#pentaquark
Explore tagged Tumblr posts
Video
youtube
月刊JICFuSムービーの音楽とサウンドを担当しました。 今回は、 スーパーコンピュータ「富岳」を用いてハドロンの研究をしている RIKENの杉浦拓也さんのインタビュー映像です。
[ムービークレジット] 撮影地:理化学研究所(和光市) 音楽:吉岡亜由美「Inter」 演出・制作:南口雄一
「月刊JICFuS」は筑波大学計算科学研究センター、高エネルギー加速器研究機構、国立天文台の3組織が合同で立ち上げた研究組織「JICFuS(計算基礎科学連携拠点)」が発行しているwebマガジンです。
I was in charge of the music and sound for the monthly JICFuS movies. This time, it's an interview video with Takuya Sugiura from RIKEN, who is researching hadrons using the supercomputer "Fugaku."
[Movie Info] Location: Riken in Wako-city Music “Inter” by Ayumi Yoshioka Directed by Yuichi Minamiguchi
“Monthly JICFuS” is a web magazine published by JICFuS (Joint Institute for Computational Fundamental Science), a research organisation jointly established by the University of Tsukuba’s Research Centre for Computational Science, the High Energy Accelerator Research Organisation and the National Astronomical Observatory of Japan.
#量子物理学#quantamphysics#計算科学#computerscience#supercomputer#fugaku#富岳#hokusai#スパコン#pentaquark#ペンタクォーク#Inter
0 notes
Text
chemists drive me irrationally crazy bc its so easy to work with electrons but QUARKS??? you can fuck around with how electrons bond by just wiggling it too hard. we have to throw OUR little fuckers like a bazillion mph into millions of OTHER little fuckers for them to do anything!. it would simply cost so much money to make my pentaquarks Maurice and double-up-double-down-anti-charm-Dave at home. i cant just buy a "splitting the atom kit" from walmart.
#science side of tumblr#why are there so many biologists and chemists on tumblr we need more freaks (subatomic particle physicists)#for the life of me i cannot spell physicist#or do multiplication tables#but i do know the charge of an antistrange quark!!#(+1/3e)#the strange quark is my favorite#because he is strange#all of the quarks have pronouns
21 notes
·
View notes
Note
help my partner is asking me what exotic particles are and how they work and idk what they are or how they work can you explain pls thank u i love u
omg researching this was harder than i thought but I'll do my best to explain
what it boils down to is the parts of the parts of atoms called quarks. quarks make up the protons and neutrons, and they can stack (????) into tetraquarks (four) and pentaquarks (five) and this does weird stuff like superconductivity (extreme electromagnetism)
this is the stuff that the hadron collider at CERN does and something like 80% of "exotic particles" are theoretical because we havent discovered them yet but the Physics Math Doesnt Work without them (like dark matter)
#it was so hard to find answers omg#the cern article assumed i already knew what they were#and the sciencedirect article assumed i could understand the physics math enough to explain it to someone else#i hope this helps!!#technobabble button
6 notes
·
View notes
Text
Stati della materia esotica costituiti da soli gluoni
Finalmente i fisici rilevano una nuova particella: le “Glueball”. Una nuova particella esotica, un gluone isolato, è stata scoperta dal gruppo di studio BES III e permette di comprendere meglio una delle forze fondamentali dell’universo. Secondo quanto pubblicato dalla rivista Physical Review Letters è stata scoperta una nuova particella fondamentale: la “Glueball” cioè un gluone, particella dell’interazione nucleare forte, isolata e non combinata con nessuna altra particella. L’interazione nucleare forte è una delle quattro forze fondamentali dell’universo e il gluone è la sue espressione.
Queste particelle sono previste secondo il Modello Standard della fisica che, per quanto criticato e ancora con dei problemi, cerca di essere la spiegazione a tutte le particelle esitenti. Sebbene la materia che ci costituisce sia composta da atomi, che sono costituiti da protoni, neutroni ed elettroni, e dove i protoni e i neutroni sono costituiti da tre quark ciascuno – tutti tenuti insieme da gluoni attraverso l’interazione forte – questo non è l’unica combinazione possibile di particelle, secondo il modello standard. Secondo il modello standard abbiamo: - barioni (con 3 quark ciascuno) o antibarioni (con 3 antiquark ciascuno). - mesoni (con una coppia quark-antiquark). - stati esotici come i tetraquark (2 quark e 2 antiquark), i pentaquark (4 quark e 1 antiquark o 1 quark e 4 antiquark), o gli esaquark (6 quark, 3 quark e 3 antiquark, o 6 antiquark), ecc. - oppure, si possono avere anche stati costituiti da soli gluoni – senza quark o antiquark di valenza – noti come glueball. In un nuovo documento radicale appena pubblicato sulla rivista Physical Review Letters, la collaborazione BES III ha appena annunciato che una particella esotica, precedentemente identificata come X(2370), potrebbe effettivamente essere la glueball più leggera prevista dal Modello Standard. Ecco la scienza dell’affermazione e il significato di tutto questo.
