#4 kwh/km
Explore tagged Tumblr posts
Text
Itaipu E-400: o primeiro carro elétrico brasileiro 1.2
O Itaipu E-400 foi o primeiro carro elétrico brasileiro lançado pela Gurgel nos anos 1980. Na década de 1970 o Brasil fabricava o seu primeiro modelo, o Itaipu, da Gurgel Motores. Edson Novaes – 2019 set 26 O minicarro com capacidade para 2 passageiros foi o primeiro carro elétrico desenvolvido na América Latina, porém os tempos eram outros e ele acabou não sendo fabricado em série. Vivimetaliun…
View On WordPress
#175 amperes/hora tipo chumbo ácido#4 kwh/km#adaptação infraestrutura faraônica#anos 1980 1970 Brasil#aspecto econômico tempo ganho#auto-tração empilhadeiras# Luiz Ribeiro Gurgel 800#baixa autonomia recarga baterias#categorias furgão picape#Cláudio CARSUGHI Quatro Rodas numrro 251 junho 1981 Gurgel Itaipú E-400 elétrico #conjunto de baterias preço do veículo elétrico#consumo médio 0#desempenho modesto#despesa elevada#Edson Novaes 2019#elasticidade marcha#empresa concessionária de energia elétrica de Brasília#Gurgel motors#Itaipu Gurgel Motores#Itaipu E-400 primeiro carro elétrico brasileiro#João Gurgel velho sonho agora real#limitador da potencia#minicarro com capacidade 2 passageiros#modelo utilitário#motor de 10 kw regime de 3 000 rpm#plug carroceria tomada doméstica#primeira vez ao público Salão do Automóvel de São Paulo 1974#primeiro carro elétrico América Latina#primeiro carro elétrico produzido em série no Brasil#primeiro modelo
0 notes
Text
Lotus Eletre Base: The Ultimate Luxury Electric SUV
₹2.55 Cr Performance & Powertrain Electric Powertrain:The Eletre Base boasts a 450 kW (603 bhp) motor with instantaneous torque delivery, providing a thrilling driving experience. Its single-speed automatic transmission ensures seamless acceleration, which is a hallmark of electric performance. 0-100 km/h in 4.5 seconds: Rivals many sports cars in acceleration. Top Speed of 257.49 km/h:…
#0-100 km/h in 4.5 sec#112 kWh battery#15.1-inch OLED Touchscreen#22 kW AC Charger#257 km/h top speed#4-Zone Climate Control#450 kW motor#600 km range#603 bhp#8 Airbags#Active Air Suspension#Adaptive cruise control#ADAS#Advanced Safety Features#All-Wheel Drive#Audi e-Tron Rival#automatic climate control#AWD#Blind Spot Monitor#Continuous Damping Control#Electric Adjustable Seats#Electric vehicle#EV#forward collision warning#Hands-Free Electric Boot#Heads-Up Display#Heated Steering#High-Performance EV#Hill descent control#KEF Premium Audio
0 notes
Text
+++Serbatoio auto elettriche+++
Come è noto, la tecnologia BEV – Battery Electric Vehicles, le auto a pile insomma! - prevede l’utilizzo di batterie a ioni di litio per accumulare l’energia necessaria per conferire all’auto la sua autonomia in termini di km percorribili.
Il pacco batterie è quindi il vero e proprio “serbatoio” dell’auto a pile ma, a differenza di quello delle auto a motore endotermico, è tutt’altro che un semplice contenitore di idrocarburi ma il complesso frutto di tecnologie sofisticate che portano al prodotto finito. ⤵️
Vediamo quindi l’impatto ambientale ed energetico per la sua costruzione e, per semplicità, supponiamo che esso sia pari a 50 kWh.
Al netto del suo insopportabile bias woke, interrogando chatGPT sui dati salienti relativi al processo di estrazione/raffinazione del litio e alla costruzione delle batterie, l’algoritmo AI mi ha fornito i seguenti dati:
1. Per un pacco batterie da 50 kWh occorrono circa 15 kg di litio.
2. Per estrarre 1 kg di litio occorre scavare fino a 5 tonnellate di roccia spendendo fino a 15.000 MJ di energia, più ulteriori 5.000 MJ per raffinare il metallo estraendolo dalla salamoia risultante. Un totale di 20.000 MJ/kg, equivalenti a 5,6 MWh/kg.
3. Sicché, per estrarre il litio necessario per fabbricare il nostro bravo pacco batterie dovremo scavare 75 tonnellate di roccia e utilizzare tanta tanta acqua, nell’ordine di 1.800 litri/kg, cioè 27.000 litri (che dicono quelli dell’acqua delle bistecche?). Inoltre, dovremo spendere un’energia di 84 MWh circa. A questa va poi sommata l’energia necessaria per costruire il pacco batterie vero e proprio che, a detta di chatGPT, si aggira il intorno ai 250 kWh per ogni kWh di capacità, sicché ulteriori 12,5 MWh.
4. Ricapitolando, il “serbatoio” di un’auto a pile implica la necessità di scavare 75 tonnellate di roccia, utilizzare (“consumare”? “sprecare”?) 27.000 litri d’acqua e spendere 96,5 MWh di energia.
In altre parole, l’auto a pile parte con un handicap di devastazione ambientale e un consumo di energia per la costruzione del solo "serbatoio" che non hanno eguali con un’auto a motore endotermico.
Dulcis in fundo, sapete a quanti litri di gasolio corrisponde l'energia meccanica di 96,5 MWh spesa per produrre il solo pacco batterie? 27.600 litri di gasolio, con i quali un’auto degna di questo nome potrebbe percorrere fino a 500.000 km!
(Vincent Vega)
116 notes
·
View notes
Text
Why are obstacles on the tracks a problem?
Previously, I mentioned that when a train encounters an obstacle on the line such as a tree branch, what happens is a complicated physics process that results in the train pushing the branch along the line. Here I will explain that process, but be aware that complicated physics things are about to happen. There are some pretty diagrams to look at though, so if you want you can look at those and then skip to the end for a summary. They're even in color!!
