#Fraunhofer IWS
Explore tagged Tumblr posts
Text
Schwefel und Silizium als Bausteine für die Feststoffbatterie
Eine neue Generation von Lithium-Schwefel-Batterien steht im Fokus des Forschungsprojekts „MaSSiF – Materialinnovationen für Schwefel-Silizium-Festkörperbatterien“. Das Projektteam widmet sich dem Design, Aufbau und der Bewertung von leichten und kostengünstigen Prototypzellen auf Schwefelbasis mit hohen Speicherkapazitäten. Der Einsatz von Silizium als Anodenmaterial soll zudem die…
View On WordPress
0 notes
Text
Können Arbeitnehmer mit einer Abfindungshöhe von rund 40.000 Euro rechnen, wenn soviel Geld eine Kündigung kostet, wie in der WIRTSCHAFTSWOCHE zu lesen ist? Was eine Kündigung kostet Was in verschiedenen Ländern eine Kündigung kostet, wird in der Studie "Deloitte Legal Perspectives International Dismissal Survey" vom Mai 2015 versucht herauszufinden. Für Arbeitnehmer kann dabei auch der Eindruck entstehen, sie könnten durchschnittlich mit einer Abfindungshöhe von 40.000 Euro rechnen. Wie hoch sind Abfindungen in Deutschland? - hier klicken? Die Verfasser der Studie wollen aus der Sicht eines Arbeitgebers der Frage nachgehen, was Arbeitgebern eine Kündigung kostet. Sie stützen sich nach eigenen Aussagen dabei auf statistische Analysen der Kündigungskosten und auf Länderberichte über die geltenden Kündigungsregelungen. Ausdrücklich konzentrieren sich die Autoren der Studie auf Entlassungskosten im Rahmen der Einzelentlassungen. An dieser Stelle wird schon mehr oder weniger unterstellt: Arbeitnehmer hätten in jedem Fall einen Rechtsanspruch auf eine Abfindung - Dem ist nicht so! Nach § 1a Kündigungsschutzgesetz (KSchG) kann (!) ein Arbeitgeber einem Arbeitnehmer eine Abfindung abieten, muss es aber nicht! Zudem gilt das KSchG erst in Betrieben mit mehr als 10 Vollzeitbeschäftigten. Die durchschnittlichen Kündigungskosten wurden dann an drei Szenarien ermittelt, nach denen ein Arbeitgeber einen Mitarbeiter entlassen kann, ohne dass der Fall vor Gericht kommt. Mit 3 Szenarien ist gemeint, dass jeweils einmal mit und einmal ohne ordentliche Begründung Arbeitnehmer gekündigt werden, die jährliche Arbeitseinkünfte in Höhe von 36.500, 73.000 und 146.000 Euro beziehen. Auf Grundlage dieser Annahmen heißt es dann im Wiwo-Artikel: "...entsprechend hoch sind die Kündigungskosten für die Arbeitgeber ... In Deutschland kommen Arbeitgeber mit durchschnittlich rund 40.000 Euro Abfindungskosten noch billig weg." Für den Leser stellt sich angesichts der genannten Arbeitseinkünfte schon mal die Frage, wie realistisch sind diese? Denn legt man das Zahlenwerk von Statista zugrunde, dann liegt der durchschnittliche Brutto-Jahresarbeitslohn je Arbeitnehmer 2014 noch knapp unter 32.000 Euro. In der Studie wird dagegen von Arbeitseinkommen ab 36.500 Euro ausgegangen. Für die Gesetzliche Rentenversicherung werden gem. SGB VI 34.514 Euro zugrunde gelegt. Allerdings kann man davon ausgehen, zwei Drittel der Deutschen Monatsgehälter unter dem Durchschnitt beziehen (vgl. welt.de, 04.01.2022). Quelle: Fraunhofer FIT/Statista 2019; vgl. Durchschnittsengelt gem. SGB VI (Gesetzliche Rentenversicherung) Sind Kosten der Kündigung gleich Kosten der Abfindung? Für jeden, der nur etwas von Betriebswirtschaft versteht, stellt sich darüber hinaus die Frage, wieso - zumindest suggestiv - von den "Kosten für die Kündigung" auf die "Kosten für die Abfindung" geschlossen wird? Denn was Unternehmen eine Kündigung kostet, mündet nicht eins zu eins in Kosten für die Abfindung. Das dürfte selbst bei einem Blick auf Wikipedia unter dem Stichwort Personalkosten klar werden, auch wenn dort nicht immer wie bei einer Studie wissenschaftliche Exaktheit gefordert ist, sondern mehr Wert auf Allgmeinverständlichkeit gelegt wird. Wer wirklich