd (TOPM)
Hunan Oriental Scandium Co. Ltd
Hunan Rare Earth Metal Material Research Institute
JSC Dalur
Materion Corporation (Cerac Inc.)
NioCorp Development Ltd
Platina Resources Limited
Rusal
Scandium International Mining Corp.
Sigma-Aldrich (Merck KGaA)
Stanford Advanced Materials
Sumitomo Metal Mining Co. Ltd (Taganito HPAL Nickel Corp)
Thermo Fisher Scientific Inc. (Alfa Aesar)
Treibacher Industrie AG.
Reasons to Purchase This Report:
Access to Comprehensive Information: Gain access to an extensive collection of analysis, research, and data that would be challenging to acquire independently. This report offers valuable insights, saving you considerable time and effort.
Enhanced Decision-Making: Equip yourself with detailed insights into market trends, consumer behavior, and key industry factors. This report provides essential information for strategic planning, including decisions on investments, product development, and marketing strategies.
Achieving Competitive Advantage: Stay ahead in your industry by understanding market dynamics and competitor strategies. This report delivers deep insights into competitor performance and market trends, enabling you to craft effective business strategies and maintain a competitive edge.
Credibility and Reliability: Trust in the expertise of industry professionals and the accuracy of thoroughly researched data. Authored by experts and grounded in rigorous research and analysis, this report enhances credibility and reliability.
Cost-Effective Research: Reduce research expenses by investing in this comprehensive report instead of conducting independent research. It provides a cost-effective means of accessing detailed analysis and insights on a specific topic without requiring extensive resources.
Regional Analysis Scandium Market
The regional analysis sectio n of the report offers a thorough examination of the global Scandium market, detailing the sales growth of various regional and country-level markets. It includes precise volume analysis by country and market size analysis by region for both past and future periods. The report provides an in-depth evaluation of the growth trends and other factors impacting the Scandium market in key countries, such as the United States, Canada, Mexico, Germany, France, the United Kingdom, Russia, Italy, China, Japan, Korea, India, Southeast Asia, Australia, Brazil, and Saudi Arabia. Moreover, it explores the progress of significant regional markets, including North America, Europe, Asia-Pacific, South America, and the Middle East & Africa.
To Understand How Covid-19 Impact Is Covered in This Report - https://straitsresearch.com/report/scandium-market/buy-now
About Straits Research
Straits Research is dedicated to providing businesses with the highest quality market research services. With a team of experienced researchers and analysts, we strive to deliver insightful and actionable data that helps our clients make informed decisions about their industry and market. Our customized approach allows us to tailor our research to each client's specific needs and goals, ensuring that they receive the most relevant and valuable insights.
Contact Us
Email: [email protected]
Address: 825 3rd Avenue, New York, NY, USA, 10022
Tel: UK: +44 203 695 0070, USA: +1 646 905 0080
#Scandium Market#Scandium Market Share#Scandium Market Size#Scandium Market Research#Scandium Industry#What is Scandium?
0 notes
Text
Recyclable Thermoset Market, Market Size, Market Share, Key Players | BIS Research
Thermoset plastics, known for their excellent mechanical strength, chemical resistance, and durability, have long been integral in industries like automotive, aerospace, electronics, and construction. However, their primary drawback has been that, once cured, they are difficult to recycle. This has posed a significant environmental challenge, as traditional thermosets end up in landfills, contributing to plastic waste.
The recyclable thermoset market is projected to reach $987.9 million by 2031 from $536.8 million in 2022, growing at a CAGR of 7.01% during the forecast period 2022-2031. .
Recyclable Thermoset Overview
Thermosets are polymers that, when cured through heat or chemical reactions, become rigid and maintain their shape permanently.
The very feature that makes thermosets desirable for applications requiring durability is also what makes them difficult to recycle. Traditional thermoset plastics cannot be reshaped or reprocessed once cured because the cross-linked molecular structure prevents them from being melted down.
