#Antiferroelectric
Explore tagged Tumblr posts
Text
Study identifies high-performance alternative to conventional ferroelectrics
Lighting a gas grill, getting an ultrasound, using an ultrasonic toothbrush—these actions involve the use of materials that can translate an electric voltage into a change in shape and vice versa. Known as piezoelectricity, the ability to trade between mechanical stress and electric charge can be harnessed widely in capacitors, actuators, transducers and sensors like accelerometers and gyroscopes for next-generation electronics. However, integrating these materials into miniaturized systems has been difficult due to the tendency of electromechanically active materials to—at the submicrometer scale, when the thickness is just a few millionths of an inch—get "clamped" down by the material they are attached to, which significantly dials down their performance. Rice University researchers and collaborators at the University of California, Berkeley have found that a class of electromechanically active materials called antiferroelectrics may hold the key to overcoming performance limitations due to clamping in miniaturized electromechanical systems.
Read more.
#Materials Science#Science#Ferroelectrics#Piezoelectric#Electronics#Antiferroelectric#Thin films#Rice University
13 notes
·
View notes
Text
High-performance van der Waals antiferroelectric CuCrP2S6-based memristors | Nature Communications
0 notes
Text
Mystery of Important Semiconductor Material at Surface - Technology Org
New Post has been published on https://thedigitalinsider.com/mystery-of-important-semiconductor-material-at-surface-technology-org/
Mystery of Important Semiconductor Material at Surface - Technology Org
A team of scientists with the Department of Energy’s Oak Ridge National Laboratory has investigated the behavior of hafnium oxide, or hafnia, because of its potential for use in novel semiconductor applications.
Using the ultrahigh-vacuum atomic force microscope at DOE’s Center for Nanophase Materials Sciences at ORNL, researchers found unique environmentally induced ferroelectric phase transitions in hafnium zirconium oxide, a material important in developing advanced semiconductors. Image credit: Arthur Baddorf/ORNL, Dept. of Energy
Semiconductor materials such as hafnia exhibit ferroelectricity, which means that they are capable of extended data storage even when power is disconnected and that they might be used in the development of new, so-called nonvolatile memory technologies.
Innovative nonvolatile memory applications will pave the way for the creation of bigger and faster computer systems by alleviating the heat generated from the continual transfer of data to short-term memory.
The scientists explored whether the atmosphere plays a role in hafnia’s ability to change its internal electric charge arrangement when an external electric field is applied. The goal was to explain the range of unusual semiconductor phenomena that have been obtained in hafnia research. The team’s findings were recently published in Nature Materials.
“We have conclusively proven that the ferroelectric behavior in these systems is coupled to the surface and is tunable by changing the surrounding atmosphere. Previously, the workings of these systems were speculation, a hypothesis based on a large number of observations both by our group and by multiple groups worldwide,” said ORNL’s Kyle Kelley, a researcher with the Center for Nanophase Materials Sciences. CNMS is a DOE Office of Science user facility.
Kelley performed the experiments and envisioned the project in collaboration with Sergei Kalinin of the University of Tennessee, Knoxville.
Semiconductor materials commonly used for memory applications have a surface, or dead, layer that interferes with the material’s ability to store information. As materials are scaled down to only several nanometers thick, the effect of the dead layer becomes extreme enough to completely stop the functional properties.
By changing the atmosphere, the scientists were able to tune the surface layer’s behavior, which, in hafnia, transitioned the semiconductor material from the antiferroelectric to the ferroelectric state.
“Ultimately, these findings provide a pathway for predictive modeling and device engineering of hafnia, which is urgently needed, given the importance of this material in the semiconductor industry,” Kelley said.
Predictive modeling enables scientists to use previous research to estimate the properties and behavior of an unknown system. The study that Kelley and Kalinin led focused on hafnia alloyed, or blended, with zirconia, a ceramic material. But future research could apply the findings to anticipate how hafnia may behave when alloyed with other elements.
The research relied on atomic force microscopy both inside a glovebox and in ambient conditions, as well as ultrahigh-vacuum atomic force microscopy, methods available at the CNMS.
“Leveraging the unique CNMS capabilities enabled us to do this type of work,” Kelley said. “We basically changed the environment all the way from ambient atmosphere to ultrahigh vacuum. In other words, we removed all gases in the atmosphere to negligible levels and measured these responses, which is extremely hard to do.”