First of all, some basic setup (before putting some numbers in):
We have a train travelling at an initial velocity u, with mass M, and an engine capable of producing a constant power P (we will use this to restore the train's velocity to u if it decreases for some reason).
The train encounters an obstacle on the line, such as a tree branch of mass m. We will assume (for now) that the collision is elastic - that is, no energy was lost (for instance, as sound).
We are also assuming a frictionless vacuum, cylindrical tree branch, and rectangular train.
To start with, we look at conservation of momentum (figure 1):
Since the train has elastically collided with a branch, its speed is reduced, given as Vtrain . As trains are typically much heavier than a single tree branch, we take M >> m, and so Vtrain ≈ u.
However, this is somewhat unrealistic, as when a train hits an obstacle, energy is lost –as a crunch sound, for instance– so it may be more appropriate to assume an inelastic collision. Since I said that the branch sticks to the train (and I am right), we should assume a completely inelastic collision, where as much kinetic energy as possible is lost.
Again, we look at conservation of momentum (figure 2):
In this case, if we again assume M>>m, we still get v ≈ u.
Since we know from reality that problems will happen if the train collides with the branch, this tells us that we have made an unrealistic assumption somewhere. In this case, it must be the assumption that the train's mass, M, is large enough that the branch's mass m can be ignored. So, without this assumption, we look at how long it takes the train to get back to its initial speed, using the equations for motion under constant power (equations derived from Taylor, 1930 and shown in figure 3):
To find how much energy is used in each case, simply multiply the time by the power.
By now, you may be wondering what the point of all this is – after all, I haven't actually shown you if this is meaningful. So let's add some numbers to this and see how reasonable all of our assumptions were!
If we take the train's mass to be M=30 tonnes (30,000kg), its power P=1500kW, and its initial speed u=40 m/s (144 km/hr) respectively; and assume the branch has a mass m=5kg (that seems reasonable, right? Trees are mostly water, which is 1kg per cubic meter, and if it has a radius of 0.5m and a length of 1.435m, it should be about that much), we can calculate all the various things we need:
First, the final velocity of the train and branch in the inelastic case (see figure 2 for the equation):
v≈39.99m/s which is pretty close to the initial velocity.
The time taken to return to speed (fig. 3) for the train/branch system is:
t≈0.0053s
This is quite fast, but hold on: the energy used to do this is about 8000 joules, which is probably quite expensive at current electricity prices, but those are given in kWh and I really don't feel like converting between them. (8000 is a big number, right?)
For the elastic case, things are a little bit more complicated, as we have two different velocities to calculate (figure 4):
If you were just looking at the pictures and are upset that the last two have been equations, don't worry, the next one isn't.
Vbranch ≈ 79.99 m/s
Vtrain ≈ 39.98 m/s
The time taken to return to speed:
t≈0.0094s
This is almost double that of the inelastic case, resulting in the energy used increasing to the enormous –and probably expensive– value of 14 kJ. (I even needed to use an SI prefix this time! And one of the ones that makes things bigger!)
However, both of these cases also reveal some interesting things about the situation: the elastic case has the tree branch launched away from the train at 80m/s, which is about 288 km/hr. Since the train and branch are likely irregularly shaped, the branch probably won't be pushed along the tracks at 290km/hr, and could instead be launched into the air space towards you. Nobody wants to be in the situation where a tree branch is flying towards you at almost 300 km/hr. I could do some math to see how much it would hurt, or if you could reasonably expect to dodge it, but I think we can just assume it will be quite painful.
Historically, trains avoided flinging branches at nearby passengers at almost 500km/hr (that's half the speed of sound) by employing a triangular device on the front of the train to deflect objects such as cows off the tracks. These were particularly common in North America, where lineside fences have yet to be discovered outside of the Northeast Corridor and it is easy for things to wander onto the tracks. However, thanks to innovations by the Budd company and others, more recent american trains are basically indestructible, rendering obstacle deflectors unnecessary. The effects of the obstacle deflector are shown below (figure 5):
This device is known in America as a burgerizer, since it can provide an easy meal for the train crew –two of the five ingredients for a cheeseburger right on the front of the train, more if you're lucky– although since usually the obstacle is shoved off the track, the British name of "cowcatcher" is misleading, especially if you hit a truck instead. The burgerizer's physics can easily be calculated using conservation of momentum, but this involves vectors, and I don't want to deal with vectors right now is left as an excercise for the reader.
In the inelastic case, we note that the branch sticks to the front of the train. Since the inelastic case is more realistic (I will not justify this statement), this means that other things will also stick to the train. By the time the train reaches the end of the line, the mass of the things stuck to it may end up not being negligible (figure 6):
If the train is electric, this will strain the power grid and could lead to power cuts elsewhere as more energy is given to keep the train running at speed. If the train is diesel, it will be unable to provide constant power and could slow down (an electric train has access to every power station in the country if the need arises, a diesel train just has its onboard generator or motor AND a limited amount of fuel).
This mess is also difficult to clean up, and could damage the track as it is pushed along. Also, although we have been ignoring friction (since trains have very little rolling resistance) this pile of stuff will cause friction to be very noticeable, and could even obstruct the driver's visibility – potentially leading to more collisions.
–//–
Now that you have read through all of the calculations (or looked at the pictures and skipped the rest), you should have a thorough understanding of why we have to stop trains to clear things off the line, and can't just plow through them like in the movies. (I assume this happens in movies, I have not checked)
TL;DR: When the train hits a branch, either the branch goes flying towards you really quickly, at basically 1000km/hr, which is approximately the speed of sound; or it sticks to the front of the train and becomes part of a massive pile of things that gets in the way and slows down the train.
Finally:
I put the images together using the shapes in my computer's word processor (except the various rail logos); while the equations of motion under constant power are from this paper by Lloyd W. Taylor (published in 1930, I believe). Also thanks to @cosmos-dot-semicolon for peer reviewing this, any errors are not my fault.
