#Xenics Infrared Camera in Mumbai
Explore tagged Tumblr posts
Text
When to choose a trilinear line scan color camera
When you’re building a machine vision system that requires high-speed color imaging and has tight space constraints, you can choose between trilinear, bilinear or prism cameras. This blog explains when a trilinear camera is the best choice.
Trilinear line scan camera technology
Trilinear technology uses three separate imaging lines to capture RGB images. In the past, three distinct linear sensors were mounted as close together as possible, but today most newer cameras feature a single sensor with three closely spaced lines of pixels. Each line is equipped with polymer color filters over its pixels to capture one of the three primary colors (red, green, or blue). By synchronizing the camera with the movement speed of the target, the lines captured as the target passes in front of the camera can be combined to create a 2D array of pixels consisting of R, G, and B values.
When is a trilinear camera the best option for your machine vision application?
When the price of the camera is an important decision factor: Especially now that most trilinear cameras are built around a single, multi-line sensor, trilinear cameras offer a less expensive option than prism cameras. In addition to the lower camera cost, trilinear cameras also offer savings over the recommended lenses needed for prism cameras. Together, this can result in savings of 50% over a comparable prism camera. Be advised, however, that several factors such as the need to use higher intensity lighting and the more rapid degradation of polymer filters vs. prism filters, may negate many of these cost savings over the lifetime of the system.
When your application requires high-speed imaging: Trilinear cameras are known for their ability to deliver true RGB image data at fast line rates. The latest 2K models (2048 pixels per line) can operate as fast as 44 kHz (44 thousand lines per second).
When you can guarantee a roughly perpendicular alignment: When trilinear cameras are tilted relative to the target, the distance from the target to each of the three sensor lines becomes different, slightly changing the length covered by each line on the target. If the tilt is small, compensation algorithms in the camera can make adjustments. But for larger angles, the offset can create color fringes (“halos”) or other artifacts in the image. A trilinear camera will perform best when the angle to the target is close to perpendicular and will not require frequent changes.
When working with a flat surface with minimal undulations: Because the three lines needed to collect full RGB information must be captured at slightly different points in time, ripples or other surface vibrations can cause the target to be closer or farther away when each line is captured. This can create pixel offsets and “halos” as described above. Similarly, discrete objects that might wobble or roll when moving on a conveyor can cause inconsistency between the three lines captured. For best results, trilinear cameras should be used when the target is flat, and any fluctuations are small.
When all objects in front of it move at the same speed: Spatial compensation is needed to produce sharp edges, as objects pass through the different color lines sequentially. This compensation, based on a reference speed, can achieve edge sharpness comparable to prism cameras. However, when object speeds vary, such as with grains or rice in a chute sorting machine, spatial compensation algorithms cannot fully eliminate halo effects. In such cases, bi-linear line scan sensors have an advantage, as their closely aligned pixel arrays reduce compensation errors compared to trilinear sensors.
When your system requires a small-sized and lightweight camera with low power consumption: Trilinear cameras are generally smaller than prism cameras which must accommodate the prism and multiple imagers. On top of that, because a prism camera is bigger and has separate control of 3 imagers, it is naturally heavier and requires more power to operate.
#machine vision system#vision inspection system#high resolution camera distributor#machine vision#vision inspection#mumbai#vision system#xenics infrared camera in mumbai#cognex#india
0 notes
Text
Xenics Infrared Camera in Mumbai: Importance of Methane Detection and Its Application in Aerial Surveillance
Introduction
In the rapidly evolving landscape of global energy production, methane plays a pivotal role. Its significance is projected to soar as energy consumption worldwide continues to grow. While renewable energy sources like photovoltaic and wind turbine power plants gain prominence, there is an escalating demand for methane-based power plants to address the intermittent nature of these renewables. However, methane, despite its importance, presents significant challenges. It is highly flammable, raising concerns about public safety. Moreover, methane is a potent greenhouse gas, possessing an 86-fold higher global warming potential than carbon dioxide over a 20-year period. The occurrence of stochastic methane leaks across vast oil and gas fields necessitates efficient leak detection and prevention strategies.