Applications for Recyclable Thermoset Market
1 Automotive and Aerospace: These industries rely heavily on thermoset composites for lightweight, high-strength materials that improve fuel efficiency and performance.
2 Electronics: Thermoset plastics are commonly used in electronic components due to their excellent insulating properties.
3 Construction: Thermosets are used in construction materials such as adhesives, coatings, and insulation.
Market Segmentation
1 By Application
2 By Resin Type
3 By Technology
4 By Region
Download the report and get more information @ Recyclable Thermoset Market
Major Key Players
Mallinda Inc.
MCR Mixt Composites Recyclables
INTCO Recycling Group
Adesso Advanced Materials Inc.
Aditya Birla Chemicals
Download the sample page click here @ Recyclable Thermoset Market
Demand – Drivers and Limitations
Following are the demand drivers for the global recyclable thermoset market:
• Advancement in Thermoset Recycling Technologies Globally • Regulations Promoting Plastic Recycling in Various Countries • Investments and Collaboration in Plastic Recycling Industry
The following are the challenges for the global recyclable thermoset market:
• Complex Process of Thermoset Recycling • Lack of Proper Infrastructure for Hard-to-Recycle Products
Recent Developments in the Global Recyclable Thermoset Market
In November 2022, the Dow Chemical Company collaborated with WM to improve the status of hard-to-recycle plastic films. The collaboration would allow WM to divert nearly 120,000 metric tons of plastic waste from landfills.
In June 2022, PuriCycle is a new series of enhanced high-performance products from BASF SE for the purification of the most complex mixed plastic pyrolysis feeds. PuriCycle's portfolio includes innovative catalysts and adsorbents that have been designed to selectively remove and convert a wide range of contaminants in pyrolysis oils, allowing for the separation process of circular plastic flows.
Challenges and Future Prospects
While recyclable thermosets offer exciting potential, there are still challenges to overcome before widespread adoption can occur. One of the primary challenges is ensuring that the recycling process is energy-efficient and cost-effective. Developing scalable recycling methods that maintain the mechanical and chemical properties of the original thermoset material is key to making these materials commercially viable.
Moreover, there is a need for standardization in recycling processes and material recovery, particularly in industries like automotive and aerospace, where stringent safety and performance standards must be met.
In the future, advances in smart materials and 3D printing could further enhance the recyclability and functionality of thermosets. As researchers continue to explore new chemistries and recycling methods, recyclable thermosets could become a cornerstone of sustainable manufacturing, contributing to the reduction of plastic waste and the creation of circular economies.
Conclusion
Recyclable thermosets represent a transformative step towards sustainability in the plastics industry. By overcoming the limitations of traditional thermoset plastics, these materials have the potential to revolutionize industries and reduce environmental impact significantly. As research progresses and industrial adoption grows, recyclable thermosets could be a key player in the future of sustainable materials science.
0 notes
Text
Automotive 3D Printing Market - Forecast(2024 - 2030)
Automotive 3D Printing Market Overview
Automotive 3D printing market is expected to reach $1.8 billion by 2026 at a CAGR of 11.1% during the forecast period 2021-2026, owing to increasing research and development activities and innovations which is strengthening the automotive industry worldwide. Similarly, with a huge capital investment in automotive technology, several manufacturers are focusing on light weight vehicles to decrease the fuel consumption and low emission. Among all the R&D activities, 3D printing in automotive has come up with a rapid pace and gaining attention in the global automotive industry for rapid prototyping. According to the Chinese Passenger Car Association (CPCA), demand for electric car is growing progressively. This is due to the rising development of lightweight automobile parts utilizing 3D automobile printing technologies. The Chinese Government has rendered the development of additive manufacturing technologies a priority in the region. International companies are urged to create subsidiaries, although some domestic companies are also driven by government policies. Collaboration with other industry leader companies to incorporate various technology such as stereo lithography, selectrive laser sintering and digital light processing into their manufacturing process and create innovative product innovations would help them achieve strategic edge over their competitors.