#network rail#physics#trains#network rail essays#I spent way too much time on this you better appreciate it or else#I would not want to get hit by a tree branch moving at roughly mach 2#yes that is a spherical cow in figure 5#please do not leave refrigerators on the railway it is not good for them or the trains#and yes I did get the density of water wrong by a factor of 1000#I want to change it but I think it's funnier if I leave it as it is#a small branch probably is about 5kg though#but if I did use the correct density then the mass of the branch would be 5 tonnes and that very much isn't negligible#in the inelastic case the train's speed is actually reduced to 34m/s and in the elastic case it's reduced to 29m/s which is quite a lot#this also means that the speed of the branch in the elastic case is a thousand times higher at nearly 1.000.000km/hr#which is about 0.09266c so that is quite fast and it's a good thing the collision is inelastic since otherwise it could destroy a city#also I have decided that the train used in these calculations is the BR Class 000
4 notes
·
View notes
Text
AMG GT63 S E PERFORMANCE „The ULTIMATE GT 4-door“.
Affalterbach. With a system output of 620kW (843hp) and a maximum system torque of more than 1400 Nm, the Mercedes-AMG GT 63S E PERFORMANCE (fuel consumption weighted, combined: 7.9 l/100 km; weighted, combined CO2 emissions: 180 g/km; power consumption weighted, combined: 12.0 kWh/100 km)[1] is a new milestone in the company’s history.
The four-door coupé is the first performance hybrid and at the same time the most powerful series-production model of the brand from Affalterbach to date. The combination of 4.0-litre V8 biturbo engine and electric motor ensures superior driving performance and outstanding driving dynamics with impressive efficiency at the same time.
Mercedes-AMG is forging its own technical path to transport its hallmark brand DNA into an electrified future. To achieve this, the Affalterbach-based company uses, for example, technologies from Formula 1 in its E PERFORMANCE Hybrid strategy. The concept includes an independent drive layout with an electric motor and battery on the rear axle.
In the AMG GT 63 S E PERFORMANCE, the system consists of a 4.0‑litre V8 biturbo engine with a permanently excited synchronous electric motor, a high-performance battery developed by AMG and the fully variable AMG Performance 4MATIC+ all-wheel drive system.
The system power of 620kW (843hp) and the maximum system torque of more than 1400Nm enable acceleration from a standstill to 100km/h in just 2.9 seconds. After less than ten seconds, 200 km/h are reached. Acceleration only ends at 316km/h.
Mercedes-AMG One man, one engine Handcrafted by Michael Kübler @f1mike28 in Germany Affalterbach.
Driving Performance is my Passion! Mercedes-AMG the Performance and Sports Car Brand from Mercedes-Benz and Exclusive Partner for Pagani Automobili. Mercedes-AMG Handcrafted by Racers.
#amg#amggt#amggt63eperformance#amggt63#amggt63s#gt63eperformance#gt63#gt63s#mercedesamg#mercedes#mercedesbenz#affalterbach#onemanoneengine#pagani#eperformance
5 notes
·
View notes
Text
Inquina di più una Fiat 500 d'epoca o una Fiat 500 moderna? Sorpresa....
Inquinamento, marmitte catalitiche, filtri antiparticolato, ma siamo sicuri che un auto nuova inquini meno che una vecchia 500?
In questi anni tutta l'informazione ci ha convinto che le vecchi automobili, come le nostre Fiat 500 d'epoca, sono molto inquinanti e che occorre utilizzare auto moderne con iniezione elettronica, marmitta catalitica, filtri antiparticolato e adesso, perfino le auto elettriche, per ridurre l'inquinamento. Peccato che in realtà l'inquinamento in questi ultimi dieci anni sia solo aumentato Ma come? Abbiamo fatto tanto, come mai? Oggi si scopre che a produrre l'inquinamento nelle città sono le pastiglie dei freni (le fiat 500 d'epoca hanno i tamburi, quindi non inquinano) e il rotolamento degli pneumatici. Ovviamente i 500 Kg del Cinquino producono meno attrito dei 1300 -1800 Kg delle auto circolanti, a maggior ragione di quelle elettriche, che pesano molto di più. Abbiamo voluto essere scientifici e fare un pò di conti e di confronti: Fiat 500 Epoca Emissioni di PM10: Motore: 0.01125 g per 100 km. Rotolamento: 5 mg/km×100 km=0.5 g5mg/km×100km=0.5g Totale PM10: 0.01125 g + 0.5 g = 0.51125 g. Emissioni di PM2.5: Motore: 0.007875 g per 100 km. Rotolamento: 2.5 mg/km×100 km=0.25 g2.5mg/km×100km=0.25g Totale PM2.5: 0.007875 g + 0.25 g = 0.257875 g. Le emissioni totali per 100 km della Fiat 500 d'epoca sono circa 0.51125 g per PM10 e 0.257875 g per PM2.5. Fiat 500 2023 Emissioni di PM10: Motore: 0.015 g/km × 100 km = 1.5 g. Rotolamento: 10 mg/km × 100 km = 1 g. Frenata: 20 mg/km × 100 km = 2 g. Totale PM10: 1.5 g + 1 g + 2 g = 4.5 g per 100 km. Emissioni di PM2.5: Motore: 0.0075 g/km × 100 km = 0.75 g. Rotolamento: 5 mg/km × 100 km = 0.5 g. Frenata: 10 mg/km × 100 km = 1 g. Totale PM2.5: 0.75 g + 0.5 g + 1 g = 2.25 g per 100 km. Per un'auto di 1300 kg con specifiche Euro 4, pneumatici 175/65R14 e freni a disco sul due ruote, le emissioni totali stimare per 100 km sono di circa 3 g di PM10 e 1,5 g di PM2.5.
Ma ne vogliamo parlare !?