Traditionally, ground-based surveillance methods have been employed for methane detection, but they have inherent limitations due to the extensive geographic scale of leaks. Cost-effective detection of methane plumes, especially fugitive emissions, has emerged as a top priority for both industries and governments. Addressing this need, Kairos Aerospace has developed a groundbreaking solution using Xenics infrared cameras for aerial observation and detection, offering the promise of enhanced methane detection capabilities.
Spectroscopy: An Efficient Technology for Methane Detection
Methane exhibits distinct absorption lines in the infrared spectrum, making spectroscopy a powerful tool for its detection and quantification. These absorption lines are unique to methane, allowing spectroscopic analysis to discriminate it from other gases like water vapor, carbon dioxide, and ethane. When sunlight penetrates a fugitive plume within an oil and gas field, the gas molecules absorb specific infrared wavelengths. Subsequently, this sunlight, now altered by the absorbed methane, reflects off the ground and becomes detectable through aerial observations. Through rigorous spectroscopic analysis of this reflected sunlight, excess methane stemming from leaking infrastructure can be pinpointed.
Kairos Solution for Methane Detection
Kairos Aerospace has developed the LeakSurveyor™, an integrated methane gas imaging system mounted on light aircraft, capable of detecting methane emissions spanning up to 150 square miles of oil and gas infrastructure in a single day. This innovative system seamlessly combines an infrared hyperspectral imaging system with a traditional optical camera and GPS technology, facilitating accurate and easily understandable mapping of methane emissions. The raw spectral data undergoes processing through proprietary data analytics, including atmospheric retrieval techniques and advanced chemometric routines, all hosted within a fully ephemeral cloud processing architecture. The geolocated methane images are then superimposed on optical images acquired concurrently with the methane data. This harmonious integration of optical data, precise geolocation compatible with in-house mapping tools, and robust methane detection empowers customers to determine the precise location and likely source of methane plumes.
Choosing the Right Infrared Camera: Xenics to the Rescue
Selecting the appropriate infrared camera is a pivotal step in ensuring the efficiency of the methane detection system. High-precision spectroscopy mandates a camera boasting outstanding gain management, high linearity, and minimal defective pixels. Furthermore, to accommodate the vast geographic scale required for monitoring oil and gas fields, the camera's manufacturing must prioritize reproducibility, simplifying integration and enabling interchangeability. Lastly, the camera must exhibit a rugged, lightweight design with low power consumption, essential for seamless operation when mounted on the wing of a small aircraft. It is with these critical characteristics in mind that Kairos Aerospace opted for Xenics as their camera supplier, given the company's track record of fulfilling these key requirements.
Achievements: Making an Impact
Kairos Aerospace has been operating the LeakSurveyor™ for over six years, conducting inspections spanning more than 260,000 square kilometers across 17 regions in North and South America and Europe. Since 2019, Kairos has made a significant contribution to environmental preservation by preventing over 43.6 billion cubic feet of methane from entering the atmosphere, thanks to the LeakSurveyor™. In the ongoing battle against global warming, this equates to an astonishing 73.3 million metric tons of CO2 equivalent (20-year CO2e), a figure that mirrors the impact of removing 15.8 million cars from the road for an entire year.
Furthermore, over the last three years, these proactive measures have translated into substantial cost savings for customers, estimated at approximately $128 million USD.
Conclusion
In the quest for efficient methane detection and prevention, Kairos Aerospace's utilization of Xenics infrared cameras in aerial surveillance has emerged as a game-changing solution. With methane's critical role in global energy production, it is imperative to address safety concerns and mitigate its impact as a potent greenhouse gas. The LeakSurveyor™, with its cutting-edge technology and exceptional track record, represents a beacon of hope in achieving these goals. As the world grapples with the challenges of methane emissions, the use of Xenics infrared cameras in Mumbai and beyond promises a more sustainable and secure energy future.
To Know More About Xenics Infrared Camera dealer Mumbai India Please visit below link.
Link: http://www.mvrpl.com/
0 notes
Text
Xenics Infrared Camera in Mumbai: Importance of Methane Detection and Its Application in Aerial Surveillance
Introduction
In the rapidly evolving landscape of global energy production, methane plays a pivotal role. Its significance is projected to soar as energy consumption worldwide continues to grow. While renewable energy sources like photovoltaic and wind turbine power plants gain prominence, there is an escalating demand for methane-based power plants to address the intermittent nature of these renewables. However, methane, despite its importance, presents significant challenges. It is highly flammable, raising concerns about public safety. Moreover, methane is a potent greenhouse gas, possessing an 86-fold higher global warming potential than carbon dioxide over a 20-year period. The occurrence of stochastic methane leaks across vast oil and gas fields necessitates efficient leak detection and prevention strategies.
