#Thomas E. Emmert.
Explore tagged Tumblr posts
Text
Der große Glander
Buchvorstellung von Thomas E. Emmert »« Worum es dem Autor dieser an sich fein erdachten Geschichte eigentlich geht, deutet sich zu Beginn der Exposition bereits an: In einem Edelrestaurant in Hamburg speist der abgehalfterte Redakteur eines von der Einstellung bedrohten Kunstmagazins und treibende Kraft der Romanhandlung mit seiner Frau, Chefredakteurin eines erfolgreichen Frauenmagazins und…
View On WordPress
0 notes
Text
Protein Sequence Comparison Based on Physicochemical Properties and the Position-Feature Energy Matrix
Zhao, Y., Li, X. & Qi, Z. Novel 2D graphic representation of protein sequence and its application. J. Fiber Bioengineering and Informatics 7, 23–33 (2014).
Huang, D. & Yu, H. Normalized Feature Vectors: A novel alignment-free sequence comparison method based on the numbers of adjacent amino acids. IEEE/ACM Trans. Comput. Biol. 10, 457–467 (2013).
Gotoh, O. An improved algorithm for matching biological sequences. J. Mol. Biol. 162, 705–708 (1982).
Chakraborty, A. & Bandyopadhyay, S. FOGSAA: Fast optimal global sequence alignment algorithm. Sci. Rep. 3, 1746 (2013).
Feng, D. & Doolittle, R. F. Progresssive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 25, 351–360 (1987).
Bradley, R. K. et al. Fast Statistical Alignment. PLoS Comput. Biol. 5, e1000392 (2009).
Reinert, G., Chew, D., Sun, F. & Waterman, M. S. Alignment-free sequence comparison(I): Statistics and power. J. Comput. Biol. 16, 1615–1634 (2009).
Schwende, I. & Pham, T. D. Pattern recognition and probabilistic measures in alignment-free sequence analysis. Brief Bioinform 15, 354–368 (2014).
Borozan, I., Watt, S. & Ferretti, V. Integrating alignment-based and alignment-free sequence similarity measures for biological sequence classification. Bioinf. 31, 1396–1404 (2015).
Didier, G., Corel, E., Laprevotte, I., Grossmann, A. & Landès-Devauchelle, C. Variable length local decoding and alignment-free sequence comparison. Theor. Comput. Sci. 462, 1–11 (2012).
Nakashima, H., Nishikawa, K. & Ooi, T. The folding type of a protein is relevant to the amino acid composition. J. Biochem. 99, 152–162 (1986).
Chou, K. C. Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review). J. Theor. Biol. 273, 236–247 (2011).
Mohabatkar, H., Beigi, M. M., Abdolahi, K. & Mohsenzadeh, S. Prediction of allergenic proteins by means of the concept of Chou’s pseudo amino Aacid composition and a machine learning approach. Medicinal Chemistry 9, 133–137 (2013).
Zhong, W. & Zhou, S. Molecular science for drug development and biomedicine. Int. J. Molec. Sci. 15, 20072–20078 (2014).
He, P., Wei, J., Yao, Y. & Tie, Z. A novel graphical representation of proteins and its application. Physica A 391, 93–99 (2012).
Randić M. et al. Graphical representation of proteins. Chem. Rev. 111, 790–862 (2011).
Jiang, S., Liu, W. & Fee, C. H. Graph theory of enzyme kinetics: I. Steady state reaction system, Scientia Sinica 22, 341–358 (1979).
Yao, Y. et al. Analysis of similarity/dissimilarity of protein sequences. Proteins 73, 864–871 (2008).
Kuang, C., Liu, X., Wang, J., Yao, Y. & Dai, Q. Position-specific statistical model of DNA sequences and its application for similarity analysis. MATCH Commun. Math. Comput. Chem. 73, 545–558 (2015).
Sun, D., Xu, C. & Zhang, Y. A novel method of 2D graphical representation for proteins and its application. MATCH Commun. Math. Comput. Chem. 75, 431–446 (2016).
Xia, X. & Li, W. What amino acid properties affect protein evolution? J. Mol. Evol. 47, 557–564 (1998).
Qi, Z., Jin, M., Li, S. & Feng, J. A protein mapping method based on physicochemical properties and dimension reduction. Comput. Biol. Med. 57, 1–7 (2015).
Gutman, I. The energy of a graph. Ber. Math. Statist. Sekt. Forschungsz. Graz 103, 1–22 (1978).
Wu, H., Zhang, Y., Chen, W. & Mu, Z. Comparative analysis of protein primary sequences with graph energy. Physica A 43, 249–262 (2015).
Gutman, I., Li, X. & Zhang, J. Graph energy, in: Analysis of Complex Networks. From Biology to Linguistics, (ed. Dehmer, M. & Emmert-Streib, F.) 145–174 (Wiley-VCH, Weinheim, 2009).
Li, X., Shi, Y. & Gutman, I. Graph Energy (ed. Li, X., Shi, Y. & Gutman) (Springer. New York, 2012).
Zamyatin, A. A. Protein volume in solution. Prog. Biophys. Mol. Biol. 24, 107–123 (1972).
Chotia, C. The nature of the accessible and buried surfaces in proteins. J. Mol. Biol. 105, 1–14 (1975).
Randić, M. 2-D graphical representation of proteins based on physicochemical properties of amino acids. Chem. Phys. Lett. 444, 176–180 (2007).