Purtroppo non avendo la marmitta catalitica, la vecchia Cinquecento emette Benzene (Circa 0.007 grammi per 100 km)
Ma la cosa più importante è un'altra: per produrre un auto nuova, quanta C02 si produce? Quanto PM 10, PM2,5 a altri inquinanti vengono prodotti? Per costruire un auto nuova servono qualcosa come 30.000 kW di energia. Vengono altresì prodotti 15 Kg di Ossidi di Azoto (NOx), 7Kg di Ossido di Zolfo (SOx), circa 5 kg di PM10 e PM2.5 (ci vogliono 10000 Km in giro con le nostre Fiat 500 d'epoca per fare altrettanto!) e sopratutto 6-8 tonnellate di CO2 per veicolo (!) Se poi parliamo di auto elettriche, il solo pacco batteria richiede: Energia: 2100 kWh CO2: 2.1 tonnellate + 0.315 tonnellate (smaltimento) = 2.415 tonnellate NOx: 2.4 kg SOx: 1.2 kg PM10/PM2.5: 0.6 kg COV: 0.24 kg Metalli pesanti: 0.06 kg
Quindi, siamo sicuri che le nostre Fiat 500 d'epoca inquinino?
Queste cose sono da tenere presente e da sapere quando si sentono notizie non tanto vere sull'inquinamento e quando vengono fatte le solite proposte di impedire la circolazione della auto d'epoca. Se si fosse fatta attenzione a creare auto più durature (ma questo va contro ogni forma business) avremmo molto meno inquinamento. Voi cosa ne pensate? Mi piacerebbe avere i vostri commenti.
Gli ultimi articoli pubblicati su Fiat 500 nel mondo
Read the full article
2 notes
·
View notes
Video
youtube
Michael Fassbender: Road to Le Mans – The Film
Road to Le Mans - The Film tells the story of Michael Fassbender’s dream to race against the best teams and drivers in the world at the 24 Hours of Le Mans. This is the final chapter of the story following Michael’s journey to compete at the world’s ultimate motorsport event. __ 911 Carrera S: Fuel consumption combined in l/100 km: 11,1 - 10,1 (WLTP*); CO2 emissions combined in g/km: 251 - 229 (WLTP*) 911 Targa 4: Fuel consumption combined in l/100 km: 10,9 - 10,5 (WLTP*); CO2 emissions combined in g/km: 247 - 238 (WLTP*) Panamera Turbo S E-Hybrid: Electrical consumption combined in kWh/100 km: 24,6 - 24,0 (WLTP); Range Combined in km: 48 - 50 (WLTP*), Range City in km: 49 - 50 (WLTP*); CO2 emissions combined in g/km: 66 - 62 (WLTP*) I https://porsche.click/DAT-Leitfaden I Status: 11/2023 Follow Porsche on Instagram: https://porsche.click/2R1FOPM Like Porsche on Facebook: https://porsche.click/3dFSRQs Follow Porsche on TikTok: https://porsche.click/3AHZ4aQ Follow Porsche on Twitch: http://porsche.click/3deSdsi Subscribe to Porsche on YouTube: https://porsche.click/2WWDxZZ Visit the Porsche Website: https://porsche.click/2yprQAR *Alle von Porsche angebotenen Neufahrzeuge sind nach WLTP typengenehmigt. Offizielle von den WLTP- Werten abgeleitete NEFZ-Werte liegen für Neufahrzeuge seit dem 1. Januar 2023 nicht mehr vor und können daher nicht mehr angegeben werden. Weitere Informationen zum offiziellen Kraftstoffverbrauch und den offiziellen spezifischen CO2-Emissionen neuer Personenkraftwagen können dem ‘Leitfaden über den Kraftstoffverbrauch, die CO2-Emissionen und den Stromverbrauch neuer Personenkraftwagen’ entnommen werden, der an allen Verkaufsstellen und bei der DAT (Deutschen Automobil Treuhand GmbH, Hellmuth-Hirth-Str. 1, D-73760 Ostfildern) unter http://www.dat.de/co2 unentgeltlich erhältlich ist.
2 notes
·
View notes
Photo
#道の駅スタンプブック 昨日の成果 89- 90軒目 89. #道の駅さんわ182ステーション 90. #道の駅アリストぬまくま 途中、 #道の駅よがんす白滝 でパスタを食べ、無料充電をさせてもらいました^_^ そしてこの日、納車から約1年4ヶ月で63000km走りました^_^ 今日のお出かけ 259 km 38 kWh 146 Wh/km オドメーター63,254 km #テスラ #tesla #テスラモデル3 #teslamodel3 https://www.instagram.com/p/Co_JqOSPOP6/?igshid=NGJjMDIxMWI=
2 notes
·
View notes
Text
Top Anticipated Features of the MG Cyberster
The MG Cyberster is generating significant excitement as the first all-electric roadster from MG. With a stunning design and impressive technology, this car is set to redefine the sports car experience in the electric era. With the MG Cyberster India launch confirmed for January 2025, and an estimated starting price of ₹50-60 lakhs (source), here are its most anticipated features.
1. Striking Design
The MG Cyberster blends modern aesthetics with a nod to MG’s heritage in sports cars. Its low-slung body, scissor doors, and wraparound LED taillight bar deliver a futuristic look. The car’s aerodynamic lines not only enhance its visual appeal but also optimize performance.
2. Powerful Electric Performance
Powered by a dual-motor setup, the MG Cyberster promises exceptional performance. With a combined output of 544 bhp and 725 Nm of torque, it accelerates from 0 to 100 km/h in just 3.2 seconds, making it a thrill for speed enthusiasts.
3. Impressive Battery Range
The Cyberster comes with a 77 kWh battery, offering a driving range of approximately 500 km on a single charge. This makes it suitable for long trips as well as urban commutes, addressing a key concern for EV buyers.
4. High-Tech Interiors
Inside, the Cyberster features a futuristic cockpit with a three-screen digital dashboard. Its AI-powered infotainment system ensures seamless connectivity, while the inclusion of luxurious features like heated seats, an electric roof, and an 8-speaker Bose audio system enhances comfort and convenience.
5. Safety and Driver Assistance
Safety is a top priority, with the MG Cyberster equipped with an advanced ADAS (Advanced Driver Assistance System) suite. Multiple airbags, electronic stability control, and parking assistance ensure a safe driving experience.
