#Like vaccines with a non dangerous versione of the illness to create antibodies
Explore tagged Tumblr posts
Text
@soetpotatis
Mercutio freaking out was basically me when I watched chernobyl some months ago when the series came out. And kind of yesterday evening when I made more researches for the actual effects of a nuclear disaster, though here was an actual attack on the power plant and not a human mistake, but since I'm writing a full background for the au I decided to di I the right way, maybe even put in some fake documents, like newspapers articles and such, but written by someone who want to actually tell the story... That's the kind of loud AUs I sometimes cross path with.
And yet, even if I make all the researches I still keep some more supernatural/horror like things, like atlantis/Venice, like mutated animals who grew wild and bigger than normal. Not zombies, just slight mutations who made animals, and sometimes people more dangerous. Verona, for example, despite the actual blow of the power plant didn't mutated externally, but after the first century or so they've learned to live with this level of radiations and stopped getting sick because of it after like 200 years. Those who get sick are people like tybalt, who was born from a generation who lived outside and spent too long in the lower ground so his cells don't know how to react to everything.
Similar benvolio, the first years spent outside with the Montagues he would constantly catch the most curable and mundane sickness because the air was too different and he had to adapt.
But mercutio only finds the actual symptoms (and picture) of initials radiation sickness and he's like terrified because it leads to death in horrifying and painful ways in a span of 20 days at most. Then he realizes that tybalt is actually still alive after years and he's like "okay... Maybe I found the wrong text. Mmi need something more modern." except there is nothing more modern because ever since the end of the war the world was so ashamed because entire nations had been wiped away that they classified every single thing and swore to never let this happen again. (like entire South America was kinda gone, Africa literally split in parts after the Sahara power plant was destroyed and sunk beneath the sand. Venice, despite being only a city, and jot the biggest, sunk beneath the sea and those who survived somehow evolved to survive and became absolutely vengeful and angry. Really, a very angry Atlantis because she'd been forgotten.)
So now all the information the can get are from people in Lost Verona, though they're not thrilled of helping those above because they barely knew they even existed before. (and yes, Mercutio and julia and even Romeo didn't know. He thought he was just an orphan living in the streets. Most of the doors to the lower ground were sealed except for a few because over the years the seals weakened, the prince knew of the place, of course, but mostly left it in his own.)
When they see that what they gave tybalt was slowly stopping of working and he like... Balanced between getting better and then worsening a couple of days later, ben returns there to have something else, or some answers, though they're mostly "look boy, he won't melt like people did in ancient days, but we don't do miracles against that."
Maybe he finds some kind of scientist/doctor willing to help them though...
For the rule that if I’m feeling miserable so must my characters… @soetpotatis . Mwhat a bad characters mom I am… (not so miserable now after some ibuprofen, still at the beginning of a cold but I’m positive I’m gonna avoid fever again)
Tybbles, baby sweet tybs invited at a masquerade at the prince’s palace, like half of Verona, Montagues included.
He goes just because it’s not easy to see Julia those days, with the whole marriage to Romeo thing and her living at the Montague palace, even though he would have remained home, possibly in bed.
Anyway he talks a while with Julia, manages not to harm her husband when he questions his “not so good look”, even though he’s right and he knows it. Then he slips outside away from the noise and the warmth of the room though he feels pretty cold anyway.
Mercutio notices him and go to keep him company a little before noticing he’s having trouble breathing because of the fever, and that has soon as he touches his cheek tybalt leans against his hand.
So, despite not having figure out yet what they are, though it’s not enemies for sure, he takes him inside and to his room, away enough from the noise to allow him to rest. He wonders if he should call someone of the capulets to let them know but tybalt stops him, saying it doesn’t matter and since they dragged him there they probably don’t care enough. (while he actually hid not feeling well, though it was quite obvious by then)
So, they just stay in mercutio’s room, he tries to cool down the fever and more generally tries to comfort him as he slowly slips in a more unconscious state that makes mercutio definitely panic.
And…. And then in stuck… I mean, that’s basically a summary of what I’m trying to write, though the break is now over and I can’t bring myself to concentrate enough on words. (I think my immune system just dropped, in 2 months I got sick 3 times already when it used to happen like once a year, or even less)
So I don’t know, maybe it’s a very light thing and cutio worries for nothing… Or it’s more severe and he better worry and call someone… It’ll probably depends on the mood when I write it… How much angst I want or how bad I feel to make them suffer… 😂
#Like trying some experimental things...#Like vaccines with a non dangerous versione of the illness to create antibodies#Same with this with like... Harmless radiations or something#And cutio he would be more and more adamant to stay with him and keeps saying that he actually lives him#Until tybalt will believe him#Memories of Lost Verona#Romeo es julia#Aki writes
43 notes
·
View notes
Text
Pandemic Passport And The Danger Of Immuno Discrimination
Below is a longer version of my column that ran in the Los Angeles Times on the danger of using antibody testing as a basis for discrimination. The concept of a pandemic passport of course will only be plausible if such antibodies truly yield a form of immunity. The WHO has declared that there is no evidence to support that claim. Yet, plasma treatments are reportedly successful.
Here is the column:
With the coronavirus antibody test just days away from approval, the country is about to be flooded with millions of tests to determine if individuals have already been exposed to the virus and presumably have immunity from it. The development is key for researchers to understand both the scope and spread of the virus as well as how close we may be to a type of “herd immunity.” That public health breakthrough however could trigger some difficult legal questions. First and foremost, what if you are not part of the herd? The country may soon have to deal with a new concept of bias: antibody or immuno discrimination.
