#layer_2
Explore tagged Tumblr posts
Text
#cryptocurrency #layer_2 #cryptocurrency_investment Blockchain Technology: What Is Layer 1 Scaling Solution in Blockchain?: Photo by Clint Adair on Unsplash Blockchain technology creates an avenue for humans to access a trustless and decentralized… http://dlvr.it/SMCGfB
0 notes
Text
commission from anonymous commission's still open, by the way!
#re l mayer#re l#ergo proxy#re-l mayer#re-l#cyberia#cyberia layer_2#webcore#animecore#weebcore#commission#nephro.txt#nephro.png
2 notes
·
View notes
Audio
this whole mixtape is blowing my mind tbh
1 note
·
View note
Photo
serial experiments lain - Cyberia Layer_2
119 notes
·
View notes
Video
youtube
New album [ Cyberia Layer_2 ] will be released on July 14th, 2018 for SEL’s 20th anniversary. Featuring DJs and musicians Wasei “JJ” Chikada, Q’hey, Ko Kimura, Hideo Kobayashi, TaQ, Keisuke Onuki, & Watusi (from COLDFEET). Art by Yoshitoshi ABe.
66 notes
·
View notes
Text
Recursive Neural Networks
I am writing a neural network zoo to test models against one another. The most recent model is a recursive sort of network that has a MLP for each operator and a MLP for the global settings. It has a couple of hidden layers that take the concatenated output of all of the networks and tries to use that output to predict a patch. Lowest mean squared error score so far, 0.289!
################################################################import sys
import os sys.path.append(os.path.join(os.path.dirname(__file__), '../lazyloadingutils')) import tensorflow as tf from lazyloading import define_scope
# Other: 0 - 22 # OP1: 23 - 44 # OP2: 45 - 66 # OP3: 67 - 88 # OP4: 89 - 110 # OP5: 111 - 132 # OP6: 133 - 154
# What if the global params were predicted first, and then fed the histogram # of feature data to help choose the operator? Write a new class. Also what if # one network was just trained solely on global params, then that network's # input was passed in with the features to a MLP or something.
class RecursiveMLP:
def __init__(self, **kwargs): self.features = kwargs.get('features', None) self.labels = kwargs.get('labels', None) self.input_size = kwargs.get('input_size', None) self.parameters = kwargs.get('parameters', [2, 2]) self.amount_layers = len(self.parameters) self.learning_rate = kwargs.get('learning_rate', 0.001) self.prob_keep_input = kwargs.get('prob_keep_input', None) self.prob_keep_hidden = kwargs.get('prob_keep_hidden', None) self.prediction self.optimise self.error
@define_scope def prediction(self): def init_weights(shape, name): return tf.Variable(tf.random_normal(shape, stddev=0.01), name=name) number_inputs = int(self.features.get_shape()[1]) * int(self.features.get_shape()[2]) x = tf.reshape(self.features, [-1, number_inputs])
number_outputs_op = 22 number_outputs_other = 23
operators_outputs = []
weights = [] biases = []
for op in range(7): if op < 6: amount_outputs = number_outputs_op name_prefix = "op_" else: amount_outputs = number_outputs_other name_prefix = "_other" weights_layer = [] biases_layer = [] weights_layer += [init_weights([number_inputs, self.parameters[0]], name_prefix + str(op) + "_weights_hidden_0")] biases_layer += [init_weights([self.parameters[0]], name_prefix + str(op) + "_biases_hidden_0")] for i, layer in enumerate(self.parameters): weights_name = name_prefix + str(op) + "_weights_hidden_" + str(i + 1) biases_name = name_prefix + str(op) + "_biases_hidden_" + str(i + 1) if i == (self.amount_layers - 1): weights_layer += [init_weights([self.parameters[(self.amount_layers - 1)], amount_outputs], weights_name)] biases_layer += [init_weights([amount_outputs], biases_name)] else: weights_layer += [init_weights([self.parameters[i], self.parameters[i + 1]], weights_name)] biases_layer += [init_weights([self.parameters[i + 1]], biases_name)] weights += [weights_layer] biases += [biases_layer] operators_outputs += [x]
for i in range(len(weights[0])):
if i < (len(weights) - 1): with tf.name_scope(name_prefix + str(op) + "_Layer_" + str(i)): prob = self.prob_keep_input if i == 0 else self.prob_keep_input
operators_outputs[op] = tf.nn.dropout(operators_outputs[op], prob) operators_outputs[op] = tf.add(tf.matmul(operators_outputs[op], weights[op][i]), biases[op][i]) operators_outputs[op] = tf.nn.relu(operators_outputs[op]) else: with tf.name_scope(name_prefix + str(op) + "_Output"): operators_outputs[op] = tf.nn.dropout(operators_outputs[op], self.prob_keep_hidden) operators_outputs[op] = tf.add(tf.matmul(operators_outputs[op], weights[op][i]), biases[op][i]) tf.summary.histogram(name_prefix + str(op) + "_weights_" + str(i) + "_summary", weights[op][i]) all_operators = tf.concat(1, [o for o in operators_outputs[0:6]]) global_params = operators_outputs[6] predicted_patch = tf.concat(1, [global_params, all_operators])
fully_1 = 70 fully_2 = 70 number_outputs = 155
fully_connected_layer_weights = { 'h1': tf.Variable(tf.random_normal([number_outputs, fully_1])), 'h2': tf.Variable(tf.random_normal([fully_1, fully_2])), 'out': tf.Variable(tf.random_normal([fully_2, number_outputs])) } fully_connected_layer_biases = { 'b1': tf.Variable(tf.random_normal([fully_1])), 'b2': tf.Variable(tf.random_normal([fully_2])), 'out': tf.Variable(tf.random_normal([number_outputs])) } layer_1 = tf.add(tf.matmul(predicted_patch, fully_connected_layer_weights['h1']), fully_connected_layer_biases['b1']) layer_1 = tf.nn.relu(layer_1) layer_2 = tf.add(tf.matmul(layer_1, fully_connected_layer_weights['h2']), fully_connected_layer_biases['b2']) layer_2 = tf.nn.relu(layer_2) out_layer = tf.matmul(layer_2, fully_connected_layer_weights['out']) + fully_connected_layer_biases['out'] return out_layer
@define_scope def optimise(self): optimiser = tf.train.AdamOptimizer(learning_rate=self.learning_rate) return optimiser.minimize(self.error)
@define_scope def error(self): return tf.sqrt(tf.reduce_mean(tf.square(tf.sub(self.labels, self.prediction))))
0 notes
Text
Blockchain Technology: What Is Layer 1 Scaling Solution in Blockchain? http://dlvr.it/SMCBBN
0 notes
Video
youtube
New album [ Cyberia Layer_2 ] will be released on July 14th, 2018 for SEL’s 20th anniversary. Featuring DJs and musicians Wasei “JJ” Chikada, Q’hey, Ko Kimura, Hideo Kobayashi, TaQ, Keisuke Onuki, & Watusi (from COLDFEET). Art by Yoshitoshi ABe.
28 notes
·
View notes