Automotive 3D Printing Market Report Coverage
The report: “Automotive 3D Printing Market – Forecast (2021-2026)”, by IndustryARC covers an in-depth analysis of the following segments of the Automotive 3D Printing market
By Material: Metals, Polymer, Others (Ceramic and Glass) By Technology: Stereolithography, Selective Laser Sintering, Electron Beam Melting (EBM), Fused Disposition Modeling, Laminated Object Manufacturing, Three Dimensional Inject Printing, Others By Application: Prototyping & Tooling, Manufacturing Complex Components, Research, Development & Innovation, Others By Geography: North America (U.S, Canada, Mexico), South America(Brazil, Argentina and others), Europe(Germany, UK, France, Italy, Spain, Russia and Others), APAC(China, Japan India, SK, Aus and Others), and RoW (Middle east and Africa)
Request Sample
Key Takeaways
Automotive 3D printing in North America is growing at significant rate owing to the stringent governmental regulations regarding automobiles and auto parts are regulated through the National Highway Traffic Safety Administration (NHTSA) and the U.S Environmental Protection Agency (EPA).
The exceptional growth prospects of the electric vehicles market is a major growth factor for the 3D printing automotive market owing to its importance in electric vehicles.
The automotive OEMs are partnering with the leading 3D printing companies like Stratatsys, Shining 3D, SLM Solutions are largely concentrating on the technologies like stereo lithography, fused deposition modeling, and Laser sintering.
Automotive 3D Printing top 10 companies include Stratasys Inc., 3D System, Materialise NV, Renishaw PLC, SLM Solutions, ExOne, Envisiontec Inc., EOS, Arcam AB, Autodesk, Inc., among others.
Automotive 3D Printing Market Segment Analysis - By Application
Manufacturing complex components is growing at a highest CAGR of 12.1% in the forecast period. Complex components with internal cavities require multiple subcomponents held together by a variety of processes in the standard subtractive manufacturing process. As 3D printing is in nature an additive, it can create identical parts as single objects, allowing for less inspections and improved efficiency in the workflow. With Additive Manufacturing, designs with complex geometries only distribute build material where conformity with automotive performance standards is strategically necessary. 3D-printed pieces often weigh less than half of the weight of their cast or machined counterparts. A single click away from the mouse dramatically attenuates the design process with on-the-fly alterations. Moreover, early adopters used one-of-a-kind printed prototypes for wind tunnel testing in the automotive industry. In addition additive Manufacturing processes provide cost-effective alternatives to traditional automotive component manufacturing, especially complex and unique parts. Further additive manufacturing helps companies to create complex designs that require fewer parts for these components to be produced. As a result, companies may reduce the assembly time and also experience a decrease in quality problems. Delphi, an Irish tier 1 supplier to the automotive industry, used a metal 3D printing method known as Selective Laser Melting to produce a single piece aluminium diesel pump. With this, the company achieved a remarkable reduction in the number of parts available for the pump, thereby avoiding a few post-processing steps and simplifying the assembly process. The end result was a finished product of higher quality as it reduced the low-time fluid and is less vulnerable to leakage, with lower manufacturing costs. Hence these factors are analysed to drive the market in the forecast period 2020-2025.
Inquiry Before Buying
Automotive 3D Printing Market Segment Analysis - By Technology
Selective Laser Sintering (SLS) in automotive 3D Printing is growing at a CAGR of 13.5% in the forecast period. Selective Laser Sintering is an additive manufacturing or 3d printing technology that can be used for processing many types of materials such as polymers, metals, ceramics, and composites to create complex parts. It's areas of applications include automotive, aerospace tooling, biomedical as well as architecture. In addition SLS technology based 3d printing helps in building much stronger and durable prototypes than other technologies, thus causing its demands over applications ranging from low volume production to rapid prototyping of automotive parts and components. Such factors have been helping this technology towards boosting its growth in the 3d printing automotive market in the forecast period. Moreover, this technology has been considered to be one of the fastest as well as widely used 3d printing process due to it scalability of printing multiple automotive parts simultaneously, thus maximizing the build space for the auto manufacturers. Due to this, auto manufacturers are able to build high amount of parts and fixtures within less time intervals, thus boosting their productivity standards. Since this technology has been helping in reducing additional costs for automakers, many major automotive companies have been highly shifting towards adopting selective laser sintering 3d printing for building vehicle parts more easily along with cost efficiency. As a part of this, recently FAW-Volkswagen Automotive Co. Ltd, a joint venture between FAW Group, Volkswagen and Audi revealed about producing prototypes for more than 5,000 parts a year deploying laser sintering technology. Further deployment of 3d printing technology across the automotive industry helped in reducing the overhead operational costs along with speeding up the design iteration process, thus driving its demands in the automotive sector in the forecast period 2021-2026.