Team members from the Materials Characterization Facility at Carnegie Mellon University played a key role in the research by providing electron microscopy characterization, and collaborators from the University of Virginia led the semiconductor materials development and optimization.
ORNL’s Yongtao Liu, a researcher with CNMS, performed ambient piezoresponse force microscopy measurements.
The model theory that underpinned this semiconductor research project was the result of a long research partnership between Kalinin and Anna Morozovska at the Institute of Physics, National Academy of Sciences of Ukraine.
“I have worked with my colleagues in Kiev on physics and chemistry of ferroelectrics for almost 20 years now,” Kalinin said. “They did a lot for this paper while almost on the front line of the war in that country. These people keep doing science in conditions that most of us cannot imagine.”
The team hopes that what they have discovered will stimulate new research specific to exploring the role of controlled surface and interface electrochemistries — the relationship between electricity and chemical reactions — in a computing device’s performance.
“Future studies can extend this knowledge to other systems to help us understand how the interface affects the device properties, which, hopefully, will be in a good way,” Kelley said. “Typically, the interface kills your ferroelectric properties when scaled to these thicknesses. In this case, it showed us a transition from one material state to another.”
Kalinin added: “Traditionally, we explored surfaces at the atomic level to understand phenomena such as chemical reactivity and catalysis, or the modification of the rate of a chemical reaction. Simultaneously, in traditional semiconductor technology, our goal was only to keep surfaces clean from contaminants. Our studies show that, in fact, these two areas — the surface and the electrochemistry — are connected. We can use surfaces of these materials to tune their bulk functional properties.”
The title of the paper is “Ferroelectricity in hafnia controlled via surface electrochemical state.”
This research was supported as part of the Center for 3D Ferroelectric Microelectronics, an Energy Frontier Research Center funded by DOE’s Office of Science, Basic Energy Sciences program, and was partially performed as a user proposal at the CNMS.
UT-Battelle manages ORNL for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. The Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.
Source: Oak Ridge National Laboratory
You can offer your link to a page which is relevant to the topic of this post.
#3d#ambient#applications#arrangement#atmosphere#Behavior#Carnegie Mellon University#catalysis#chemical#chemical reaction#chemical reactions#chemistry#Chemistry & materials science news#Collaboration#computer#computing#data#data storage#dept#development#electric field#electricity#electrochemistry#electron#energy#engineering#Environment#Featured technology news#Future#hafnium oxide
0 notes
Text
#EuPareçoCientista: a hashtag que nos dá uma lição sobre estereótipos
Em tempos em que precisamos cada vez mais valorizar a ciência e incentivar a pesquisa, a hashtag #EuPareçoCientista veio também para provar que não existe uma “cara de cientista”. Diversos profissionais começaram a compartilhar no Twitter seus estudos e fotos que rompem esses estereótipos.
Nos tuítes, os usuários mostram o dia a dia, suas viagens, detalhes que demonstram que têm vida social e, ao mesmo tempo, os trabalhos que desenvolvem em suas carreiras.
O movimento começou em inglês (#ILookLikeAScientist) e logo os brasileiros aderiram. Confira abaixo:
“Estudo o perfil epidemiológico de bactérias e fungos multirresistentes e também analiso potenciais bioativos antimicrobianos em extratos vegetais.”
#EuPareçoCientista Sou Jeferson, sou mestre em Ciências farmacêuticas e doutor em microbiologia e imunologia. Estudo o perfil epidemiológico de bactérias e fungos multirresistentes e também analiso potenciais bioativos antimicrobianos em extratos vegetais . pic.twitter.com/FmzzUOck2m
— Jeferson Jr Silva (@JefersonJr6) January 8, 2020
https://platform.twitter.com/widgets.js
“Pesquiso as bibliotecas em presídios, discutindo a leitura e a escrita como formas de resistência aos efeitos do aprisionamento.”