Paola, L. D., Mei, G., Venere, A. D. & Giuliani, A. Exploring the stability of dimers through protein structure topology. Curr. Protein Peptide Sci. 17, 30–36 (2016).
Yu, L., Zhang, Y., Jian, G. & Gutman, I. Classification for microarray data based on K-means clustering combined with modified single-to-noise-ratio based on graph energy, J. Comput. Theor. Nanosci. 14, 598–606 (2017).
Emmert-Streib, F., Dehmer, M. & Shi, Y. Fifty years of graph matching, network alignment and comparison. Inform. Sci. 346–347, 180–197 (2016).
Dehmer, M., Emmert-Streib, F., Chen, Z., Li, X. & Shi, Y. Mathematical Foundations and Applications of Graph Entropy, (ed. Dehmer, M. et al.) (Wiley, 2016).
Yu, C., Deng, M. & Yau, S. S. DNA sequence comparison by a novel probabilistic method. Inf. Sci. 181, 1484–1492 (2011).
Cover, T. M. & Thomas, J. A. Elements of Informatiobn Theory, (ed. Wiley, J. & Sons) 2nd edition (Wiley, 1991).
Kullback, S. & Leibler, R. A. On information and sufficiency. Ann. Math. Stat. 22, 79–86 (2015).
Yu, C., Cheng, S., He, R. & Yau, S. S. Protein map: A alignment-free sequence comparison method based on various properties of amino acids. Gene 486, 110–118 (2011).
Emmert-Streib, F. & Dehmer, M. Information processing in the transcriptional regulatory network of yeast: Functional robustness. BMC Systems Biology 3 (2009).
Lam, W. & Bacchus, F. Learning Bayesian belief networks: An approach based on the MDL principle. Computat. Intell. 10, 269–293 (1994).
Xiao, X. et al. Using complexity measure factor to predict protein subcellular location. Amino Acids 28, 57–61 (2005).
Liao, B., Liao, B., Sun, X. & Zeng, Q. A novel method similarity analysis and protein sub-cellular localization prediction. Bioinf. 26, 2678–2683 (2010).
Mu, Z., Wu, J. & Zhang, Y. A novel method for similarity/dissimilarity analysis of protein sequences. Physica A 392, 6361–6366 (2013).
Chang, G. & Wang, T. Phylogenetic analysis of protein sequences based on distribution of length about common substring. Protein J. 30, 167–172 (2011).
Ford, M. J. Molecular evolution of transferrin: Evidence for positive selection in salmonids. Mol. Biol. Evol. 18, 639–647 (2001).
Davies, P. L., Baardsnes, J., Kuiper, M. J. & Walker, V. K. Structure and function of antifreeze proteins. Phil. Trans. R. Soc. Lond. B 357, 927–935 (2002).
Duman, J., Verleye, D. & Li, N. Site-specific forms of antifreeze protein in the beetle dendroides canadensis. J. Comp. Physiol. B 172, 547–552 (2002).
Graether, S. P. et al. Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 406, 325–328 (2000).
Graether, S. P. & Sykes, B. D. Cold survival in freeze intolerant insects: the structure and function of beta-helical antifreeze proteins. J. Biochem. 271, 3285–3296 (2004).
Altschul, S. F. et al. Gapped LAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
Yau, S., Yu, C. & He, R. A protein map and its application. DNA Cell. Biol. 27, 241–250 (2008).
Xu, C., Sun, D., Liu, S. & Zhang, Y. Protein sequence analysis by incorporating modified chaos game and physicochemical properties into Chou’s general pseudo amino acid composition. J. Theor. Biol. 406, 105–115 (2016).
— Nature Scientific Reports
#Nature Scientific Reports#Protein Sequence Comparison Based on Physicochemical Properties and the P
0 notes
Text
Der Kultivierte Gärtner: Die Welt, die Kunst und die Geschichte im Garten
Buchvorstellung von Thomas Emmert Eins vorweg: Es gehört nicht zu den Büchern, die man nicht aus der Hand legen kann. Im Gegenteil, das geht sogar sehr gut. Rebenichs Der Kultivierte Gärtner eignet sich daher hervorragend zum Beispiel dort als Bettlektüre, wo man sonst gerne über zerknitterten Seiten und Einbandspuren im Gesicht leicht verdutzt wieder aufwachte oder nach durchgelesener Nacht mit…
View On WordPress
#Buchvorstellung#Der kultivierte Gärtner#Der Kultivierte Gärtner: Die Welt#die Kunst und die Geschichte im Garten#Die Welt#Klett-Cotta#Rezension#Rudolf Borchardt#Stefan Rebenich#Stefan Rebenich Der kultivierte Gärtner#Thomas E. Emmert
1 note
·
View note
Text
Wovon man nicht schweigen kann, darüber muss man reden!
Mehr oder weniger erschöpfende Überlegungen in 20 mäandernden Abteilungen hinsichtlich Udo Jürgens, Geschmacks, Wahrnehmungen und Realitäten, sowie über die unausweichlich fortschreitende Erblindung im Engen Kreis und ihre Verbindung zum Eskapismus im Besonderen. Dem KRAUTJUNKER zugeeignet von Thomas E. Emmert PROLOG Sie müssen jetzt stark sein. Öffnen Sie sich ruhig eine Flasche. EINS Kurz…
View On WordPress
#Griechischer Wein#Malagousia#Mavrodaphne#Mavrostyfo#Mavrotragano#Moschofilero#Thomas E. Emmert#Thrapsathiri#Wein
0 notes