Automotive 3D Printing Market Segment Analysis- By Geography
Automotive 3D printing in North America is growing at significant rate of 12.2% CAGR through 2026 owing to the stringent governmental regulations regarding automobiles and auto parts are regulated through the National Highway Traffic Safety Administration (NHTSA) and the U.S Environmental Protection Agency (EPA). Such regulations are related to improve the vehicle safety standards as well as reduce the vehicle emissions. Such factors have been creating high deployments of electric vehicles in the country, in order to comply with such laws, thereby boosting the market growth of 3d printing technology. Moreover, rising growth of automobiles has caused the various automakers to shift towards advanced technologies in order to increase mass production of vehicles more efficiently within lesser time intervals along with reducing fuel consumption. As a part of this, one of the major U.S auto manufacturer, General Motors had invested in Autodesk’s software with 3d printing in effort to produce lighter vehicle parts through mass reduction and parts consolidation. Deploying of such lighter auto parts eventually helps in cutting the high fuel consumption costs for the customers, thus driving the automobiles demands. Such initiatives have been helping in boosting the growth of 3d printing in automotive market in the forecast period 2021-2026.
Schedule a Call
Automotive 3D Printing Market Drivers
Impressive Growth of Electric Vehicles
The market for electric vehicles is growing all across the globe, however, the electric vehicle market growth in China is quite significant. The exceptional growth prospects of the electric vehicles market is a major growth factor for the 3D printing automotive market owing to its growing importance in electric vehicles. 3D printing is seen as a solution by the OEMs in the global market. The automotive OEMs are partnering with the leading 3D printing companies like Stratatsys, Shining 3D, SLM Solutions are largely concentrating on the technologies like stereo lithography, fused deposition modeling, and Laser sintering. These technologies have high experience on the creating cost effective and composite parts that aid to improve the efficiency of the vehicles.
Growing Investments in 3D printing or additive manufacturing
Global 3D Printing Automotive Market is gaining traction due to the huge funds towards research and development of manufacturing technologies and materials. New manufacturing processes are being deployed to satisfy the increasing demand of consumers. The automotive companies are poised to lead the technological transformation in manufacturing. In April 2018, BMW invested $12m in a new additive manufacturing campus, Located Munich, Germany. BMW states that it is already using additive manufacturing to make prototype components in Shenyang (China) and Rayong (Thailand). Going forward, it plans to integrate additive manufacturing more fully into the local production structure of China and allow small production runs for customizable components. The HP and Guangdong companies have disclosed a new production-grade Additive Manufacturing centre in Dali, Foshan China. The venture in 10 HP Multi Jet Fusion 3D printing systems and is HP’s largest deployment of production-grade 3D printing in the Asia Pacific. Chinese State-Owned Enterprises (SOE) and Privately Owned Enterprises (POEs) together have planned to operate in China by establishing joint ventures involving foreign. The JVs in particular have an advantage in leveraging their global platform in creating vehicles, particularly for the Chinese market.
Automotive 3D Printing Market Challenges
Low speed Production
Additive manufacturing is facing speed of production challenges, which limits mass production potential. Advances are being made in additive manufacturing processes such that companies can create reliably unique parts and mass produce them and create custom parts for individual markets. The additive manufacturing technique is a game changer in industries where higher production costs are outweighed by the additional value generated by the manufacturing technique. However, the automotive industry is a high volume industry that requires great production speeds to make profits. The low production speeds of the additive manufacturing technique is seen a major impediment for wider adoption of the manufacturing technique in the automotive industry. In an attempt to tackle this challenge, high speed additive manufacturing has become an important area of research.