die Kosten einer Kündigung halbwegs seriös bestimmen will, sollte diese nicht verkürzt anhand einer möglichen Abfindung ermitteln, sondern die Gesamtkosten kalkulieren, wie es beispielsweise im Institut der deutschen Wirtschaft Köln (IW) 2009 publiziert wurde. Dort wird mit Blick auf die Frage, was eine Kündigung kostet, berücksichtigt, dass - die Kosten für das Personalmanagement, - die Kosten im Vorfeld einer Kündigung, - die Prozesskosten, - die Abfindung insgesamt beeinflussen, was eine Kündigung kostet. Die Abfindung stellt demnach nur einen Teil der Kosten einer Kündigung dar. Bezogen auf die Abfindungshöhe wurde im IW der Schluss gezogen: "Im Schnitt geben Unternehmen knapp 12.000 Euro für eine Abfindung im Kündigungsfall aus." Sollten mit den Kündigungskosten = Abfindungskosten von 40.000 Euro den Arbeitgebern nun Angst gemacht werden oder wollten die Autoren Mitleid für die gebeutelten Unternehmen erwecken? Unternehmern, die die Kosten der Kündigung halbwegs kalkulieren wollen oder müssen, sollten dafür auch Daten und Werkzeuge nutzen, mit denen realistischer zu kalkulieren ist. Auch Arbeitnehmer sollten an ihre Erwartung zur Abfindungshöhe realistisch herangehen: Wie hoch sind Abfindungen in Deutschland? - hier klicken? Abfindungszahlungen im Überblick: Ostdeutschland weiterhin benachteiligt Quellen: - wiwo.de, 05.06.2015 - Deloitte Legal Perspectives International Dismissal Survey, Mai 2015 - Pressemitteilungen IW Köln, 09.02.2009 Siehe auch: "die tatsächlichen kosten der fluktuation" Wie hat Ihnen der Artikel gefallen?
0 notes
Link
0 notes
Photo
Doku Fraunhofer IWS - Dresden
#fraunhofer#fraunhoferiws#fraunhoferdresden#science#forschung#batterie#batterietechnologie#research#scientific research#battery#batteryresearch#batteryscience#siegfriedmichaelwagner#dresden#sachsen#germany#silliconsaxony#sogehtsaechsich#tech industry
0 notes
Photo
Nano- and microstructures incorporated into surfaces using lasers to create biomimetic effects
Nano- and microstructures can now be incorporated into surfaces in an instant using lasers. The technology is being developed and marketed by the Dresden-based start-up Fusion Bionic, a spin-off from the Fraunhofer Institute for Material and Beam Technology IWS. The possibilities are virtually endless when it comes to laser structuring. It has the advantage of being fast and much more versatile than coatings.
Product surfaces can be enhanced with all kinds of different effects. The lotus effect, for example, uses a microstructure to allow any dirt that might stick to the surface to simply wash away the next time it rains. The fine ripples of shark skin, meanwhile, improve the dynamics of air and water on the outside of airplanes and ships, thus saving fuel. With nature as their inspiration, many such effects have been developed by coating or applying a film to the surface into which the microstructures are incorporated. Coatings and films can wear away, however, causing the desired effect to diminish over time. In recent years, researchers at Fraunhofer IWS and Technische Universität Dresden have developed an alternative, market-ready method of permanently applying nano- and microstructures to surfaces: Direct Laser Interference Patterning (DLIP). This process incorporates the nano- or microstructure directly into the surface using a laser in order to create biomimetic effects. It is a remarkably quick process, and can currently handle up to one square meter of surface per minute. The new technology is so promising that it led to Fusion Bionic being founded this year as a spin-off from Fraunhofer IWS. Fusion Bionic develops and markets DLIP system solutions for biomimetic surface finishing, but also provides surface functionalization services to its customers.
Read more.