Tracce della camera a bolle di Fermilab, che rivelano la carica, la massa, l’energia e la quantità di moto delle particelle e delle antiparticelle create. Anche se possiamo ricostruire ciò che è accaduto nel punto di collisione per ogni singolo evento, abbiamo bisogno di un gran numero di statistiche per costruire prove sufficienti per affermare l’esistenza di una nuova specie di particelle. L’importanza della glueball sta nel fatto che è strettametne collegata con l’interazione nucleare forte, la forza che mantiene insieme i quarck nei protoni ed eletrroni e che poi tiene assieme i nuclei degli atomi. Si tratta dell’interazione più forte, 100 volte più forte di quella elettromagnerica. La scoperta della glueball, cioò di un singolo gluone, aiuterà a comprendere come funziona. Nel mondo della fisica delle alte energie, per trovare una particella non basta crearla in laboratorio e osservarla. Bisogna ripetere l’esperimento molte volte per verificare se le previsioni teoriche corrispondono ai risultati osservati. Questo è particolarmente importante quando si cercano particelle che esistono solo in condizioni rare. Molte particelle possono essere rilevate solo dalle firme lasciate quando altre particelle decadono. Nel corso del 20° secolo, sono state scoperte diverse particelle del Modello Standard, tra cui quark esotici come lo strano, il charm, il bottom e il top. Tutte le particelle contenenti questi quark sono instabili e decadono rapidamente. Per far esistere qualsiasi tipo di particella composita, devono essere seguite delle regole quantistiche. L’energia, la carica elettrica, il momento angolare e altre proprietà quantistiche devono essere conservate, ctanto per capirci che venga rispettata la legge per cui E=mc2. Read the full article
0 notes
Text
Linhas do Tempo Colpapsando...
As linhas de tempo podem ser conhecidas simplesmente como vibração atuante em determinadas faixas que afetam nossa vida e comportamento em uma dimensão paralela ou simultânea, em forma simples, podemos dizer que são fatos da nossa vida que aconteceram em determinadas datas neste e em outros “campos de realidades”.
Podemos considerar também que uma linha de tempo planetária tem a ver com eventos que afetam toda a humanidade. Quando diferentes linhas de tempo estão acontecendo simultaneamente estas terão que se agrupar e alinhar para que uma delas somente continue atuante. Atualmente na Terra estamos vivendo de uma forma quase incrível a interferência de essas linhas de tempo. Isto por causa da situação energética do planeta.
Muitos questionamentos deverão ser levantados para sustentar alguma coisa deste tipo, com nossos escassos conhecimentos acadêmicos, mesmo de física quântica. Os que estão mais perto de entender e compreender tudo isto de forma física e real são os cientistas que manipulam o acelerador de partícula (CERN) tentando encontrar a partícula de Deus como eles chamam.
O descobrimento do pentaquark parece trazer alguma luz em tudo isto, onde 4 quarks e um antiquarks se encontram, este anti quark estaria supostamente em um mundo paralelo simultâneo onde de certa forma estaria acontecendo o mesmo que aqui na Terra agora. Mas como que tudo isto encaixa então no “Efeito Mandela” (caso você não saiba do efeito Mandela, por favor, pesquise na internet e depois continue lendo esta postagem).
Temos que saber que estamos vivendo em varias dimensões quando estamos vivos na 3ª dimensão. Nosso corpo físico está na 3ª dimensão, nossa parte de consciência sempre vai estar uma dimensão acima. Desde a 3ª dimensão nosso corpo físico administra em conjunto com corpos de energia associados elementos ate a 12a dimensão, isto caso tivéssemos nosso DNA completo (12 fios ativados). Mesmo que nosso DNA não esteja totalmente ativado ainda, podemos “mexer” com estas dimensões, quando fazemos isto e existe um nível de consciência em isso, nos temos a capacidade de modificar linhas de tempo na Terra.