Buy Now
Automotive 3D Printing Market Landscape
Technology launches, acquisitions, Expansions, Partnerships and R&D activities are key strategies adopted by players in the automotive 3D printing market. In 2019, the market of automotive 3D printing industry outlook has been fragmented by several companies. Automotive 3D Printing top 10 companies include Stratasys Inc., 3D System, Materialise NV, Renishaw PLC, SLM Solutions, ExOne, Envisiontec Inc., EOS, Arcam AB, Autodesk, Inc., among others.
Acquisitions/Technology Launches
In 2020 Rimac launched the Rimac Design Challenge. The winning design was the Rimac Scalatan, a spectacular concept by Max Schneider which offered a unique window into what our world and the transport industry could look like in 2080. The car comes with an aerodynamic carbon-nanotube graphene outer surface that sits on top of a generative-design chassis made from 3D printed titanium graphite.
In June 2019, In order to make the benefit of advertised fuels available to widely valued consumers around the world, HPCL has figured out the solution by offering aftermarket fuel performance enhancing additives in compact small pouches. Vinner Petrol Plus and Vinner Diesel Plus will be available on the market in different sizes of pouches.
#Automotive 3D Printing Market#Stereolithography#Automotive 3D Printing Market size#Electron Beam Melting#Automotive 3D Printing industry#Automotive 3D Printing Market share#Automotive 3D Printing top 10 companies#Automotive 3D Printing Market report#Automotive 3D Printing industry outlook
0 notes
Text
Additive Manufacturing Market - Forecast, 2024 - 2030
Additive Manufacturing Market Overview:
Additive Manufacturing Market size is estimated to reach US$96.7 billion by 2030, growing at a CAGR of 21% during the forecast period 2024-2030. Ease of Manufacturing Complex Design and Relatively Lower Production Cost for Rapid Manufacturing are expected to propel the growth of Additive Manufacturing Market.
Additionally, Increasing focus on metal additive manufacturing technologies. Researchers and companies have been actively working on expanding the range of metals and alloys available for AM. This includes not only traditional metals like titanium, aluminum, and stainless steel but also high-performance alloys for specialized applications. The development of new metal powders suitable for various AM processes has been a focus area. The integration of Additive Manufacturing with traditional manufacturing processes in companies were exploring hybrid manufacturing approaches that combine the strengths of additive and subtractive methods. This integration aimed to leverage the design flexibility of Additive Manufacturing and the efficiency of traditional methods to optimize production workflows. These factors impact the growth in Additive Manufacturing Market.
𝐃𝐨𝐰𝐧𝐥𝐨𝐚𝐝 𝐑𝐞𝐩𝐨𝐫𝐭 𝐒𝐚𝐦𝐩𝐥𝐞
Key Takeaways:
North America Dominated the Market
Geographically, in the Additive Manufacturing market share, the North America region has held a dominant market share of 41% in 2023, Rising government investments and projects in the United States for additive manufacturing have also raised the growth of the market. For instance, to address the challenges in single laser melting (SLM), America Makes awarded GE Global $2.6 million to build an open-source, multi-laser production machine and AM platform. Additionally, in Canada, the rising partnership between research universities in the field of additive manufacturing is also influencing the growth of the market. U.S. is anticipated to lead the global additive manufacturing market with the largest installed base for 3d printer in the world. With such a dominant presence of the 3d printers in the country U.S. is likely to contribute more than one third in the revenue generated by additive manufacturing worldwide.
