Tumgik
#ceRNA crosstalk stabilizes protein expression and affects the correlation
naivelocus · 8 years
Text
ceRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins
Shahrezaei, V. & Swain, P. S. Analytical distributions for stochastic gene expression. PNAS 105, 17256–17261 (2008).
El-Samad, H. & Khammash, M. Regulated degradation is a mechanism for suppressing stochastic fluctuations in gene regulatory networks. Biophys. J. 90, 3749–3761 (2006).
Singh, A. & Hespanha, J. P. Evolution of autoregulation in the presence of noise. IET Syst. Biol. 3, 368–378 (2009).
Lestas, I., Vinnicombegv, G. & Paulsson, J. Fundamental limits on the suppression of molecular fluctuations. Nature 467, 174–178 (2012).
Bundschuh, R., Hayot, F. & Jayaprakash, C. The role of dimerization in noise reduction of simple genetic networks. J. Theor. Biol. 220, 261–269 (2003).
Pedraza, J. M. & Paulsson, J. Effects of molecular memory and bursting on fluctuations in gene expression. Science 319, 339–343 (2008).
Morishita, Y. & Aihara, K. Noise-reduction through interaction in gene expression and biochemical reaction processes. J. Theor. Biol. 228, 315–325 (2004).
Swain, P. S. Efficient attenuation of stochasticity in gene expression through post-transcriptional control. J. Mol. Biol. 344, 956–976 (2004).
Bosia, C., Osella, M., Baroudi, M. E., Corà, D. & Caselle, M. Gene autoregulation via intronic microRNAs and its functions. BMC Syst. Biol. 6, 131 (2012)
Mittal, N., Roy, N., Babu, M. M. & Jangaa, S. C. Dissecting the expression dynamics of RNA-binding proteins in posttranscriptional regulatory networks. PNAS 106, 20300–20305 (2009).
Joshi, A., Beck, Y. & Michoel, T. Post-transcriptional regulatory networks play a key role in noise reduction that is conserved from micro-organisms to mammals. FEBS J. 279, 3501–3512 (2012).
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).
Chi, S. W., Zang, J. B., Mele, A. & Darnell, R. B. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479–486 (2009).
Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033–1038 (2010).
Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011).
Denzler, R., Agarwal, V., Stefano, J., Bartel, D. P. & Stoffel, M. Assessing the ceRNA Hypothesis with Quantitative Measurements of miRNA and Target Abundance. Mol. Cell 54, 766–776 (2014).
Bosson, A. D., Zamudio, J. R. & Sharp, P. A. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol. Cell 56, 347–359 (2015).
Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).
Das, J., Chakraborty, S., Podder, S. & Ghosh, T. C. Complex-forming proteins escape the robust regulations of miRNA in human. FEBS Letters 587, 2284–2287 (2013).
Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).
Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).
Riba, A., Bosia, C., El Baroudi, M., Ollino, L. & Caselle, M. A Combination of Transcriptional and MicroRNA Regulation Improves the Stability of the Relative Concentrations of Target Genes. PloS Comput. Biol. 10, e1003490 (2014).
Gurtan, A. M. & Sharp, P. A. The Role of miRNAs in Regulating Gene Expression Networks. J. Mol. Biol. 425, 3582–3600 (2013).
Schmiedel, J. M. et al. MicroRNA control of protein expression noise. Science 348, 128–132 (2015).
Siciliano, V. et al. miRNAs confer phenotypic robustness to gene networks by suppressing biological noise. Nat. Comm. 4, 2364 (2013).
Osella, M., Bosia, C., Corá, D. & Caselle, M. The role of incoherent microRNA-mediated feedforward loops in noise buffering. PloS Comput. Biol. 7, e1001101 (2011).
Bosia, C., Pagnani, A. & Zecchina, R. Modelling Competing Endogenous RNA Networks. PLoS ONE 8, e66609 (2013).
Figliuzzi, M., Marinari, E. & De Martino, A. MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys. J. 104, 1203–1213 (2013).
Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: the Rosetta Stone of a hidden, RNA language? Cell 146, 353–358 (2011).
Arvey, A., Larsson, E., Sander, C., Leslie, C. S. & Marks, D. S. Target mRNA abundance dilutes microRNA and siRNA activity. Mol. Syst. Biol. 6, 363 (2010).
Franco-Zorrilla, J. M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genet. 39, 1033–1037 (2007).
Levine, E., Zhang, Z., Kuhlman, T. & Hwa, T. Quantitative Characteristics of Gene Regulation by Small RNA. PLoS Biol. 5, e229 (2007).
Jens, M. & Rajewsky, N. Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat. Rev. Genet. 16, 113–126 (2015).
Ala, U. et al. Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. PNAS 110, 7154–7159 (2013).
Karreth, F. A. et al. In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147, 382–395 (2011).
Martirosyan, A., Figliuzzi, M., Marinari, E. & De Martino, A. Probing the Limits to MicroRNA-Mediated Control of Gene Expression. PLoS Comput. Biol. 12, e1004715 (2016).
Yuan, X. et al. Clustered microRNAs’ coordination in regulating protein-protein interaction network. BMC Syst. Biol. 3, 65 (2009).