#Materials Science#Science#Surfaces#Lasers#Microstructures#Nanostructures#Optics#Biomimicry#Light#Structures
25 notes
·
View notes
Photo
New, Powerful Metal 3D Printing Tech Being Explored by Fraunhofer IWS The Fraunhofer Institute for Material and Beam Technology (Fraunhofer IWS) is experimenting with a new, high-powered metal 3D printing technology. Based on a technology called coherent beam combining... View the entire article via our website. https://buff.ly/3fd0MY5
1 note
·
View note
Text
Living labs create new products from residues
Laboratory experiments with 3D printing with renewable raw materials
The Bergakademie[1] Freiberg[2] in Saxony, Germany has started to set up a living lab in which new products made from waste or renewable raw materials will be tested in the future using 3D printing. The aim is to replace plastic and enable a circular economy, said the coordinator of the SAMSax[3] project, Henning Zeidler, on Thursday 1/9/2022.[4] A wide variety of powders made from straw, wood flour and paper fibres, for example, but also residues from industrial production could be used in the process.
Using 3D printing, new parts and products could be made from it, such as elements for stage sets, architectural models or packaging that could replace styrofoam, for example, explained the professor of additive manufacturing. “The technology is there.” The goal is close cooperation with companies in the region, who can test the implementation of their ideas here. There are already 50 permanent partners and other contacts via various networks.
The Geomin Erzgebirge lime works[5], that quarries white marble in Hammerunterwiesenthal,[6] for example, is interested in the possibilities of this process. In the production of building materials, secondary components such as rocks and dust accumulated that had to be disposed of, explained Richard Kühnel from Geomin. The idea is to use such rock powder for new products instead. The 3D printing process offers promising possibilities for this.
The construction of the living laboratory is funded by the state Saxony with one million euros. According to Zeidler, the devices should be operational by the beginning of next year. Any complex shapes up to a volume of one cubic meter could be created with the process. It applies also to larger quantities of several hundred or thousands of copies. In addition to the Bergakademie Freiberg, the Technical Universities of Dresden[7] and Chemnitz[8] are also involved in the project.
Environmental technology know-how meets additive expertise
The Institute for Natural Materials Technology at the TU Dresden wants for example to feed injection moulding machines with a mass of processed wood fibres in order to give discarded plywood tables and similar furniture a second life as wooden spoons, book covers, mugs or flower tubs.
There are also several institutes in Saxony that specialise in various additive manufacturing technologies. These include the Fraunhofer Institutes IWS[9], IKTS[10] and IWU[11], that deal with laser deposition welding, fused filament fabrication (FFF), lithography-based ceramic 3D printing and other technologies.
Sources
Dpa, Reallabor lässt neue Produkte aus Reststoffen entstehen, In: Süddeutsche Zeitung ,1/9/2022, https://www.sueddeutsche.de/wissen/forschung-reallabor-laesst-neue-produkte-aus-reststoffen-entstehen-urn:newsml:dpa.com:20090101:220901-99-596908
Heiko Weckbrodt, Sachsen wollen 3D-Drucker mit Abfall füttern, in: Oiger, 30-04-2022, https://oiger.de/2022/04/30/sachsen-wollen-3d-drucker-mit-abfall-fuettern/182983
[1] The six faculties of the Technical University Bergakademie Freiberg develop efficient and alternative technologies for a sustainable economy and industry. The focus is on exploring and processing a wide variety of raw materials; the production, storage and conversion of energy; the development of materials and substances as well as recycling processes. With the engineering, natural, geo, materials and economic sciences, the university combines the necessary subjects and disciplines and covers all areas from basic research to application-oriented research. to the university profile
[2] Freiberg is a university and former mining town in the Free State of Saxony, Germany. It is a so-called Große Kreisstadt (large county town) and the administrative centre of Mittelsachsen district.
[3] „Sustainable Additive Manufacturing in Saxony“ (Samsax – in German: Nachhaltige additive Fertigung in Sachsen)
[4] In a new real-world laboratory called “Samsax” in Freiberg, researchers in Saxony are testing how industrial 3D printers can be used, for example, to produce stage sets or other components from organic agricultural waste. Regional Minister Thomas Schmidt (CDU) has now promised one million euros in funding for this. https://oiger.de/2022/04/30/sachsen-wollen-3d-drucker-mit-abfall-fuettern/182983
[5] As a merger of ard Baustoffwerke, SH Natursteine and GEOMIN, GEOMIN Erzgebirgische Kalkwerke GmbH is one of the largest raw material companies in the Saxony and Saxony-Anhalt area with a total of seven locations. https://geomin.de/
[6] Hammerunterwiesenthal is a district of the town of Oberwiesenthal in the Saxon Erzgebirge district, which developed around the Schlössel hammer mill founded in the 16th century. The place was incorporated on January 1, 1997 after Oberwiesenthal. His district precipitation was reclassified to Bärenstein.