Eu me chamo Léia, sou bibliotecária e mestranda em Ciência da Informação (ECA/USP). Pesquiso as Bibliotecas em presídios, discutindo a leitura e a escrita como formas de resistência aos efeitos do aprisionamento
#EuParecoCientista pic.twitter.com/zBImRqon04
— Léia (@Leia451) January 9, 2020
https://platform.twitter.com/widgets.js
“Estudo novos materiais semicondutores para utilização fotoeletrocatalítica em células solares para incentivar e tornar acessível o uso da energia solar.”
Sou Brenda e #EuPareçoCientista Sou formada em Química e doutoranda em Nanociências e Materiais Avançados. Estudo novos materiais semicondutores pra utilização fotoeletrocatalítica em células solares pra incentivar e tornar acessível o uso da energia solar (que é limpa/renovável) pic.twitter.com/8UnhC82B3Z
— lili carabina (@BrendaaaLima) January 9, 2020
https://platform.twitter.com/widgets.js
“Pesquiso sobre redução de ruído em aeronaves, para que a população que mora em regiões de aeroportos não sofra mais com estresse, perda de audição, hipertensão e baixa produtividade.”
Meu nome é Andressa e #EuParecoCientista . Sou Física e faço mestrado em Eng. Aeronáutica. Pesquiso sobre redução de ruído em aeronaves, para que a população que mora em regiões de aeroportos não sofra mais com estresse, perda de audição, hipertensão e baixa produtividade. pic.twitter.com/RVaymYEpLq
— andy (@FISlCAT) January 8, 2020
https://platform.twitter.com/widgets.js
“Estudo a natureza de jatos que saem de buracos negros supermassivos no centro de galáxias.”
My name is Priscilla and #ILookLikeAScientist! I study the nature of jets from supermassive black holes in the center of galaxies.
Meu nome é Priscilla e #EuPareçoCientista! Eu estudo a natureza de jatos que saem de buracos negros supermassivos no centro de galáxias. pic.twitter.com/6Jd2JOreug
— Priscilla Behar (@priscillabj) January 8, 2020
https://platform.twitter.com/widgets.js
“Faço doutorado na USP pesquisando sobre como projetar sistemas que tenham sustentabilidade ambiental e social, por exemplo, que tenham mais eficiência energética.”
Sou o Tiago, e #EuParecoCientista. Sou Engenheiro de Software e faço Doutorado na USP pesquisando sobre como projetar sistemas que tenham sustentabilidade ambiental e social, por exemplo, que tenham mais eficiência energética. #ILookLikeAScientist pic.twitter.com/AbUC2RLfWb
— Tico (@tiagovpt) January 9, 2020
https://platform.twitter.com/widgets.js
“Pesquiso sobre o potencial de metabólicos secundários de plantas com efeito carrapaticida em cepas sensíveis e resistentes do carrapato bovino.”
#EuParecoCientista Sou graduando em Ciências Biológicas e pesquiso sobre o potencial de metabólicos secundários de plantas com efeito carrapaticida em cepas sensíveis e resistentes do carrapato bovino pic.twitter.com/IwQ9qgf0EH
— sixteen (@matheussnbt) January 9, 2020
https://platform.twitter.com/widgets.js
“Desenvolvo testes rápidos de diagnóstico para doenças negligenciadas baseados em imunossensores eletroquímicos e mapeamento de biomarcadores de saliva.”
#EuParecoCientista sou bióloga, quase mestra em Ciências da Saúde e desenvolvo testes rápidos de diagnóstico p doenças negligenciadas baseados em imunossensores eletroquímicos e mapeamento de biomarcadores de saliva por ATR-FTIR. Mulheres negras podem tudo, o mundo é todo nosso💪🏿 pic.twitter.com/kuCbhpT8KJ
— a mestrar (@futbobagens) January 9, 2020
https://platform.twitter.com/widgets.js
“Estudo padrões de evolução e especiação em peixes ciclídeos.”
My name is Marcos and #ILookLikeAScientist who studies patterns of evolution and speciation in cichlid fish.
Meu nome é Marcos e #EuPareçoCientista que estuda padrões de evolução e especiação em peixes ciclídeos. pic.twitter.com/CH8wbwzfek
— Marcos Silva (@MarcosEcoRI) January 7, 2020
https://platform.twitter.com/widgets.js
“Estudo nebulosas planetárias na determinação de abundância química nebular.”