Sass, S. et al. MicroRNAs coordinately regulate protein complexes. BMC Syst. Biol. 5, 136 (2011).
Hsu, C. W., Juan, H.-F. & Huang, H.-C. Characterization of microRNA-regulated protein-protein interaction network. Proteomics 8, 1975–1979 (2008).
Liang, H. & Li, W.-H. MicroRNA regulation of human protein-protein interaction network. RNA 13, 1402–1408 (2007).
Zhu W. & Chen Y.-P. P. Computational developments in microRNA-regulated protein-protein interactions. BMC Syst. Biol. 8, 14 (2014).
Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. A 81, 2340–2361 (1977).
Swain, P. S. Efficient Attenuation of Stochasticity in Gene Expression Through Post-transcriptional Control. J. Mol. Biol. 344, 965–976 (2004).
Mukherji, S. et al. MicroRNAs can generate thresholds in target gene expression. Nat. Genet. 43, 854–859 (2011).
Levine, E. & Hwa, T. Small RNAs establish gene expression thresholds. Curr. Opin. Microbiol. 11, 574–579 (2008).
Lai, X., Wolkenhauer, O. & Vera, J. Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucl. Acids. Res. 44, 6019–6035 (2016).
Figliuzzi, M., De Martino, A. & Marinari, E. RNA-based regulation: dynamics and response to perturbations of competing RNAs. Biophys. J. 107, 1011–1022 (2014).
Tkačik, G., Walczak, A. M. & Bialek, W. Optimizing information flow in small genetic networks. Phys. Rev. E 80, 031920 (2009).
Tkačik, G., Callan, C. G. Jr. & Bialek, W. Information Capacity of genetic regulatory networks. Phys. Rev. E 78, 011910 (2008).
Tkačik, G. & Walczak, A. M. Information transmission in genetic regulatory networks: a review. J. Phys. Condens. Matter 23, 153102 (2011).
Chekulaeva, M. & Filipowicz, W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr. Opin. Chem. Biol. 21, 452–460 (2009).
Valencia-Sanchez, M. A., Liu, J., Hannon, G. J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes. Dev. 20, 515–524 (2006).
Muers, M. Small RNAs: Recycling for silencing. Nat. Rev. Genet. 12, 227 (2011).
Hutvágner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).
Zeng, Y., Wagner, E. J. & Cullen, B. R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333 (2002).
Zeng, Y., Yi, R. & Cullen, B. R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. PNAS 100, 9779–9784 (2003).
Doench, J. G., Petersen, C. P. & Sharp, P. A. siRNAs can function as miRNAs. Genes Dev. 17, 438–442 (2003).
Du, B. et al. MicroRNA-545 Suppresses Cell Proliferation by Targeting Cyclin D1 and CDK4 in Lung Cancer Cells. PLoS One 9, e88022 (2014).
Nadal, A. et al. Association of CDK4 and CCND1 mRNA overexpression in laryngeal squamous cell carcinomas occurs without CDK4 amplification. Virchows Arch. 450, 161–167 (2007).
Kwon, J. et al. Integrin alpha 6: A novel therapeutic target in esophageal squamous cell carcinoma. Int. J. Oncol. 43, 1523–1530 (2013).
Bartel, D. P. & Chen, C. Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5, 396–400 (2004).
Shi, Y. et al. MicroRNA Regulation of Neural Stem Cells and Neurogenesis. J. Neurosci. 30, 14931–14936 (2010).
Klein, M. E., Impey, S. & Goodman, R. H. Role reversal: the regulation of neuronal gene expression by microRNAs. Curr. Opin. Neurobiol. 15, 507–513 (2005).
Giraldez, A. J. et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833–838 (2005).
Naguibneva, I. et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat. Cell Biol. 8, 278–284 (2006).
Hatfield, S. D. et al. Stem cell division is regulated by the microRNA pathway. Nature 435, 974–978 (2005).
Lynn, F. C. Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends Endocrinol. Metab 20, 452–459 (2009).
Skalsky, R. L. & Cullen, B. R. Viruses, microRNAs, and host interactions. Annu. Rev. Microbiol. 64, 123–141 (2010).
Breda, J., Rzepiela, A. J., Gumienny, R., van Nimwegen, E. & Zavolan, M. Quantifying the strength of miRNA-target interactions. Methods 85, 90–99 (2015).
Bosia, C. et al. Quantitative study of crossregulation, noise and synchronization between microRNA targets in single cells; Preprint. Available: https://arxiv.org/abs/1503.06696arXiv:1503.06696 (2015).
Alshalalfa, M., Bader, G. D., Bismar, T. A. & Alhajj, R. Coordinate MicroRNA-Mediated Regulation of Protein Complexes in Prostate Cancer. PLoS One 8, e84261 (2013).
Park, S.-M., Gaur, A. B., Lengyel, E. & Peter, M. E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors. Genes Dev. 22, 894–907 (2008).
Huelsken, J. & Behrens, J. The Wnt signalling pathway. J. Cell Sci. 115, 3977–3978 (2002).
Gibson, M. A. & Bruck, J. Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels. J. Phys. Chem. A 104, 1876–1889 (2000).
— Nature Scientific Reports
0 notes