[7] T U Dresden (for German: Technische Universität Dresden, abbreviated as TUD and often translated as "Dresden University of Technology") is a public research university, the largest institute of higher education in the city of Dresden, the largest university in Saxony and one of the 10 largest universities in Germany with 32,389 students as of 2018.
[8] Chemnitz University of Technology (German: Technische Universität Chemnitz) is a public university in Chemnitz, Germany. With over 9,000 students, it is the third largest university in Saxony. It was founded in 1836 as Königliche Gewerbschule (Royal Mercantile College) and was elevated to a Technische Hochschule, a university of technology, in 1963. With approximately 1,500 employees in science, engineering and management, Chemnitz University of Technology is among the most important employers in the region.
[9] Fraunhofer Institute for Material and Beam Technology IWS. Fraunhofer IWS develops complex system solutions in materials and laser technology. We define ourselves as idea drivers developing customized solutions based on laser applications, functionalized surfaces and material and process innovations – from easy-to-integrate custom solutions to cost-efficient solutions for small and medium-sized enterprises to industry-ready one-stop solutions. Our sector research focuses on aerospace, energy and environmental technology, automotive, medical and mechanical engineering, toolmaking, electrical engineering and microelectronics, and photonics and optics. In our five future and innovation fields of battery technology, hydrogen technology, surface functionalization, photonic production systems and additive manufacturing, we are already creating the basis today for the technological answers of tomorrow. https://www.iws.fraunhofer.de/en/profile.html
[10] Fraunhofer Institute for Ceramic Technologies and Systems IKTS. The Fraunhofer Institute for Ceramic Technologies and Systems IKTS conducts applied research on high-performance ceramics. The institute‘s three sites in Dresden and Hermsdorf (Thuringia), Germany, collectively represent Europe‘s largest R&D institute dedicated to the study of ceramics. As a research and technology service provider, the Fraunhofer IKTS develops advanced high-performance ceramic materials, industrial manufacturing processes as well as prototype components and systems in complete production lines up to the pilot-plant scale. In addition, the research portfolio also includes materials diagnostics and testing. The test procedures in the fields of acoustics, electromagnetics, optics and microscopy contribute substantially to the quality assurance of products and plants. https://www.ikts.fraunhofer.de/en.html
[11] Fraunhofer Institute for Machine Tools and Forming Technology IWU. Fraunhofer Institute for Machine Tools and Forming Technology IWU is a driver for innovations in the research and development of production engineering. Around 670 highly qualified employees at our locations in Chemnitz, Dresden, Leipzig, Wolfsburg, and Zittau tap the new potential for competitive manufacturing in automotive and mechanical engineering, aerospace technology, medical engineering, electrical engineering, and precision and micro engineering. We focus on scientific developments and contract research concerning components, processes, methods, and the associated complex machine systems – the entire factory. https://www.iwu.fraunhofer.de/en.html
0 notes
Text
Science and Chemistry Classes
Laser welding set to revolutionize steel construction
Fraunhofer-Gesellschaft
Energy and resource efficiency are gaining ever more significance, which is why the Fraunhofer Institute for Material and Beam Technology IWS has worked with its partners to develop an alternative for conventional steel construction that not only constitutes a process technology solution, but also forms the basis for hardware and laser safety. This solution facilitates gentler machining of high-strength materials, as well as significantly reducing energy consumption and costs while greatly increasing process speed. The energy in-put required for the component can be reduced by up to 80% compared with conventional joining processes. Not only that, subsequent straightening of the component is eliminated entirely from the process. The innovative welding process will be presented on March 16 at the Hannover Messe Preview 2022 and from May 30 to June 2 at the Hannover Messe 2022 at the joint Fraunhofer booth in Hall 5, Stand A06.
Many technical structures feature some form of steel construction. Be it a container ship, railway vehicle, bridge or wind turbine tower, any one of these structures can have several hundred meters of welding seams. Conventional industrial processes such as metal active gas welding or submerged arc welding are usually used for this purpose. Here's the problem: Due to the low intensity of the arc, a large proportion of the energy expended is not actually used in the welding process, but is lost to the component in the form of heat. The energy required for post-weld treatment is often of a similar magnitude to that required for the welding process itself. "These energy-intensive processes cause significant thermal damage to the material and result in severe distortion of the structure, which then demands very costly straightening work afterwards," emphasizes Dr. Dirk Dittrich, who heads up the Laser Beam Welding group at Fraunhofer IWS.