Oi eu sou o Halley e #EuParecoCientista Curso astronomia e na minha IC estudo nebulosas planetárias na determinação de abundância química nebular. Mas também sou dublador, ator e ex Drag Queen! pic.twitter.com/X78JruE9Oy
— Leonardo Halley (@LeoBecegato) January 9, 2020
https://platform.twitter.com/widgets.js
“Pesquiso os efeitos de uma substância do lúpulo da cerveja, que age parecido com o estrogênio, sobre o cérebro e o comportamento de roedores.”
Finalmente uma thread pra mim
Meu nome Igor, sou biólogo, mestre em ciências fisiológicas, e no meu doutorado eu pesquiso os efeitos de uma substância do lúpulo da cerveja, que age parecido com o estrogênio, sobre o cérebro e o comportamento de roedores #EuParecoCientista pic.twitter.com/foyguzQtiM
— gay não-praticante (@igorismo_) January 9, 2020
https://platform.twitter.com/widgets.js
“Pesquiso sobre Probabilidade e Topologia Algébrica, num estudo voltado para a caracterização de sistemas dinâmicos aleatórios.”
Eu sou a Isabella e #EuPareçoCientista. Formei em Matemática pela UFABC e atualmente faço mestrado na mesma instituição. Pesquiso sobre Probabilidade e Topologia Algébrica, num estudo voltado para a caracterização de sistemas dinâmicos aleatórios
pic.twitter.com/efr4Se3rv9
— Isa Gonçalves (@isabellitaalva) January 9, 2020
https://platform.twitter.com/widgets.js
“Pesquiso materiais ferroelétricos e antiferro para desenvolvimento de dispositivos eletrônicos.”
My name’s Mykaelle and #ILookLikeAScientist.I research ferroelectric and antiferroelectric materials for the development of electronic devices.
Meu nome é Mykaelle e #EuParecoCientista.Pesquiso materiais ferroelétricos e antiferro para desenvolvimento de dispositivos eletrônicos pic.twitter.com/gDboRxdE3f
— mykkkkka (@mykaellecos) January 8, 2020
https://platform.twitter.com/widgets.js
“Faço pesquisa na área de biofísica, aplicada ao estudo de interações de drogas com membranas modelo.”
my name is Mariana and #ILookLikeAScientist!! currently researching on biophysics applied to interactions of drugs with model membranes
meu nome é Mariana e #EuParecoCientista!! faço pesquisa na área de biofísica, aplicada ao estudo de interações de drogas com membranas modelo pic.twitter.com/HONEPJUN22
— mariana (@mcsmarianaa) January 8, 2020
https://platform.twitter.com/widgets.js
“Desenvolvo um plástico biodegradável usando cascas de laranja que iriam para o lixo.”
I‘m Kazue and #ILookLikeAScientist who develops a plastic biodegradable using orange peels that would go to trash and i like skincare
Sou a Kazue e #EuPareçoUmaCientista que desenvolve um plástico biodegradável usando cascas de laranja que iriam pro lixo e eu gosto de skincare pic.twitter.com/eSIjjSZL4w
— kazue 🍊 (@kazue_nishi) January 7, 2020
https://platform.twitter.com/widgets.js
Veja também: Cientistas descobrem novo subtipo do vírus HIV
#EuPareçoCientista: a hashtag que nos dá uma lição sobre estereótipospublicado primeiro em como se vestir bem
0 notes
Text
#EuPareçoCientista: a hashtag que nos dá uma lição sobre estereótipos
Em tempos em que precisamos cada vez mais valorizar a ciência e incentivar a pesquisa, a hashtag #EuPareçoCientista veio também para provar que não existe uma “cara de cientista”. Diversos profissionais começaram a compartilhar no Twitter seus estudos e fotos que rompem esses estereótipos.
Nos tuítes, os usuários mostram o dia a dia, suas viagens, detalhes que demonstram que têm vida social e, ao mesmo tempo, os trabalhos que desenvolvem em suas carreiras.
O movimento começou em inglês (#ILookLikeAScientist) e logo os brasileiros aderiram. Confira abaixo:
“Estudo o perfil epidemiológico de bactérias e fungos multirresistentes e também analiso potenciais bioativos antimicrobianos em extratos vegetais.”