Traditionally, ground-based surveillance methods have been employed for methane detection, but they have inherent limitations due to the extensive geographic scale of leaks. Cost-effective detection of methane plumes, especially fugitive emissions, has emerged as a top priority for both industries and governments. Addressing this need, Kairos Aerospace has developed a groundbreaking solution using Xenics infrared cameras for aerial observation and detection, offering the promise of enhanced methane detection capabilities.
Spectroscopy: An Efficient Technology for Methane Detection
Methane exhibits distinct absorption lines in the infrared spectrum, making spectroscopy a powerful tool for its detection and quantification. These absorption lines are unique to methane, allowing spectroscopic analysis to discriminate it from other gases like water vapor, carbon dioxide, and ethane. When sunlight penetrates a fugitive plume within an oil and gas field, the gas molecules absorb specific infrared wavelengths. Subsequently, this sunlight, now altered by the absorbed methane, reflects off the ground and becomes detectable through aerial observations. Through rigorous spectroscopic analysis of this reflected sunlight, excess methane stemming from leaking infrastructure can be pinpointed.
Kairos Solution for Methane Detection
Kairos Aerospace has developed the LeakSurveyor™, an integrated methane gas imaging system mounted on light aircraft, capable of detecting methane emissions spanning up to 150 square miles of oil and gas infrastructure in a single day. This innovative system seamlessly combines an infrared hyperspectral imaging system with a traditional optical camera and GPS technology, facilitating accurate and easily understandable mapping of methane emissions. The raw spectral data undergoes processing through proprietary data analytics, including atmospheric retrieval techniques and advanced chemometric routines, all hosted within a fully ephemeral cloud processing architecture. The geolocated methane images are then superimposed on optical images acquired concurrently with the methane data. This harmonious integration of optical data, precise geolocation compatible with in-house mapping tools, and robust methane detection empowers customers to determine the precise location and likely source of methane plumes.
Choosing the Right Infrared Camera: Xenics to the Rescue
Selecting the appropriate infrared camera is a pivotal step in ensuring the efficiency of the methane detection system. High-precision spectroscopy mandates a camera boasting outstanding gain management, high linearity, and minimal defective pixels. Furthermore, to accommodate the vast geographic scale required for monitoring oil and gas fields, the camera's manufacturing must prioritize reproducibility, simplifying integration and enabling interchangeability. Lastly, the camera must exhibit a rugged, lightweight design with low power consumption, essential for seamless operation when mounted on the wing of a small aircraft. It is with these critical characteristics in mind that Kairos Aerospace opted for Xenics as their camera supplier, given the company's track record of fulfilling these key requirements.
Achievements: Making an Impact
Kairos Aerospace has been operating the LeakSurveyor™ for over six years, conducting inspections spanning more than 260,000 square kilometers across 17 regions in North and South America and Europe. Since 2019, Kairos has made a significant contribution to environmental preservation by preventing over 43.6 billion cubic feet of methane from entering the atmosphere, thanks to the LeakSurveyor™. In the ongoing battle against global warming, this equates to an astonishing 73.3 million metric tons of CO2 equivalent (20-year CO2e), a figure that mirrors the impact of removing 15.8 million cars from the road for an entire year.
Furthermore, over the last three years, these proactive measures have translated into substantial cost savings for customers, estimated at approximately $128 million USD.
Conclusion
In the quest for efficient methane detection and prevention, Kairos Aerospace's utilization of Xenics infrared cameras in aerial surveillance has emerged as a game-changing solution. With methane's critical role in global energy production, it is imperative to address safety concerns and mitigate its impact as a potent greenhouse gas. The LeakSurveyor™, with its cutting-edge technology and exceptional track record, represents a beacon of hope in achieving these goals. As the world grapples with the challenges of methane emissions, the use of Xenics infrared cameras in Mumbai and beyond promises a more sustainable and secure energy future.
0 notes