6. MG Cyberster Price in India
The MG Cyberster price in India is expected to start between ₹50-60 lakhs, making it a premium offering in the growing EV market. Positioned as a luxury sports EV, it offers a blend of performance, style, and sustainability.
With its launch slated for January 2025, the MG Cyberster is set to captivate the Indian market with its groundbreaking features, redefining the future of electric sports cars.
0 notes
Text
Best Budget Electric Scooter: Jitendra EV High-Speed Category
If you're searching for the best budget electric scooter, the Jitendra EV High-Speed Category is a standout option. Equipped with a powerful 1000W BLDC hub motor, a lithium-ion NCM battery with 1.63 kWh energy, and a top speed of 51.93 KMPH, it offers exceptional performance and reliability. With a range of up to 66 KM per charge and a charging time of just 3.5 to 4 hours, it's ideal for daily commutes. This scooter also boasts premium features such as tubeless tires, a USB charging port, reverse assistance gear, and central remote locking with an anti-theft alarm. Priced at an affordable ₹89,000 (ex-showroom), it’s a stylish and practical solution for eco-conscious riders.
0 notes
Text
Combien de temps faut-il pour charger une voiture électrique ?
Un guide complet sur le temps nécessaire pour charger une voiture électrique, les facteurs qui influencent le temps de charge et le concept de recharge d'appoint.
Résumé
Le temps nécessaire pour charger une voiture électrique peut être aussi court que 30 minutes ou plus de 12 heures. Cela dépend de la taille de la batterie et de la vitesse du point de charge. Une voiture électrique classique (batterie de 60 kWh) prend un peu moins de 8 heures pour se recharger de vide à plein avec un point de charge de 7 kW.
La plupart des conducteurs rechargent leur batterie plutôt que d'attendre que leur batterie se recharge de vide à plein.
Pour de nombreuses voitures électriques, vous pouvez ajouter jusqu'à 160 km d'autonomie en environ 35 minutes avec un chargeur rapide de 50 kW. Plus la batterie de votre voiture est grande et plus le point de charge est lent, plus il faut de temps pour la recharger de vide à plein.
Conseil : recharger une voiture électrique est similaire à charger un téléphone portable : vous le rechargez pendant la journée si vous en avez besoin et vous le rechargez complètement à la maison pendant la nuit.
Combien de temps faut-il pour charger complètement une voiture électrique ?
Temps de charge complet à vide avec différentes vitesses de borne de recharge : Vous ne trouvez pas le modèle que vous recherchez dans ce tableau ? Parcourez d'autres véhicules électriques ici.
En savoir plus sur la recharge à domicile des véhicules électriques.
* L'autonomie de confiance des points de recharge est la distance maximale que nous pouvons parcourir en toute confiance avec l'énergie électrique entre deux charges. L'autonomie réelle dépend de divers facteurs, notamment les conditions de conduite, le style de conduite personnel, la température extérieure, le chauffage/la climatisation, etc.
** Les chiffres indiqués concernent l'autonomie standard de la Tesla Model S d'entrée de gamme.
*** Le temps de charge peut être limité par la vitesse de charge maximale du véhicule électrique.
À quelle vitesse les voitures électriques se chargent-elles ?
Les chargeurs rapides (43-50 kW et 150 kW) sont le moyen le plus rapide de charger les véhicules électriques : par exemple, ils peuvent charger une Nissan LEAF (2018) en 1 heure ou moins, une Tesla Model S (2019) en 2 heures ou moins et un Mitsubishi Outlander PHEV (2018) en 40 minutes.
Les bornes de recharge à domicile ont généralement une puissance nominale de 3,7 kW ou 7 kW : ces chargeurs prennent 11 à 21 heures pour une charge complète pour la Tesla Model S (2019), 4 à 11 heures pour la Nissan LEAF (2018) et 4 heures pour le Mitsubishi Outlander PH
V (2018).
Toutes les voitures électriques peuvent se recharger sur des bornes de recharge compatibles avec un taux de charge maximal supérieur à celui qu'elles peuvent supporter : Voir aussi „ Borne de recharge pour voiture électrique : tarifs, consommation et durée de charge»
Elles se rechargeront au taux maximal qu'elles peuvent accepter, offrant une flexibilité dans les options de charge, comme l'utilisation d'un chargeur rapide de 22 kW, qui peut charger les véhicules mentionnés en 4 à 6 heures.
Astuce : presque toutes les voitures électriques à batterie pleine peuvent se recharger rapidement, la plupart des voitures électriques hybrides rechargeables ne le peuvent pas.
Combien de temps faut-il pour recharger une voiture électrique sur une borne de recharge ?
Il peut falloir à peine 30 minutes ou moins pour charger une voiture électrique classique (batterie de 60 kWh) sur une borne de recharge rapide de 150 kW, de vide à plein. Si vous utilisez un chargeur public de 7 kW, vous pouvez vous attendre à atteindre la même autonomie en moins de 8 heures et environ 3 heures avec une borne de recharge de 22 kW.
Un chargeur rapide offrira le temps de charge le plus rapide au coût le plus élevé, ce qui est idéal si vous êtes sur la route et souhaitez poursuivre votre voyage. Si vous n’êtes pas pressé, l’utilisation d’un chargeur de puissance inférieure sera moins chère. Vous pouvez laisser votre voiture se recharger pendant la nuit ou pendant que vous faites quelques courses.
Combien de temps faut-il pour charger une voiture électrique à la maison ?
Un chargeur domestique de 7 kW chargera une batterie de voiture électrique typique de 60 kWh de vide à pleine en un peu moins de 8 heures. Le temps idéal pour recharger complètement la batterie de votre VE pendant que vous dormez. Un chargeur domestique plus lent de 3,7 kW prendrait environ 16 heures pour faire la même chose.