Metal is the Fastest Growing Segment
In the Additive Manufacturing Market forecast, the Metal segment is estimated to grow with a CAGR of 23.5% during the forecast period. Metals are a better option for 3D printing compared to plastics, as they have more industrial usage. Often the 3D metal printing shows itself to be unique as the new technologies can readily surpass what was offered by traditional processes. In AM of metals a powder feedstock or more rarely a wire is fully melted by the energy input of a laser or electron beam and transformed layer by layer into a solid part of nearly any geometry. The most popular processes for AM of metals are Laser Beam Melting (LBM), Electron Beam Melting (EBM) and Laser Metal. In a survey conducted across the globe, about 23% of the 3D printing materials used are metals. The 3D printing metals segment is also poised to grow as it has a competitive edge over other plastic materials used in 3D Printing. Metal 3D printing is too expensive, furthermore other companies, like Desktop Metal and Markforged, are developing approaches to manufacture affordable metal 3D printers.
Aerospace to Hold Largest Market Share
According to the Additive Manufacturing Market analysis, the Aerospace segment is estimated to hold the largest market share of 34% in 2023, the aerospace and defense industry is a perfect example of how to use additive manufacturing (AM) (commonly referred to as 3D Printing) to produce components that are heavier and lighter than parts manufactured using conventional manufacturing methods. Additive manufacturing or 3D printing has applications in the aerospace industry such as engine compartments, cabin accessories, air ducts among others. NASA researchers are looking into how electroplated SLA parts perform in space. Engineers at NASA’s Goddard Space Flight Center designed brackets that were 3D printed on printers, electroplated, and sent to space aboard a summer 2022 SpaceX commercial resupply services (CRS-25) mission to the International Space Station (ISS). The results could inform how NASA and possibly other aerospace manufacturers may incorporate electroplating and additive manufacturing into potential future product plans.
Ease of Manufacturing Complex Design
he basic physical difference in how objects are made with the additive manufacturing process produces some major functional differences when compared with other traditional manufacturing processes. The most significant of these functional differences is the ability of additive manufacturing to produce complex geometries that would be difficult or impossible to achieve using conventional manufacturing methods. These intricate geometries are also stronger and lighter than their conventional counterparts. Additive manufacturing eliminates the additional costs normally associated with creating more complex objects. A highly complex component usually costs much more using conventional methods. This is primarily because conventional fabrication methods rely on the conversion of three-dimensional illustrations into two-dimensional drawings for fabrication, as well as the labor cost of assembling such components. However, regardless of the complexity of a component, the method in additive manufacturing is the same. Thus, no additional cost is incurred for manufacturing complex designs using additive manufacturing.
#Additive Manufacturing Market price#Additive Manufacturing Market size#Additive Manufacturing Market share
0 notes
Text
3D Printing Market - Recent Industry Developments and Growth Strategies till 2030
In 2023, the global 3D printing market was valued at USD 20.37 billion and is projected to grow significantly, with a compound annual growth rate (CAGR) of 23.5% from 2024 to 2030. This anticipated growth is largely driven by intensive research and development in 3D printing technology and the rising demand for prototyping applications across various industries, particularly healthcare, automotive, and aerospace & defense sectors.
In industrial settings, 3D printing is commonly referred to as additive manufacturing (AM). This process involves the layer-by-layer addition of material to create objects from a 3D model, guided by specialized software and a 3D printer. The choice of 3D printing technology depends on the specific requirements of each application. Once a suitable technology is chosen, the process is implemented across various industry sectors based on specific needs.
Gather more insights about the market drivers, restrains and growth of the 3D Printing Market
The deployment of 3D printing technology includes services such as installation, consulting, and customer support. It also involves addressing issues related to intellectual property, licensing, and patents. By leveraging 3D printing, manufacturers benefit in several ways, including enhanced prototyping, structural design, product modeling, and reduced time to market. These advantages result in considerable cost savings for manufacturers, allowing them to deliver improved products at competitive prices. Consequently, the demand for 3D printers is expected to grow over the forecast period.
Despite these advantages, certain challenges exist that may slow the adoption of additive manufacturing, particularly among small and medium-sized manufacturers. Many of these businesses hold misconceptions about the prototyping process, seeing it as an expensive pre-manufacturing phase rather than as a valuable investment. This perception, along with limited technical knowledge and a lack of standardized process controls, is expected to hinder market expansion.