Powerful laser welding process
A team of researchers led by Dr. Dittrich has developed an energy-efficient alternative together with industrial partners as part of the "VE-MES—Energy-efficient and low-distortion laser multi-pass narrow-gap welding" project. Laser multi-pass narrow-gap welding (laser MPNG, see box below) uses a commercially available high-power laser and stands out from conventional methods thanks to its reduced number of layers and drastically reduced seam volume. These elements of the welding process are its key benefits. "Depending on the component, we can reduce the energy input for the component during welding by up to 80%, and we can lower filler material consumption by up to 85% compared to conventional arc processes," reports Dr. Dittrich. "What's more, it was not necessary to carry out a straightening process on the component studied. As a result, we can cut production time and costs, process high-strength steel materials and significantly improve the CO2 balance of the entire production chain. Given the significant number of steel structures being built in Germany and around the world, this could prove to be hugely advantageous." This is because the high intensity of the laser beam guarantees that the energy input is highly localized at the welding point, whereas the surrounding areas of the component remain comparatively cold. "The welding time is also reduced by 50–70%," says Dittrich, citing another advantage. The new process also excels in terms of weld seam quality—the seams are significantly slimmer and the edges are virtually parallel, whereas in conventional welding processes the seams are V-shaped. "If laser welding were used in steel construction processes, it would become a unique selling point for medium-sized businesses in Germany and strengthen its market position in the face of international competition," says Dittrich with confidence. "We are providing the industry with an efficient form of joining technology that is set to revolutionize steel construction on account of its cost-effective application and resource-saving production process."
Research in practice: Steel girders for indoor crane construction
The researchers from Fraunhofer IWS demonstrated the performance of their new development using a practical example from indoor crane construction. They deployed the new welding technology using special system technology and an integrated beam protection concept. The design of the experimentally built, four-meter-long rectangular profile of an indoor crane segment conformed to the design and manufacturing guidelines of comparable, conventionally produced components. Weld seams typical of the application were produced: a butt joint on 30-millimeter plates and a fully joined T-joint (15-millimeter plate).
For a one-meter weld seam, it was possible to reduce the costs for a sheet thickness of 30 millimeters by 50% compared with submerged arc welding, including the subsequent straightening process. For sheet thicknesses of less than 20 millimeters, where metal active gas welding processes are also commonly used, the potential cost savings are even higher at up to 80%. The cost savings in terms of welding filler materials alone can amount to more than 100,000 euros per year for larger companies. In addition, the laser beam sources used offer great potential for stemming rising energy costs due to their high efficiency (approximately 50%) and good process efficiency (reduction of energy input by 80%). With this evidence of practical suitability, the approach can now be extended to other applications.
0 notes
Text
Lithium-Schwefel-Batterien in die industrielle Anwendung überführen
Lithium-Schwefel-Batterien in die industrielle Anwendung überführen
Seit Juli 2021 läuft das Forschungsprojekt SoLiS unter Leitung des Fraunhofer IWS. Verschiedene Partner arbeiten gemeinsam daran, Lithium-Schwefel-Feststoffbatterien in die Praxis zu überführen. Schwefel als Batteriematerial ist günstig und besitzt eine hohe Speicherkapazität, entsprechende Feststoffbatterien sind jedoch noch wenig erforscht. (more…)
View On WordPress
0 notes
Text
How Can Aircraft Engines Increase Their Efficiency?
As the aviation industry continues to seek out advanced technologies for the means of reducing emissions and the amount of fuel needed for flight, aircraft engines parts are constantly being improved. Beyond initiatives centered around the efficiency of fuel combustion, manufacturers also seek ways to achieve more efficient cooling and heat management to reduce the strain and wear placed on engine components as fuel is continuously burned at intense temperatures. In recent years, several technologies have been researched and developed for the means of creating more efficient aircraft, one of which is capable of increasing combustion efficiency, reducing heat strain, and achieving greener operations.
From the Fraunhofer Institute for Material and Beam Technology IWS, professors Frank Brückner and Mirko Riede developed laser-fabricated microstructures which are capable of maintaining the service lives of thermal barrier coatings. While this assists in heat reduction, such advancements also pose to mitigate the number of pollutant emissions expelled from an aircraft engine. The project was achieved due to close collaboration with Rolls-Royce, whom of which is a world-renowned engine manufacturer.