Des chargeurs domestiques de 22 kW sont parfois disponibles, mais ils sont rarement utilisés à cette fin. Bien qu'ils offrent une charge plus rapide que les chargeurs de puissance inférieure, leur installation et leur fonctionnement nécessitent une alimentation triphasée, ce qui n'est pas courant dans les propriétés résidentielles et est coûteux à mettre en œuvre.
Astuce : la recharge à domicile s'effectue de préférence via une borne de recharge dédiée. Découvrez les avantages d'un chargeur domestique.
Qu'est-ce que la recharge d'appoint ?
La plupart des conducteurs de voitures électriques se branchent pour recharger leur véhicule lorsqu’ils se garent, que ce soit chez eux pendant la nuit ou pendant la journée au supermarché, à la salle de sport ou sur leur lieu de travail.
C’est ce qu’on appelle la recharge d’appoint. Au lieu de laisser la batterie se vider et d’attendre qu’elle se recharge complètement, les conducteurs profitent du temps où leur voiture est garée (soit environ 95 % du temps) pour garder la batterie chargée.
Les bornes de recharge publiques et sur les lieux de travail ont généralement une puissance comprise entre 7 et 22 kW, ce qui les rend idéales pour la recharge d’appoint. Découvrez comment accéder à la recharge publique dans notre guide. Combiner la recharge d’appoint en journée avec la recharge de nuit à domicile est un moyen efficace de garder votre voiture électrique chargée et prête à partir.
Conseil : les conducteurs de voitures électriques ne se soucient pas beaucoup du temps qu’il faut pour charger la voiture. Il est plus utile pour eux de savoir combien de kilomètres d’autonomie ils obtiendront lorsqu’ils la brancheront pour la recharger.
Quelle autonomie obtenez-vous par heure de charge ?
En tant que conducteur de véhicule électrique, il est utile de savoir combien de kilomètres d'autonomie vous obtenez pendant que votre véhicule est en charge afin de savoir si vous pouvez atteindre votre prochaine destination.
Kilomètres d'autonomie ajoutés par heure de charge
3,7 kW lent 7 kW rapide 22 kW rapide 43-50 kW rapide 150 kW rapide
Jusqu'à 15 miles Jusqu'à 30 miles Jusqu'à 90 miles Jusqu'à 90 miles en 30 min Jusqu'à 200 miles en 30 min
Analyse :
L'autonomie par heure varie en fonction de l'efficacité de votre voiture. Les petites voitures électriques à batterie complète (par exemple, Renault Zoe) sont les plus efficaces et bénéficient d'une autonomie de 30 miles par heure en chargeant à 7 kW.
Les plus grosses voitures électriques à batterie complète (par exemple, Audi e-tron Quattro) sont plus lourdes et bénéficient d'une autonomie d'environ 20 miles par heure à 7 kW. (Les véhicules hybrides rechargeables sont généralement moins efficaces que les véhicules électriques à batterie complète).
L'efficacité d'une voiture dépend également de facteurs environnementaux tels que la température. Cela signifie que les voitures électriques sont plus efficaces et ont une autonomie légèrement meilleure par heure en été qu'en hiver. Facteurs qui affectent la vitesse de charge - Il existe 5 facteurs principaux qui affectent le temps nécessaire pour charger un véhicule électrique.
Taille de la batterie : Plus la capacité de la batterie de votre véhicule est grande (mesurée en kWh), plus la charge sera longue. État de la batterie (vide ou pleine) : Si vous chargez à partir d'une batterie vide, la charge prendra plus de temps que si vous la rechargez à partir de 50 %.
Taux de charge maximal du véhicule : Vous ne pouvez charger la batterie d'un véhicule qu'au taux de charge maximal que le véhicule peut accepter. Par exemple, si le taux de charge maximal de votre véhicule est de 7 kW, vous ne chargerez pas plus rapidement en utilisant une borne de recharge de 22 kW.
Taux de charge maximal du point de charge : Le temps de charge sera également limité par le taux de charge maximal du point de charge que vous utilisez. Par exemple ; même si votre véhicule peut se recharger à 11 kW, il ne se rechargera qu'à 7 kW sur une borne de recharge de 7 kW.
Facteurs environnementaux : une température ambiante plus froide peut allonger légèrement la durée de charge, en particulier si vous utilisez un chargeur rapide. Les températures plus froides signifient également que les véhicules sont moins efficaces, ce qui signifie que moins de kilomètres sont ajoutés à chaque fois que vous chargez.
Astuce : par temps froid, la mise à température de l'habitacle (et de la batterie) consomme de l'énergie qui n'est pas utilisée pour faire fonctionner la voiture. Si la voiture chauffe puis refroidit régulièrement après de courts trajets, vous consommez beaucoup plus d'énergie et votre autonomie diminue considérablement. Il est donc judicieux d'utiliser des recharges d'appoint régulières. Sur les trajets plus longs, les effets du froid sont moins prononcés, mais toujours perceptibles.
0 notes
Text
Electric buses are becoming an increasingly vital component of India
Electric buses are becoming an increasingly vital component of India's public transportation system, offering a sustainable alternative to traditional diesel buses. The price of electric buses in India varies significantly based on factors such as size, specifications, and manufacturer.
Price Range of Electric Buses
Initial Investment: Electric bus prices in India generally range from ₹1.5 crore to ₹3.5 crore. This pricing is influenced by the bus's size and features:
9-meter buses: Priced around ₹1.5-2.0 crore.
12-meter buses: Typically cost between ₹2.0-3.0 crore.
Popular Models:
Tata Starbus Urban: Starting at approximately ₹1.5 crore, it offers features like swappable batteries and a capacity for up to 65 passengers.
JBM ECOLIFE: Priced around ₹2 crore, this model is equipped with advanced lithium-ion batteries for enhanced efficiency.
Ashok Leyland Circuit S: Another popular choice, starting from ₹1.5 crore, known for its swappable battery technology and lower maintenance requirements.
International vs. Local Manufacturers:
Local manufacturers like Tata Motors and Ashok Leyland provide competitive pricing compared to international brands, which can range from ₹2.5 crore to ₹4 crore depending on the technology and features offered.