No ”Efeito Mandela” muitas pessoas lembram-se de coisas que não aconteceram aqui, mas que aconteceu em outra dimensão paralela. Ficou afinal, a melhor linha de tempo possível. Mas como você vai modificar uma linha de tempo? Mudando eventos, mudando direcionamento de projetos, tomando decisões diferentes referentes a coisas importantes da sua vida!! E como você vai saber de tudo isso? Primeiro, acreditando que existe um mundo invisível e que existe um ser divino, um Mestre que você É. Esse Mestre que você É poderá ter você ao tanto de tudo o que acontece nas outras linhas de tempo paralelas e levando você a tomar consciência da linha de tempo correta, mesmo que isso não aconteça 100% na consciência acordada. Tive provas claras do “efeito Mandela” na minha vida com pessoas amigas de toda a vida, em encontros recentes em Santiago de Chile, mesmo que elas não tenham consciência total de isso. Vamos continuar pesquisando, hoje a época do ciclo planetário onde muitas energias se encontram é um campo de exploração fantástico.
#conhecimento#sairdailusão#discernir#sabedorias#pensamentos#refletir#astrologia#ciência#física#despertar#consciência
0 notes
Text
Baryons
“You look… frustrated,” Shae commented.
“Do I?” Lakshmi snapped before sighing. “I—are you okay with being a rubber duck?”
She sat down. “What, exactly, does that entail?”
“A rubber duck is an engineer term. I explain the problem I’m having and hopefully the act of explaining it helps.”
“Sure.”
“So, I’ve been looking at the readings from the ring and comparing them to the readings from the space around us. The readings from around us are basically useless because we are in a void, and I have ridiculously few data points. The ring is weirder. Some of the molecules spit at us had protons heavier than protons are supposed to be. In one case, a wave of light was blue until it hit the receiver, at which point it turned green. The wavelength of light was green. Sensors picked up one pentaquark, which is a particle that has never been seen outside laboratory experiments.” Lakshmi sighed. “Maybe the sensors are glitching.”
“I talked to Dr. Whittemore, and he said the nuclei of the iron in the asteroid samples he picked up is slightly heavier than that in the ship. He doesn’t know what that means.”
Lakshmi froze before whirling to her console. “Wait. Wait, that’s—alright, give me one second, I need to—alright we know the wavelength and the distance so the time is easy, and if you consider what is being emitted when…”
“I’ll just get going, then,” Shae said, amused. Lakshmi apparently didn’t hear her, as she didn’t respond.
#A baryon is a particle (like a proton) that's made of three quarks#stares at prompt: I have to write about what#i'm sorry if my quantum physics is wrong i'm doing my best#i'm an ecologist the physics is hard#scifi worldbuilding#scifi writing#creative writing#my writing#library of babel#unedited#original characters#my ocs#space romp
1 note
·
View note
Text
I watched a video by The Royal Institution on YouTube named "What are Pentaquarks and why are they so rare?" which was uploaded 3 years ago. And it was really good at simplifying quantum chromodynamics and what quarks are!! However, I struggled to understand some of the stuff about the data but I think I get some of it!! :D soooooo ill do my best to summarise it ((as if I can ever be concise lmao))
The main answer to the question posed by the title of the video was a solid we dont know what exactly Pentaquarks are and why they're soooo rare buuut scientists at the LHC are working on it!!
Quarks and leptons are the fundamental particles. Quarks in particular are always linked together by te strong nuclear force to form hadrons - you can't EVER find them singularly due to quark confinement ((energy needed to separate two quarks forms mass forming another quark)). However quarks are usually found in quark triplets or quark antiquark pairs!?!?!?! WHY!?!? It could be due to the quarks property colour charge limiting some possibilities. The colour charge is associated with the strong force ((force keeping quarks together)), similar to how the electric charge is linked to the electric force. It acts as a source for the force to act on. The three types of colour charge are : red, green and blue. All together make white. In hadrons, the colour charges cancel out / make white so overall the object is neutral and doesnt experience the strong force. So the only caviat here for other particles containing quarks is the colour charges need to cancel, so it's not really much of a reason why particles containing quarks other than quark triplets and quark-antiquark pairs are soooo rare.
Scientists have been working on this issue....aaannnddd in 2008 tetra quarks (4 quarks) were discovered!! Aaannnd in 2015....drumroll please!! Pentaquarks (5 quarks) were discovered!!! However, they're not stable so decay quickly so cant be directly observed. Thus scientists look for pentaquarks by finding the particles they decay into - psi mesons and protons. And the lack if knowledge we have on pentaquarks shows we really dont know a lot about the strong nuclear force (what forms them) as we dont even know if they're formed of the fusion of a meson and baryon or the fusion of five singular quarks......but yuh...they exist and it's a start!!