#EuPareçoCientista Sou Jeferson, sou mestre em Ciências farmacêuticas e doutor em microbiologia e imunologia. Estudo o perfil epidemiológico de bactérias e fungos multirresistentes e também analiso potenciais bioativos antimicrobianos em extratos vegetais . pic.twitter.com/FmzzUOck2m
— Jeferson Jr Silva (@JefersonJr6) January 8, 2020
“Pesquiso as bibliotecas em presídios, discutindo a leitura e a escrita como formas de resistência aos efeitos do aprisionamento.”
Eu me chamo Léia, sou bibliotecária e mestranda em Ciência da Informação (ECA/USP). Pesquiso as Bibliotecas em presídios, discutindo a leitura e a escrita como formas de resistência aos efeitos do aprisionamento ;) #EuParecoCientista pic.twitter.com/zBImRqon04
— Léia (@Leia451) January 9, 2020
“Estudo novos materiais semicondutores para utilização fotoeletrocatalítica em células solares para incentivar e tornar acessível o uso da energia solar.”
Sou Brenda e #EuPareçoCientista Sou formada em Química e doutoranda em Nanociências e Materiais Avançados. Estudo novos materiais semicondutores pra utilização fotoeletrocatalítica em células solares pra incentivar e tornar acessível o uso da energia solar (que é limpa/renovável) pic.twitter.com/8UnhC82B3Z
— lili carabina (@BrendaaaLima) January 9, 2020
“Pesquiso sobre redução de ruído em aeronaves, para que a população que mora em regiões de aeroportos não sofra mais com estresse, perda de audição, hipertensão e baixa produtividade.”
Meu nome é Andressa e #EuParecoCientista . Sou Física e faço mestrado em Eng. Aeronáutica. Pesquiso sobre redução de ruído em aeronaves, para que a população que mora em regiões de aeroportos não sofra mais com estresse, perda de audição, hipertensão e baixa produtividade. pic.twitter.com/RVaymYEpLq
— andy (@FISlCAT) January 8, 2020
“Estudo a natureza de jatos que saem de buracos negros supermassivos no centro de galáxias.”
My name is Priscilla and #ILookLikeAScientist! I study the nature of jets from supermassive black holes in the center of galaxies.
Meu nome é Priscilla e #EuPareçoCientista! Eu estudo a natureza de jatos que saem de buracos negros supermassivos no centro de galáxias. pic.twitter.com/6Jd2JOreug
— Priscilla Behar (@priscillabj) January 8, 2020
“Faço doutorado na USP pesquisando sobre como projetar sistemas que tenham sustentabilidade ambiental e social, por exemplo, que tenham mais eficiência energética.”
Sou o Tiago, e #EuParecoCientista. Sou Engenheiro de Software e faço Doutorado na USP pesquisando sobre como projetar sistemas que tenham sustentabilidade ambiental e social, por exemplo, que tenham mais eficiência energética. #ILookLikeAScientist pic.twitter.com/AbUC2RLfWb
— Tico (@tiagovpt) January 9, 2020
“Pesquiso sobre o potencial de metabólicos secundários de plantas com efeito carrapaticida em cepas sensíveis e resistentes do carrapato bovino.”
#EuParecoCientista Sou graduando em Ciências Biológicas e pesquiso sobre o potencial de metabólicos secundários de plantas com efeito carrapaticida em cepas sensíveis e resistentes do carrapato bovino pic.twitter.com/IwQ9qgf0EH
— sixteen (@matheussnbt) January 9, 2020
“Desenvolvo testes rápidos de diagnóstico para doenças negligenciadas baseados em imunossensores eletroquímicos e mapeamento de biomarcadores de saliva.”
#EuParecoCientista sou bióloga, quase mestra em Ciências da Saúde e desenvolvo testes rápidos de diagnóstico p doenças negligenciadas baseados em imunossensores eletroquímicos e mapeamento de biomarcadores de saliva por ATR-FTIR. Mulheres negras podem tudo, o mundo é todo nosso💪🏿 pic.twitter.com/kuCbhpT8KJ
— a mestrar (@futbobagens) January 9, 2020
“Estudo padrões de evolução e especiação em peixes ciclídeos.”
My name is Marcos and #ILookLikeAScientist who studies patterns of evolution and speciation in cichlid fish.