Technology Segmentation Insights:
In terms of technology, the stereolithography segment led the 3D printing market in 2023, holding over 10% of the global revenue share. The market segmentation by technology includes stereolithography, fused deposition modeling (FDM), direct metal laser sintering (DMLS), selective laser sintering (SLS), inkjet, polyjet, laser metal deposition, electron beam melting (EBM), digital light processing (DLP), laminated object manufacturing, and others.
Stereolithography, one of the oldest 3D printing technologies, remains widely used due to its ease of operation and numerous advantages. However, continuous technological advancements and intensive research efforts are creating new opportunities for other reliable and efficient technologies in the market.
Fused Deposition Modeling (FDM) held a significant market share in 2023, largely because of its widespread adoption in various 3D printing applications. Digital Light Processing (DLP), Electron Beam Melting (EBM), inkjet printing, and Direct Metal Laser Sintering (DMLS) technologies are also expected to gain traction over the forecast period due to their applicability in specialized additive manufacturing processes. The increasing demand across aerospace and defense, healthcare, and automotive sectors is expected to create growth opportunities for these technologies as they support diverse and specialized applications in these industries.
Order a free sample PDF of the 3D Printing Market Intelligence Study, published by Grand View Research.
0 notes
Text
3D Printing Market Size & Forecast Report, 2030
In 2023, the global 3D printing market was valued at USD 20.37 billion and is projected to grow significantly, with a compound annual growth rate (CAGR) of 23.5% from 2024 to 2030. This anticipated growth is largely driven by intensive research and development in 3D printing technology and the rising demand for prototyping applications across various industries, particularly healthcare, automotive, and aerospace & defense sectors.
In industrial settings, 3D printing is commonly referred to as additive manufacturing (AM). This process involves the layer-by-layer addition of material to create objects from a 3D model, guided by specialized software and a 3D printer. The choice of 3D printing technology depends on the specific requirements of each application. Once a suitable technology is chosen, the process is implemented across various industry sectors based on specific needs.
Gather more insights about the market drivers, restrains and growth of the 3D Printing Market
The deployment of 3D printing technology includes services such as installation, consulting, and customer support. It also involves addressing issues related to intellectual property, licensing, and patents. By leveraging 3D printing, manufacturers benefit in several ways, including enhanced prototyping, structural design, product modeling, and reduced time to market. These advantages result in considerable cost savings for manufacturers, allowing them to deliver improved products at competitive prices. Consequently, the demand for 3D printers is expected to grow over the forecast period.
Despite these advantages, certain challenges exist that may slow the adoption of additive manufacturing, particularly among small and medium-sized manufacturers. Many of these businesses hold misconceptions about the prototyping process, seeing it as an expensive pre-manufacturing phase rather than as a valuable investment. This perception, along with limited technical knowledge and a lack of standardized process controls, is expected to hinder market expansion.
Technology Segmentation Insights:
In terms of technology, the stereolithography segment led the 3D printing market in 2023, holding over 10% of the global revenue share. The market segmentation by technology includes stereolithography, fused deposition modeling (FDM), direct metal laser sintering (DMLS), selective laser sintering (SLS), inkjet, polyjet, laser metal deposition, electron beam melting (EBM), digital light processing (DLP), laminated object manufacturing, and others.
Stereolithography, one of the oldest 3D printing technologies, remains widely used due to its ease of operation and numerous advantages. However, continuous technological advancements and intensive research efforts are creating new opportunities for other reliable and efficient technologies in the market.
Fused Deposition Modeling (FDM) held a significant market share in 2023, largely because of its widespread adoption in various 3D printing applications. Digital Light Processing (DLP), Electron Beam Melting (EBM), inkjet printing, and Direct Metal Laser Sintering (DMLS) technologies are also expected to gain traction over the forecast period due to their applicability in specialized additive manufacturing processes. The increasing demand across aerospace and defense, healthcare, and automotive sectors is expected to create growth opportunities for these technologies as they support diverse and specialized applications in these industries.