The technology developed by the partnership is based on additively manufactured microstructures which are relied on for the construction of Thermal Barrier Coatings (TBCs). These TBCs are then implemented on turbine components and aircraft engine parts to affix a ceramic insulating layer to an oxidation-resistant adhesion promoter layer. As many aircraft engine parts and aircraft turbine tools are damaged from expansion as a direct result of heat, the technologies designed by IWS initiate vertical segmentation cracks of the ceramic material layer so that tensile stresses are mitigated for avoiding high amounts of damage. To produce the microstructures that are paramount for such engine advancement, single-mode fiber lasers touting high precision are used to create microstructures as small as 30 microns.
While the insulation and microstructure technologies are capable of increasing the efficiency of an aircraft engine, they also serve to increase combustion temperature. While increasing temperatures can be thought of as detrimental, such heat will create more efficiency as fuel is more optimally burned. As such, fuel consumption rates can be decreased by up to ten percent, and greenhouse gas emissions will be cut down as well. With the reduction of fuel consumption, aircraft operators can save upwards of $2.9 million every year with the implementation of such microstructures.
As of the present, the technology developed by Fraunhofer researchers and Rolls-Royce has had successful test flights in 2015, also being approved by the European Aviation Safety Agency (EASA). With the completion of production-ready manufacturing, such technology has already seen implementation in long-haul aircraft such as the Airbus A350-1000. In the coming years, the partnered entities hope to see further implementation of their microstructure technology on other aircraft for the benefit and efficiency of engines.
Beyond specific changes to the engine itself, aircraft may also increase their fuel efficiency through improving aerodynamics and navigation. With the addition of winglets, flexible navigation systems, continuous climb, and descent operations, lighter construction, and more, drag can be reduced while also ensuring optimal operations that expend less fuel. If you require various aircraft engine parts, airframe structural materials, and other various aircraft components for increasing efficiency, look no further than Dynaron Enterprises.
0 notes
Text
Feststoffbatterie soll Sprung in die industrielle Anwendung gelingen
Feststoffbatterie soll Sprung in die industrielle Anwendung gelingen: Projekt SoLiS von @FraunhoferIWS und Partnern
Das im Juli 2021 gestartete Forschungsprojekt „SoLiS – Entwicklung von Lithium-Schwefel Feststoffbatterien in mehrlagigen Pouchzellen“ zielt darauf ab, ein vielversprechendes Batteriekonzept aus der Grundlagenforschung in die industrielle Anwendung zu überführen. Dank hoher Speicherkapazitäten und geringer Materialkosten des Schwefels ermöglicht diese Zelltechnologie potenziell den Aufbau sehr…
View On WordPress
0 notes
Text
Was eine Kündigung kostet vs. Abfindungshöhe (I)
Können Arbeitnehmer mit einer Abfindungshöhe von rund 40.000 Euro rechnen, wenn soviel Geld eine Kündigung kostet, wie in der WIRTSCHAFTSWOCHE zu lesen ist? Was eine Kündigung kostet Was in verschiedenen Ländern eine Kündigung kostet, wird in der Studie "Deloitte Legal Perspectives International Dismissal Survey" vom Mai 2015 versucht herauszufinden. Für Arbeitnehmer kann dabei auch der Eindruck entstehen, sie könnten durchschnittlich mit einer Abfindungshöhe von 40.000 Euro rechnen. Wie hoch sind Abfindungen in Deutschland? - hier klicken? Die Verfasser der Studie wollen aus der Sicht eines Arbeitgebers der Frage nachgehen, was Arbeitgebern eine Kündigung kostet. Sie stützen sich nach eigenen Aussagen dabei auf statistische Analysen der Kündigungskosten und auf Länderberichte über die geltenden Kündigungsregelungen. Ausdrücklich konzentrieren sich die Autoren der Studie auf Entlassungskosten