Meu nome é Marcos e #EuPareçoCientista que estuda padrões de evolução e especiação em peixes ciclídeos. pic.twitter.com/CH8wbwzfek
— Marcos Silva (@MarcosEcoRI) January 7, 2020
“Estudo nebulosas planetárias na determinação de abundância química nebular.”
Oi eu sou o Halley e #EuParecoCientista Curso astronomia e na minha IC estudo nebulosas planetárias na determinação de abundância química nebular. Mas também sou dublador, ator e ex Drag Queen! pic.twitter.com/X78JruE9Oy
— Leonardo Halley (@LeoBecegato) January 9, 2020
“Pesquiso os efeitos de uma substância do lúpulo da cerveja, que age parecido com o estrogênio, sobre o cérebro e o comportamento de roedores.”
Finalmente uma thread pra mim
Meu nome Igor, sou biólogo, mestre em ciências fisiológicas, e no meu doutorado eu pesquiso os efeitos de uma substância do lúpulo da cerveja, que age parecido com o estrogênio, sobre o cérebro e o comportamento de roedores #EuParecoCientista pic.twitter.com/foyguzQtiM
— gay não-praticante (@igorismo_) January 9, 2020
“Pesquiso sobre Probabilidade e Topologia Algébrica, num estudo voltado para a caracterização de sistemas dinâmicos aleatórios.”
Eu sou a Isabella e #EuPareçoCientista. Formei em Matemática pela UFABC e atualmente faço mestrado na mesma instituição. Pesquiso sobre Probabilidade e Topologia Algébrica, num estudo voltado para a caracterização de sistemas dinâmicos aleatórios :) pic.twitter.com/efr4Se3rv9
— Isa Gonçalves (@isabellitaalva) January 9, 2020
“Pesquiso materiais ferroelétricos e antiferro para desenvolvimento de dispositivos eletrônicos.”
My name’s Mykaelle and #ILookLikeAScientist.I research ferroelectric and antiferroelectric materials for the development of electronic devices.
Meu nome é Mykaelle e #EuParecoCientista.Pesquiso materiais ferroelétricos e antiferro para desenvolvimento de dispositivos eletrônicos pic.twitter.com/gDboRxdE3f
— mykkkkka (@mykaellecos) January 8, 2020
“Faço pesquisa na área de biofísica, aplicada ao estudo de interações de drogas com membranas modelo.”
my name is Mariana and #ILookLikeAScientist!! currently researching on biophysics applied to interactions of drugs with model membranes
meu nome é Mariana e #EuParecoCientista!! faço pesquisa na área de biofísica, aplicada ao estudo de interações de drogas com membranas modelo pic.twitter.com/HONEPJUN22
— mariana (@mcsmarianaa) January 8, 2020
“Desenvolvo um plástico biodegradável usando cascas de laranja que iriam para o lixo.”
I‘m Kazue and #ILookLikeAScientist who develops a plastic biodegradable using orange peels that would go to trash and i like skincare
Sou a Kazue e #EuPareçoUmaCientista que desenvolve um plástico biodegradável usando cascas de laranja que iriam pro lixo e eu gosto de skincare pic.twitter.com/eSIjjSZL4w
— kazue 🍊 (@kazue_nishi) January 7, 2020
Veja também: Cientistas descobrem novo subtipo do vírus HIV
0 notes
Text
Study Demonstrates a Better Way to Store Renewable Energy
In an effort to find better ways to store renewable energy, physicists at the University of Arkansas, in collaboration with a scientist at the Luxembourg Institute of Science and Technology, have shown that antiferroelectrics can provide high energy density. The findings may lead to storage devices that improve the efficiency of wind and solar power. […]
from THE GREEN ENERGY BLOG http://thegreenenergyblog.com/uncategorized/study-demonstrates-a-better-way-to-store-renewable-energy
0 notes
Text
Rare Earth Metals / #greentech: For storing energy from #renewable sources, scientists turn to antiferroelectrics… https://t.co/s2MYEPMg42
Rare Earth Metals / #greentech: For storing energy from #renewable sources, scientists turn to antiferroelectricshttps://t.co/KkYSSa1Ru6 http://pic.twitter.com/ecq3qVG5F2
— The Royal Vox Post (@RoyalVoxPost) June 8, 2017
via Twitter https://twitter.com/RoyalVoxPost June 08, 2017 at 08:43PM
0 notes
Text
Designing lead-free antiferroelectrics for energy storage
http://dlvr.it/PGt7kd
0 notes
Text
Scientists take the first step toward creating efficient electrolyte-free batteries
From Peter the Great Saint-Petersburg Polytechnic University (ESRF): Scientists of Peter the Great Saint-Petersburg Polytechnic University (SPbPU) in collaboration with the French, Swiss and Polish researchers have found unique atomic-scale processes in crystal lattice of antiferroelectric lead zirconate during synchrotron x-ray scattering experiment. The discovery is the first step toward creating efficient electrolyte-free accumulators of electric energy. The article "Critical scattering and incommensurate phase transition in antiferroelectric PbZrO3 under pressure" was published in Scientific Reports of the Nature group.