Factors Influencing Pricing
Several key factors affect the final price of electric buses in India:
Battery Pack Size: The size of the battery significantly impacts cost:
Small capacity (150-200 kWh): Lower initial cost but limited range.
Medium capacity (250-300 kWh): A balance of range and cost.
Large capacity (350+ kWh): Higher cost but maximum range.
Range Capabilities:
Short-range buses (150-200 km) are cheaper, suitable for urban routes.
Long-range buses (250+ km) come at a higher price, ideal for intercity operations.
Operational Economics: While the initial capital expenditure is higher for electric buses, their operational costs are significantly lower—estimated at around ₹7-9/km, compared to ₹20-25/km for diesel buses. This translates into annual savings of approximately ₹3-4 lakhs per electric bus, making them a more economical choice over time.
0 notes
Text
Hyundai Creta Electric: Hindistan Pazarında Elektrikli SUV
Hyundai Creta Electric: Hindistan Pazarına Elektrikli Giriş
Hyundai, Hindistan pazarında dikkat çekici bir yenilikle karşımıza çıkıyor: Creta modelinin tamamen elektrikli versiyonu, Creta Electric. Bu model, sıfır emisyonlu bir sürüş deneyimi sunarken, şık tasarımı ve etkileyici performansıyla da öne çıkıyor. Tasarım Özellikleri Creta Electric, içten yanmalı motor (ICE) versiyonundan önemli farklılıklar ile yeniden tasarlanmış bir ön bölüm ve arka tampon ile dikkat çekiyor. Özellikle: - Bölünmüş ızgara tasarımı, pikselli bir desenle tamamen kapatılmış. - Alt tampon girişinde yer alan aktif aero kanatçıklar, aerodinamik performansı artırıyor. - Arka tamponda ise pikselli desen ve gizli plastik kaplama kullanılmış. - Yan profilde, aerodinamik olarak optimize edilmiş yeni 17 inç jantlar öne çıkıyor. Performans ve Menzil Hyundai, elektrik motorunun teknik detaylarını henüz açıklamamış olsa da, Creta Electric'in etkileyici performansı dikkat çekiyor. Araç, 0'dan 100 km/s hıza yalnızca 7.9 saniyede ulaşabiliyor ve bu hızlanma, ICE motorlu Creta N Line'dan daha hızlı. Creta Electric, iki farklı batarya seçeneği sunuyor:
- 42 kWh batarya ile 390 km menzil. - 51.4 kWh batarya ile 473 km menzil. Şarj Süresi Creta Electric, DC hızlı şarj ile sadece 58 dakikada yüzde 10'dan yüzde 80'e kadar şarj edilebiliyor. Ayrıca, 11 kW AC şarj ile 4 saatte yüzde 10'dan yüzde 100'e ulaşmak mümkün. İç Tasarım ve Özellikler Creta Electric'in iç mekanında, Hyundai'nin Ioniq 5 modelinden ilham alınarak tasarlanmış yeni bir direksiyon simidi yer alıyor. Orta konsolda, sürüş modu seçimi için pratik bir düğme bulunmakta. Araç, üç farklı sürüş modu sunuyor: - Eco - Normal - Sport Ayrıca, çift 10.25 inç ekranlı dijital kokpit ve V2L (Vehicle-to-Load) fonksiyonu, sürücülerin ihtiyaçlarını karşılamak üzere tasarlanmış. Rekabet ve Çıkış Tarihi Hyundai Creta Electric, Hindistan pazarında Suzuki eVitara, Mahindra BE 6 ve Tata Curvv EV gibi elektrikli SUV'lerle rekabet edecek. Creta Electric, 17 Ocak'ta Hindistan'daki Bharat Mobility Show'da resmi olarak tanıtılacak. Diğer pazarlarda satışa sunulup sunulmayacağı ise henüz netlik kazanmış değil. Read the full article
#atecaelektriklikoltuk#CretaElectric#cretaelectriconroadprice#cretaelectricseat#cretaelena#cretaeletrico#creta+mileage#diagramaelectricohyundaicreta#evehicleelektriklimotor#electriccreta#elektrikliaraç#elektrikliaraçvolta#gta5electriccars#hargahyundaicretaelectric#Hindistan#hondacrvelectric#hyelectriccar#hybridcarelectricmotor#hybridcarvselectriccar#hybridelectricvehicle#hybridelectricvehicleanimation#hybridelectricvehiclecourse#hybridelectricvehicleworkingprinciple#hybridmielektriklimi#hybridorelectriccar#Hyundai#hyundaiaccenteraelektriklidireksiyonkutusu#hyundaiaraçlarınvergiborcunekadardır#hyundaicreta2023#hyundaicreta2024electric
0 notes
Text
Electric Scooters: Your Comprehensive Guide to Cost, Safety, and Features
Electric scooters are rapidly becoming a popular choice for personal transportation in India. With their eco-friendly nature and cost-saving benefits, they cater to diverse demographics, including women and daily commuters. This blog covers essential topics such as charging costs, subsidies, safety, and comparisons, making it a go-to guide for anyone considering an electric scooter.
1. Electric Scooter Charging Cost
The cost of charging an electric scooter is significantly lower than fueling a petrol scooter. Here’s a quick breakdown:
Battery Capacity: Most electric scooters have battery capacities ranging from 1.5 kWh to 3 kWh.
Charging Cost: Assuming an electricity rate of ₹6 per kWh, charging a 2 kWh battery would cost approximately ₹12.
Mileage: With an average range of 70-100 km per charge, the cost per kilometer is as low as 12 paise.
This makes electric scooters a highly economical option for daily commuting.
2. Subsidy on Electric Scooters
To promote eco-friendly transportation, the Indian government offers subsidies under the FAME II (Faster Adoption and Manufacturing of Hybrid and Electric Vehicles) scheme:
Eligibility: Subsidies are based on the battery capacity of the scooter.
Amount: You can receive ₹10,000-₹20,000 per kWh of battery capacity, capped at 40% of the vehicle’s cost.