im Rahmen der Einzelentlassungen. An dieser Stelle wird schon mehr oder weniger unterstellt: Arbeitnehmer hätten in jedem Fall einen Rechtsanspruch auf eine Abfindung - Dem ist nicht so! Nach § 1a Kündigungsschutzgesetz (KSchG) kann (!) ein Arbeitgeber einem Arbeitnehmer eine Abfindung abieten, muss es aber nicht! Zudem gilt das KSchG erst in Betrieben mit mehr als 10 Vollzeitbeschäftigten. Die durchschnittlichen Kündigungskosten wurden dann an drei Szenarien ermittelt, nach denen ein Arbeitgeber einen Mitarbeiter entlassen kann, ohne dass der Fall vor Gericht kommt. Mit 3 Szenarien ist gemeint, dass jeweils einmal mit und einmal ohne ordentliche Begründung Arbeitnehmer gekündigt werden, die jährliche Arbeitseinkünfte in Höhe von 36.500, 73.000 und 146.000 Euro beziehen. Auf Grundlage dieser Annahmen heißt es dann im Wiwo-Artikel: "...entsprechend hoch sind die Kündigungskosten für die Arbeitgeber ... In Deutschland kommen Arbeitgeber mit durchschnittlich rund 40.000 Euro Abfindungskosten noch billig weg." Für den Leser stellt sich angesichts der genannten Arbeitseinkünfte schon mal die Frage, wie realistisch sind diese? Denn legt man das Zahlenwerk von Statista zugrunde, dann liegt der durchschnittliche Brutto-Jahresarbeitslohn je Arbeitnehmer 2014 noch knapp unter 32.000 Euro. In der Studie wird dagegen von Arbeitseinkommen ab 36.500 Euro ausgegangen. Für die Gesetzliche Rentenversicherung werden gem. SGB VI 34.514 Euro zugrunde gelegt. Allerdings kann man davon ausgehen, zwei Drittel der Deutschen Monatsgehälter unter dem Durchschnitt beziehen (vgl. welt.de, 04.01.2022). Quelle: Fraunhofer FIT/Statista 2019; vgl. Durchschnittsengelt gem. SGB VI (Gesetzliche Rentenversicherung) Sind Kosten der Kündigung gleich Kosten der Abfindung? Für jeden, der nur etwas von Betriebswirtschaft versteht, stellt sich darüber hinaus die Frage, wieso - zumindest suggestiv - von den "Kosten für die Kündigung" auf die "Kosten für die Abfindung" geschlossen wird? Denn was Unternehmen eine Kündigung kostet, mündet nicht eins zu eins in Kosten für die Abfindung. Das dürfte selbst bei einem Blick auf Wikipedia unter dem Stichwort Personalkosten klar werden, auch wenn dort nicht immer wie bei einer Studie wissenschaftliche Exaktheit gefordert ist, sondern mehr Wert auf Allgmeinverständlichkeit gelegt wird. Wer wirklich die Kosten einer Kündigung halbwegs seriös bestimmen will, sollte diese nicht verkürzt anhand einer möglichen Abfindung ermitteln, sondern die Gesamtkosten kalkulieren, wie es beispielsweise im Institut der deutschen Wirtschaft Köln (IW) 2009 publiziert wurde. Dort wird mit Blick auf die Frage, was eine Kündigung kostet, berücksichtigt, dass - die Kosten für das Personalmanagement, - die Kosten im Vorfeld einer Kündigung, - die Prozesskosten, - die Abfindung insgesamt beeinflussen, was eine Kündigung kostet. Die Abfindung stellt demnach nur einen Teil der Kosten einer Kündigung dar. Bezogen auf die Abfindungshöhe wurde im IW der Schluss gezogen: "Im Schnitt geben Unternehmen knapp 12.000 Euro für eine Abfindung im Kündigungsfall aus." 3406556817:rightSollten mit den Kündigungskosten = Abfindungskosten von 40.000 Euro den Arbeitgebern nun Angst gemacht werden oder wollten die Autoren Mitleid für die gebeutelten Unternehmen erwecken? Unternehmern, die die Kosten der Kündigung halbwegs kalkulieren wollen oder müssen, sollten dafür auch Daten und Werkzeuge nutzen, mit denen realistischer zu kalkulieren ist. Auch Arbeitnehmer sollten an ihre Erwartung zur Abfindungshöhe realistisch herangehen: Wie hoch sind Abfindungen in Deutschland? - hier klicken? Abfindungszahlungen im Überblick: Ostdeutschland weiterhin benachteiligt Quellen: - wiwo.de, 05.06.2015 - Deloitte Legal Perspectives International Dismissal Survey, Mai 2015 - Pressemitteilungen IW Köln, 09.02.2009 Wie hat Ihnen der Artikel gefallen?
0 notes
Text
14 Days offshore, 10th of July
Today everything is working without issues, so I think it is the right moment to talk to you about the measurement campaign onboard the RV Sonne.