MORE: https://www.eurekalert.org/pub_releases/2017-01/ptgs-stt013117.php
0 notes
Text
Scientists pioneer technique to visualize anti-ferroelectric materials
Scientists with the University of Chicago have made significant strides in imaging antiferroelectric materials, a class of materials with unique electrical properties that could open up potential applications in energy storage, sensors, and memory devices. It is crucial to understand the electronic properties of materials to advance cutting-edge technologies. However, researchers have faced challenges in imaging certain kinds of materials and in turn, discovering their true properties and potential. "We demonstrated a new method for emerging antiferroelectric materials on the nanoscale," said Sarah King, Asst. Prof. of Chemistry and senior author on the study. "I believe that having new imaging techniques with such high spatial resolution is incredibly powerful. It's going to play a critical role in the development of new materials."
Read more.
#Materials Science#Science#Antiferroelectric#University of Chicago#Nanotechnology#Microscopy#Materials characterization
9 notes
·
View notes
Link
Antiferroelectric materials have electrical properties that make them advantageous for use in high-density energy storage applications. Researchers have now discovered a size threshold beyond which antiferroelectrics lose those properties, becoming ferroelectric.
"Electronic devices are getting smaller and smaller, which makes it increasingly important for us to understand how a material's properties may change at small scales," says Ruijuan Xu, corresponding author of a paper on the work and an assistant professor of materials science and engineering at North Carolina State University. "In this case, we learned that when antiferroelectric thin films get too thin, these materials go through a phase transition and become ferroelectric. That makes them less useful for energy storage, but creates some new application possibilities for memory storage."
This research focused on antiferroelectric materials. These materials have a crystalline structure, which means they consist of regularly repeating units. Each repeating unit in the crystalline structure has a "dipole" -- a positive charge paired with a negative charge. What makes antiferroelectric materials special is that those dipoles alternate from unit to unit throughout the structure. In other words, if one unit has a positive charge on "top" and a negative charge on the "bottom," then the next unit will have the positive charge on the "bottom" and the negative charge on "top." This regular spacing of the dipoles also means that, at the macroscale, antiferroelectric materials have no positive or negative polarization.
Read more.
#Materials Science#Science#Antiferroelectric#Electronics#Thin films#Phase transitions#Sodium#Niobium#North Carolina State University#Ferroelectric
18 notes
·
View notes
Text
Manipulated hafnia paves the way for next-generation memory devices
Scientists and engineers have been pushing for the past decade to leverage an elusive ferroelectric material called hafnium oxide, or hafnia, to usher in the next generation of computing memory. A team of researchers including the University of Rochester's Sobhit Singh published a study in the Proceedings of the National Academy of Sciences outlining progress toward making bulk ferroelectric and antiferroelectric hafnia available for use in a variety of applications. In a specific crystal phase, hafnia exhibits ferroelectric properties—that is, electric polarization that can be changed in one direction or another by applying an external electric field. This feature can be harnessed in data storage technology. When used in computing, ferroelectric memory has the benefit of non-volatility, meaning it retains its values even when powered off, one of several advantages over most types of memory used today.
Read more.
5 notes
·
View notes
Photo
Researchers harness the power of a new solid-state thermal technology
Researchers at the University of Virginia School of Engineering and Applied Science have discovered a way to make a versatile thermal conductor, with promise for more energy-efficient electronic devices, green buildings and space exploration.