Order a free sample PDF of the 3D Printing Market Intelligence Study, published by Grand View Research.
0 notes
Text
Plastics Market — Forecast(2024–2030)
Overview of the Plastics Market: Trends, Challenges, and Future Prospects
Plastics Market size is estimated to reach $738 billion by 2030, growing at a CAGR of 3.8% during the forecast period 2024–2030. The plastics market is a dynamic and multifaceted sector that plays a crucial role in various industries, from packaging and automotive to electronics and construction. As one of the most widely used materials globally, plastics are integral to modern life, offering versatility, durability, and cost-effectiveness. This overview examines the current state of the plastics market, key trends, challenges, and future prospects.
Current Market Landscape
The global plastics market has witnessed significant growth over the past few decades, driven by increased demand across multiple sectors. According to recent estimates, the market is valued in the hundreds of billions of dollars and is expected to continue expanding. Factors such as urbanization, population growth, and advancements in technology are propelling the demand for plastic products, especially in emerging economies.
Request Sample
Key Trends
Sustainability Initiatives: One of the most significant trends reshaping the plastics market is the increasing emphasis on sustainability. Concerns about plastic pollution and its environmental impact have prompted manufacturers to explore biodegradable plastics and recycling technologies. Companies are investing in sustainable practices, such as using recycled materials and developing eco-friendly alternatives to traditional plastics.
Innovation in Materials: The demand for high-performance plastics is driving innovation in material science. New formulations and blends are being developed to enhance properties such as strength, flexibility, and heat resistance. For instance, engineering plastics, which are designed for specific applications, are gaining traction in sectors like automotive and aerospace.
Digital Transformation: The plastics industry is undergoing a digital revolution, with advancements in automation and smart manufacturing processes. Technologies such as 3D printing and IoT (Internet of Things) are enabling more efficient production methods, reducing waste, and enhancing customization options for consumers.
Regulatory Changes: Governments worldwide are implementing stricter regulations on plastic usage and waste management. These policies aim to reduce single-use plastics and promote recycling initiatives. Compliance with these regulations is becoming a priority for manufacturers, influencing their production strategies.
Inquiry Before Buying
Challenges Facing the Plastics Market
Despite its growth potential, the plastics market faces several challenges:
Environmental Concerns: The pervasive issue of plastic waste continues to pose significant challenges. As public awareness of pollution rises, companies must navigate the complexities of sustainable practices while maintaining profitability.
Volatile Raw Material Prices: The plastics industry is heavily reliant on petroleum-based products, making it susceptible to fluctuations in crude oil prices. This volatility can impact production costs and profitability.
Competition from Alternatives: The rise of alternative materials, such as glass, metal, and biodegradable composites, presents competition for traditional plastics. Manufacturers must innovate continuously to remain relevant in a changing market landscape.
Future Prospects
Looking ahead, the plastics market is poised for continued growth, driven by several factors:
Increased Demand in Emerging Markets: As economies in Asia, Africa, and Latin America expand, the demand for plastic products is expected to rise significantly. The growing middle class in these regions will contribute to increased consumption across various sectors.
Advancements in Recycling Technologies: Innovations in recycling processes, such as chemical recycling and upcycling, will enhance the sustainability of plastics, allowing for a circular economy. This shift will help mitigate environmental concerns associated with plastic waste.
Focus on Lightweight Materials: The automotive and aerospace industries are increasingly focusing on lightweight materials to improve fuel efficiency. This trend is likely to drive demand for advanced plastics that meet stringent performance and safety standards.
Buy Now
Conclusion
The plastics market is at a crossroads, balancing growth with sustainability and innovation. While challenges such as environmental impact and regulatory pressures persist, the industry’s adaptability and commitment to research and development will pave the way for a more sustainable future. As global demand for plastics continues to rise, companies that prioritize eco-friendly practices and technological advancements will likely thrive in this evolving landscape.
0 notes