The name of the campaign, led by Prof. Dr. Peter Brandt (GEOMAR) and co-lead by Dr. Julia Windmiller (Max Plank Institute for Meteorology), is “Mooring rescue”. This name refers to the main goal of the campaign, which is to service and collect scientific data from several moorings located in the central and tropical region of the Atlantic Ocean. The scientific crew is composed of 15 ocean researchers from GEOMAR (Helmholtz Centre for Ocean Research Kiel), as well as 9 researchers focused on atmospheric measurements from the Max Plank Institute for Meteorology, the Leibniz Institute for Tropospheric Research (TROPOS), the FU Berlin and the Fraunhofer Institute for Wind Energy Systems (IWES). During the execution of the campaign, measurements are taken both in the atmosphere and the ocean, providing meaningful information to investigate the coupling and interaction between these two systems. Parameters like the wind profiles and velocities, wind direction, or precipitation are measured, as well as ocean variables like salinity, temperature, or current speed and direction. All these observations will contribute to a better understanding of the circulation and climate in the tropical Atlantic.
If you are interested, you can read more information about the cruise and the weekly reports on the following site: https://www.ldf.uni-hamburg.de/en/sonne/wochenberichte.html
Figure: planned ship rout of RV Sonne during the campaign
Figure: logo of the campaign
0 notes
Photo
Device bonds metal and plastic within seconds
Scientists at the Fraunhofer Institute for Material and Beam Technology IWS in Dresden have developed a joining gun that creates a connection between metal and thermoplastic materials within seconds. This gun is of a modular design and can easily be integrated into the production process, for example by mounting on a robot arm in place of a spot welding gun. At the preview leading up to the Hanover Trade Fair on January 24, 2019 on the trade fair grounds in Hall 19, scientist Annett Klotzbach will be demonstrating the advantages of the joining gun.
The HeatPressCool-Integrative process HPCI
The connection of plastics and metals poses a challenge, due to the different physical properties of the two materials. All conventional joining options, such as bonds using adhesives or rivets have their disadvantages: adhesives need time to harden, which delays further processing. Plastics can be easily damaged during riveting. Furthermore, both adhesive bonding and riveting require additional materials which increases production costs.
The HeatPressCool-Integrative process, developed at the Fraunhofer IWS Dresden, is integrated into the joining gun enabling the direct and precise bonding between metal and plastic components in a matter of seconds. During this process, the two materials are pressed together and the metal at the bonding point is subjected to targeted inductive heat. This causes the thermoplastic material to partially melt, which in turn directly forms a firm bond with the metal as the plastic solidifies.
Read more.
27 notes
·
View notes
Photo
Fraunhofer and RMIT Form Cross-Continental 3D Printing Partnership While RMIT University is known for specializing in technology and design, Fraunhofer Institute for Material and Beam Technology IWS is a force to contend with, known as a leading applied... The post... View the entire article via our website. https://buff.ly/308S7Pf
1 note
·
View note
Text
June 8 Green Energy News
Headline News:
“White House Blocked Intelligence Aide’s Written Testimony On Climate Change” • White House officials barred a State Department intelligence staffer from submitting written testimony this week to the House Intelligence Committee warning that human-caused climate change could be “possibly catastrophic.” [The Philadelphia Inquirer]
Melting ice (Rodrigo ABD | AP, file)
“German States Say Renewables Roll-Out Need Not Wait On Grid Expansion” • Germany’s federal state premiers agreed to push ahead with the renewables roll-out without waiting for grid improvements, an article in Frankfurter Allgemeine Zeitungreport said. Green power can be used locally to produce hydrogen, synthetic fuels, or heat. [Clean Energy Wire]
“Automakers, Fearing Prolonged Regulatory Uncertainty, Tell Trump To Cut A Deal With California On Emissions” • A group of 17 world automakers wrote to President Trump asking him to abandon his plans to scrap the emissions standards. Instead, they want a compromise with California and the other states that use its tougher standards. [CNN]
“Faster, Better, Cheaper – Fraunhofer Dry Film Battery Electrode Process Revealed” • Researchers at the Fraunhofer Institute for Materials and Beam Technology IWS developed a way to make lithium-ion batteries using a dry film. It is a better, cheaper battery that is kinder to the environment. And it is already in small scale production! [CleanTechnica]
“Campaigns Go Public With Anger At Democratic National Committee As First Debate Looms” • The Democratic National Committee’s rules on debates have made some presidential candidates angry enough to complain publicly. Qualification for debates is an issue, but some candidates are angry that there will be no debate on climate change. [CNN]
For more news, please visit geoharvey – Daily News about Energy and Climate Change.
June 8 Green Energy News posted first on Green Energy Times
0 notes