They have demonstrated that a known material used in electronic equipment can now be used as a thermal regulator, too, when it is in a very pure form. This new class of material gives engineers the ability to make thermal conductivity increase or decrease on demand, changing a thermal insulator into a conductor and vice versa.
The team published its findings earlier this spring in Nature Communications. The paper is titled "Observation of Solid-state Bidirectional Thermal Conductivity Switching in Antiferroelectric Lead Zirconate."
Bi-directional control or "tuning" of thermal conducting materials will be especially useful in electronics and devices that need to operate in extreme temperatures or withstand extreme temperature fluctuations. One of the scenarios where devices need to perform under such harsh conditions is space.
Read more.
#Materials Science#Science#Thermal conductivity#Temperature#Thin films#Antiferroelectric#University of Virginia#Ferroelectric
27 notes
·
View notes
Link
In the last few years, a class of materials called antiferroelectrics has been increasingly studied for its potential applications in modern computer memory devices. Research has shown that antiferroelectric-based memories might have greater energy efficiency and faster read and write speeds than conventional memories, among other appealing attributes. Further, the same compounds that can exhibit antiferroelectric behavior are already integrated into existing semiconductor chip manufacturing processes.
Now, a team led by Georgia Tech researchers has discovered unexpectedly familiar behavior in the antiferroelectric material known as zirconium dioxide, or zirconia. They show that as the microstructure of the material is reduced in size, it behaves similarly to much better understood materials known as ferroelectrics. The findings were recently published in the journal Advanced Electronic Materials.
Miniaturization of circuits has played a key role in improving memory performance over the last fifty years. Knowing how the properties of an antiferroelectric change with shrinking size should enable the design of more effective memory components.
The researchers also note that the findings should have implications in many other areas besides memory.
Read more.
20 notes
·
View notes
Photo
For storing energy from renewable sources, scientists turn to antiferroelectrics
One of the greatest challenges in generating energy from renewable sources is finding a way to store the continuously fluctuating energy being produced. Batteries, supercapacitors, and most other energy-storage technologies typically can't respond quickly enough to the second-by-second fluctuations inherent in wind and solar energy sources. One device that does have a sufficiently fast response is electrostatic capacitors, but their drawback is their low energy density—they simply cannot store very much energy in a given volume.
Addressing this problem, researchers in a new study have shown in simulations that antiferroelectric materials based on bismuth can potentially exhibit very high energy densities (150 J/cm3), making them a promising candidate material for electrostatic capacitors. The results point to the possibility of a high-performance, environmentally friendly energy-storage device for renewable energy sources.
The researchers, Bin Xu and Laurent Bellaiche at the University of Arkansas, and Jorge Íñiguez at the Luxembourg Institute of Science and Technology, have published a paper on their investigation of antiferroelectrics for energy storage in a recent issue of Nature Communications.
Read more.
#Materials Science#Science#Antiferroelectric#Renewable Energy#Energy#Bismuth#Electrostatic#Electrostatic capacitors#Capacitors#Electronics#University of Arkansas
17 notes
·
View notes
Photo
Scientists take the first step toward creating efficient electrolyte-free batteries: Researchers have found unique atomic-scale processes in crystal lattice of antiferroelectric lead zirconate during synchrotron x-ray scattering experiment
The article "Critical scattering and incommensurate phase transition in antiferroelectric PbZrO3 under pressure" was published in Scientific Reports of the Nature group. During the experiment, the scientists tried to understand the microscopic physics of antiferroelectrics - materials that are very difficult to describe theoretically. The model object of this group is lead zirconate. The properties of this crystal are representative among lead-based antiferroelectrics and, having studied them, scientists can use the obtained microscopic picture for describing the properties of sufficiently broad range of materials. Understanding the physics of these materials is essential for creating new functional materials targeted at particular applications. Under the external influence this crystal may have two types of lattice dipole ordering, where the dipoles are arranged either parallel or antiparallel to each other. The functional properties of the material depend on the type of lattice order.
Read more.
#Materials Science#Science#Batteries#Antiferroelectric#Lead zirconate#Lead#Zirconium#Crystal Structure#Phases#Synchrotron#Peter the Great Saint-Petersburg Polytechnic University
13 notes
·
View notes