0 notes
Text
Inilah Senjata merusak Dunia mesin di CERN Just yang sangat mengerikan
PARTIKEL “EKSOTIK”. COLLIDER HADRON BESAR MELIHAT TIGA PARTIKEL BARU. Para ilmuwan mengatakan mereka telah mengamati jenis baru “pentaquark” dan pasangan “tetraquark” pertama, menambahkan tiga anggota ke daftar hadron baru yang ditemukan di LHC. Lobang akan terbentuk 100 Km. Kerusakan Dunia. Sains modern. Large Hadron Collider restart Balok proton kembali beredar di sekitar cincin 27…
View On WordPress
#CERN Lobang akan terbentuk 100 Km. Kerusakan Dunia. Sains modern#Ilmuwan Di CERN Just Mengumumkan Penemuan Baru yang MENGERIKAN! LHC sepanjang 27 kilometer#Para ilmuwan yang bekerja dengan Large Hadron Collider (LHC)
1 note
·
View note
Text
The discovery of a new subatomic particle known as the pentaquark
In December 2020, scientists at the European Organization for Nuclear Research (CERN) announced the discovery of a new subatomic particle known as the pentaquark. This particle, which is composed of five quarks, was discovered through the analysis of data collected by the Large Hadron Collider (LHC), the world’s largest and most powerful particle accelerator. The discovery of the pentaquark…
View On WordPress
#artificial#engineer#innovation#mathematic#mechanical#micro#science#small#technology#universe#wonderful#physics
0 notes
Link
CERN - LHCb brings leptons into line:
https://home.cern/news/news/physics/lhcb-brings-leptons-line
#BMeson #Meson #BMesonDecay #Quarks #Leptons #LeptonFlavourUniversality #LargeHadronCollider #LHC #LHCb #StandardModel #ParticlePhysics #Physics
0 notes
Text
personal brain victory~
Pentaquark intimidated and overloaded me when I got it 2 years ago, but today I decided to go at it again and I achieved Game Grok & won twice ✨
0 notes
Text
The international LHCb collaboration at the Large Hadron Collider (LHC) has observed three never-before-seen particles: a new kind of “pentaquark” and the first-ever pair of “tetraquarks”, which includes a new type of tetraquark. The findings, presented today at a CERN seminar, add three new exotic members to the growing list of new hadrons found at the LHC. They will help physicists better understand how quarks bind together into these composite particles.
Quarks are elementary particles and come in six flavours: up, down, charm, strange, top and bottom. They usually combine together in groups of twos and threes to form hadrons such as the protons and neutrons that make up atomic nuclei. More rarely, however, they can also combine into four-quark and five-quark particles, or “tetraquarks” and “pentaquarks”. These exotic hadrons were predicted by theorists at the same time as conventional hadrons, about six decades ago, but only relatively recently, in the past 20 years, have they been observed by LHCb and other experiments.
Most of the exotic hadrons discovered in the past two decades are tetraquarks or pentaquarks containing a charm quark and a charm antiquark, with the remaining two or three quarks being an up, down or strange quark or their antiquarks. But in the past two years, LHCb has discovered different kinds of exotic hadrons. Two years ago, the collaboration discovered a tetraquark made up of two charm quarks and two charm antiquarks, and two “open-charm” tetraquarks consisting of a charm antiquark, an up quark, a down quark and a strange antiquark. And last year it found the first-ever instance of a “double open-charm” tetraquark with two charm quarks and an up and a down antiquark. Open charm means that the particle contains a charm quark without an equivalent antiquark.
The discoveries announced today by the LHCb collaboration include new kinds of exotic hadrons. The first kind, observed in an analysis of “decays” of negatively charged B mesons, is a pentaquark made up of a charm quark and a charm antiquark and an up, a down and a strange quark. It is the first pentaquark found to contain a strange quark. The finding has a whopping statistical significance of 15 standard deviations, far beyond the 5 standard deviations that are required to claim the observation of a particle in particle physics.
The second kind is a doubly electrically charged tetraquark. It is an open-charm tetraquark composed of a charm quark, a strange antiquark, and an up quark and a down antiquark, and it was spotted together with its neutral counterpart in a joint analysis of decays of positively charged and neutral B mesons. The new tetraquarks, observed with a statistical significance of 6.5 (doubly charged particle) and 8 (neutral particle) standard deviations, represent the first time a pair of tetraquarks has been observed.
Large Hadron Collider discovers three new exotic particles
https://home.cern/news/news/physics/lhcb-discovers-three-new-exotic-particles Comments
#LHCb discovers three new exotic particles#pentaquark#tetraquark#standard model#large hadron collider
2 notes
·
View notes
Photo
Nuclear Physics Might Hold The Key To Cracking Open The Standard Model
“Interestingly, this could also lead to a renewed interest in the search for glueballs, which would be the first ever direct evidence of a bound state of gluons in nature! If the exotic QCD predictions of tetraquarks and pentaquarks are borne out in our Universe, it stands to reason that glueballs should be there as well. Perhaps the existence of these composite particles will be verified at the LHC as well, with incredible implications for how our Universe works either way.”