State-Specific Benefits: Some states like Maharashtra and Delhi offer additional incentives, further reducing the purchase price.
Check with your local dealer to understand the applicable subsidies in your area.
3. How to Charge an Electric Scooter
Charging an electric scooter is simple and hassle-free. Follow these steps:
Use the Provided Charger: Always use the manufacturer-recommended charger.
Choose the Right Outlet: Plug the charger into a standard 220V socket.
Monitor Charging Time: Most scooters take 4-6 hours to fully charge.
Avoid Overcharging: Unplug the scooter once it reaches full charge to prolong battery life.
Some models also support fast charging, reducing the time needed significantly.
4. Electric Scooters for Women
Electric scooters are increasingly designed with women in mind, offering lightweight, stylish, and easy-to-handle options. Features to look for include:
Low Seat Height: Ensures comfort and easy access.
Lightweight Build: Makes handling and parking easier.
Storage Space: Additional compartments for bags and accessories.
Popular Models: Look for models like Ather 450X, Ola S1 Air, or Hero Electric Optima.
5. Scooter Helmet
Safety is paramount, and choosing the right helmet is crucial:
IS Standards: Ensure the helmet complies with ISI standards.
Lightweight and Comfortable: Opt for helmets with good ventilation and cushioning.
Visor Quality: Anti-scratch and clear visors improve visibility.
For Women: Helmets with ponytail holes and lighter designs are available.
Investing in a high-quality helmet is essential for safety and legal compliance.
6. Electric Scooter Comparison
When choosing an electric scooter, compare these key factors:
Range and Battery Life: Ensure it matches your daily commute needs.
Top Speed: Models range from 25 km/h (low-speed) to 80+ km/h.
Price: Entry-level scooters start at ₹50,000, while premium models exceed ₹1 lakh.
Features: Look for smart features like app connectivity, GPS, and anti-theft systems.
Popular models include Ather 450X, Ola S1 Pro, and TVS iQube.
7. Electric Scooter Fire: Causes and Prevention
While rare, electric scooter fires have raised safety concerns. Common causes include:
Overheating Batteries: Ensure the battery does not overheat during use or charging.
Poor Quality Batteries: Always choose scooters from reputed brands.
Improper Charging: Follow manufacturer guidelines to avoid mishaps.
Prevention Tips:
Avoid overcharging or using unauthorized chargers.
Store the scooter in a cool, dry place.
Regularly check for battery damage or leaks.
8. Is an Electric Scooter Safe?
Electric scooters are generally safe if used responsibly. Key safety features to look for include:
ABS and Disc Brakes: Provide better stopping power.
LED Lights: Improve visibility during nighttime riding.
Build Quality: Ensure the frame is sturdy and durable.
Wearing protective gear, following traffic rules, and regular maintenance are essential for a safe riding experience.
9. Best Time to Buy a Scooty in India
Timing your purchase can save you money and ensure better deals:
Festive Seasons: Diwali, Navratri, and New Year often bring discounts and offers.
End-of-Financial Year Sales: March-April is a good time to avail of dealer discounts.
New Model Launches: Prices of older models may drop when new versions are introduced.
Keep an eye on local promotions and bank offers for added benefits.
Conclusion
Electric scooters are an excellent choice for eco-friendly and cost-effective transportation. By understanding the nuances of charging costs, subsidies, safety, and comparisons, you can make an informed decision. Embrace the future of mobility with confidence and style!
0 notes
Text
AMG GT63 S E PERFORMANCE „The ULTIMATE GT 4-door“.
Affalterbach. With a system output of 620kW (843hp) and a maximum system torque of more than 1400 Nm, the Mercedes-AMG GT 63S E PERFORMANCE (fuel consumption weighted, combined: 7.9 l/100 km; weighted, combined CO2 emissions: 180 g/km; power consumption weighted, combined: 12.0 kWh/100 km)[1] is a new milestone in the company’s history.
The four-door coupé is the first performance hybrid and at the same time the most powerful series-production model of the brand from Affalterbach to date. The combination of 4.0-litre V8 biturbo engine and electric motor ensures superior driving performance and outstanding driving dynamics with impressive efficiency at the same time.
Mercedes-AMG is forging its own technical path to transport its hallmark brand DNA into an electrified future. To achieve this, the Affalterbach-based company uses, for example, technologies from Formula 1 in its E PERFORMANCE Hybrid strategy. The concept includes an independent drive layout with an electric motor and battery on the rear axle.
In the AMG GT 63 S E PERFORMANCE, the system consists of a 4.0‑litre V8 biturbo engine with a permanently excited synchronous electric motor, a high-performance battery developed by AMG and the fully variable AMG Performance 4MATIC+ all-wheel drive system.
The system power of 620kW (843hp) and the maximum system torque of more than 1400Nm enable acceleration from a standstill to 100km/h in just 2.9 seconds. After less than ten seconds, 200 km/h are reached. Acceleration only ends at 316km/h.
Mercedes-AMG One man, one engine Handcrafted by Michael Kübler @f1mike28 in Germany Affalterbach.
Driving Performance is my Passion! Mercedes-AMG the Performance and Sports Car Brand from Mercedes-Benz and Exclusive Partner for Pagani Automobili. Mercedes-AMG Handcrafted by Racers.
#amg#amggt#amggt4door#amggt63s#amggt63#amggt63eperformance#gt63s#gt63#gt63eperformance#eperformance#mercedesamg#mercedes#mercedesbenz#affalterbach#onemanoneengine#pagani
3 notes
·
View notes
Text
Sokudo India - Your Destination for the Best Electric Scooters in India
Sokudo India introduces the best electric scooters in India, proudly Made in India for unmatched performance and eco-friendliness. Certified with FAME 2, ICAT, and IP67 standards, these scooters are designed for reliability and sustainability. Featuring a powerful 2300W motor, a durable 3.1 kWh LFP battery, 3-4 hour fast charging, an impressive range of 164 km, and a top speed of 70 km/hr, they redefine smart, affordable, and green commuting.
0 notes