Nuclear physics has, for decades now, been regarded less as a window into fundamental physics and more of a derived science. As we’ve discovered that nuclei, baryons, and mesons are all composite particles made out of quarks, antiquarks, and gluons, though, we’ve realized that there are other possible combinations that nature allows, that should exist. In recent years, we’ve discovered tetraquark and pentaquark states of quarks and antiquarks, and yet there should be even more. QCD, our theory of the strong interactions, predicts that a set of exotic states of bound gluons -- known as a glueball -- should exist. Finding them, or proving that they don’t exist, might be a way to crack open the Standard Model in an entirely new way.
Nuclear physics might, after all these years, hold the key to going beyond the current limitations of physics.
#qcd#cern#lhc#lhcb#particle#particle physics#physics#nuclear#nuclear physics#tetraquark#pentaquark#glueball#science#strong force#strong interaction
605 notes
·
View notes
Text
Nuova particella "esotica" scoperta al Cern di Ginevra
Cern, osservato un nuovo tipo di tetraquark. La scoperta della particella composta da quattro quark charm grazie alla collaborazione internazionale dell'esperimento LHCb che opera all'acceleratore LHC del Cern. Un nuovo tipo di tetraquark è stato osservato per la prima volta grazie alla collaborazione internazionale dell'esperimento LHCb che opera all'acceleratore LHC del Cern. La scoperta della particella composta da quattro quark charm è annunciata da uno studio su arXiv. Il risultato costituisce un importante passo avanti nella comprensione di come i quark si legano tramite interazioni nucleari forti all'interno di particelle composte, note come adroni, alla cui famiglia appartengono anche i protoni e i neutroni, costituenti dei nuclei atomici. Nei casi comuni, i quark si legano in coppie (mesoni) o tripletti (barioni), ma l'esistenza di particelle più complesse costituite da quattro quark (tetraquark), cinque quark (pentaquark) o più, non è, in linea di principio, proibita dalla teoria, sebbene siano stati necessari decenni di ricerche per poterne identificare pochi esempi. I quark già noti si legano in coppie (mesoni) o tripletti (barioni), ma l’esistenza di particelle più complesse costituite da quattro quark (tetraquark), cinque quark (pentaquark) o più non è esclusa dalla teoria, anche se ci sono voluti decenni di ricerche per poterne identificare pochi esempi. Read the full article
#adroni#barioni#CERN#esperimentoLHCb#interazioninucleari#mesoni#neutroni#nucleiatomici#particelle#particelleesotiche#pentaquark#protoni#Quarkcharm#tetraquark
0 notes
Photo
Welcome to Multiplatform Content!!
Recién llegado a la consultora de marketing digital, Multiplatform Content (MPC) en Madrid!. Muy ilusionado y contento de formar parte de este gran equipo humano multidisciplinar. Muchos retos y grandes proyectos están por llegar. #Welovecontent
Multiplatform Content (MPC) es un grupo de Consultoría de marketing digital, centrado en la creación de contenidos y la gestión de datos. Ofrece un modelo de especialización vertical por sectores de conocimiento: Travel, Entertainment, Omnichannel y Governance.
Cuenta con una estrategia que combina la captación de audiencias/clientes a través de contenidos -vídeo, posts, acciones publicitarias o comerciales- y la gestión de datos -modelos predictivos, CRM, motores de recomendación-. Clientes líderes como NH Hotel Group, Sony Pictures, Bankia o el ICO ya trabajan con este modelo de marketing.
Dentro del grupo, la oferta de servicios se completa a través de diferentes partners: Wayland (marketing de influencers), Craft Media (compra programática) y Pentaquark (Data Science). MPC ya opera en mercados internacionales a través de sus oficinas de Madrid, Caracas, Ciudad de Panamá y Ciudad de México.
Fuente: http://www.multiplatformcontent.com/
#mpc#multiplattform#content#wayland#marketing#influencers#Craft Media#Pentaquark#datascience#Madrid#Caracas#ciudad de méxico#Panamá#Travel#Marketingdigital#Entertainment#Omnichannel#Governance#contenidos#gestióndedatos#sonypictures#nhhotelgroup#Bankia#ICO#accionespublicitarias#socialmedia#creatividad#audiovisual#comunicación
2 notes
·
View notes