There is a growing and urgent need to get this economy rolling as the virus outbreak subsides. President Donald Trump is correct that destroying this economy will ruin the lives and dreams (and yes health) of tens of millions of citizens. It could reduce the horizon for an entire generation saddled with crippling debt and reduced markets.
Recovery will occur only to the degree that people feel comfortable about getting on airplanes, trains, buses, restaurants, and other closed spaces. With a vaccine projected as still a year away, the population could soon be divided into the immunized and the potentially contagious. If you are in the later group, the question is whether you can be denied certain services.
It is not as far-fetched as you might think. Take the airlines. Planes need to be near capacity to be profitable as a general rule. Social distancing on an airplane is not economically viable. One solution is to require proof of antibodies in your system with one of these available tests. Indeed, the airlines this week floated the idea of a required blood test. That conversely would create barriers to those who are immuno signatures.
Various countries are already using tracking technology to identify carriers and the same technology can be used to distinguish those who are immune. In Moscow, the government has issued “digital permits” to travel that bars others from public transport and even car traffic.
Our legal system is poorly suited for discrimination based on antigens. The discrimination laws focus on immutable characteristics like race and there are both constitutional and statutory protections for those singled out for their religion, gender, sexual orientation, and other classifications. This is not an immutable characteristic but one based on the status of a person’s immunity from a virus.
The other area of relevant law covers quarantine powers in a pandemic. However, those laws and cases focus on confining the contagious, not the potentially contagious.
This issue could actually become more acute once a vaccination is available. The imposition of a mandatory vaccine would be necessary to prevent a renewed outbreak. Putting aside the logistics of vaccinating over 300 million people, many will object or fail to comply. They will continue to represent a fertile population for the virus to take hold. There are three ways to maximize immunization. First, make it mandatory. Second, convince people that they need it. Third, give him an incentive or disincentive in complying.
The first option will turn on a 1905 case where the Supreme Court upheld a state mandatory vaccination program of school children for small pox in Massachusetts. In Jacobson v. Massachusetts (1905), the Court found that such programs are the quintessential state power rather than a federal power. It also held that “every well-ordered society charged with the duty of conserving the safety of its members the rights of the individual in respect of his liberty may at times, under the pressure of great dangers, be subjected to such restraint, to be enforced by reasonable regulations, as the safety of the general public may demand.” States are allowed to subject citizens to restraints to protect “general comfort, health, and prosperity of the State.” The Congress should fund a national vaccinations program and leave mandatory compliance orders to the states.
The second option is already well-established in the minds of most citizens. A deadly pandemic helps. However, we continue to be ministers die who defied orders against large services and young people who put spring break above survival concerns. There will continue to be a percentage of citizens who simply do not believe the virus will touch them or faith or youth will protect them.
That leaves the third option. If people face limitations on travel and employment, a rational actor is likely to comply even if they see little need to do so otherwise. Yet, such a system of proven immunization will create an insular group of the immune deficient. In Jacobson, the law focused on children and the penalties were being blocked from school and a small fine. With the coronavirus, a state would have to compel the population at large of every age.
Some may raise religious or other constitutional rights to refuse a vaccine. The states will have a strong argument that this is not a case of simply self-inflicted harm like those who handle snakes as a matter of faith. By not complying, individuals are fueling the spread to others, particularly more vulnerable populations. In 1922, the Court ruled in Zucht v. King that a school system does not violate the 14th Amendment’s Equal Protection Clause in denying school to students who refused for any reason to be vaccination.
Most importantly, in 1944 in Prince v. Massachusetts, the Court upheld such mandatory programs because “the right to practice religion freely does not include liberty to expose the community or the child to communicable disease or the latter to ill health or death.”
The coronavirus vaccination program would be broader but still rely on the same precedent. Congress can impose limits on interstate travel and the Transportation Security Administration could impose entry requirements but gate areas. The question is whether private businesses like airlines could also make vaccination or immunity a condition for customers. Airlines are part of a regulated industry and could face difficulty in the unilateral imposition of such conditions.
Thus, while states are key to mandatory vaccinations, the federal government would be key to allowing travel restrictions and other barriers to the noncompliant. In doing so, the restrictions would have to trump the right to travel and other constitutional rights. The coercive impact on individuals would be extreme. Noncompliant and non-immune citizens would be isolated physically and socially. Moreover, to make such a system work, there would have to be an easy form of proof of immunization or vaccination – a type of antibody passport.
In the end, the federal and state government may decide to accept a certain level of noncompliance and resulting contraction of the virus. If this is a slowly mutating virus, a second wave may be manageable with therapeutics and ramped up resources. However, if the country wants to impose a mandatory program, it will have to deal with a new status dividing the population between the immune and non-immune.
Pandemic Passport And The Danger Of Immuno Discrimination published first on https://immigrationlawyerto.tumblr.com/
0 notes
Text
Vaccines
Overview
The discovery and wide application of vaccines that protect against once-fatal childhood diseases like measles, mumps, rubella and diphtheria is one of the most significant medical contributions of the past two centuries. Today, newborns get their first vaccine soon after birth (hepatitis B), then, between one and two months begin a series of shots that will eventually protect them against 14 diseases. Worldwide, childhood vaccines prevent up to 3 million deaths each year. In recent years, however, parents are increasingly likely to under-vaccinate their children. A January 2013 study published in JAMA Pediatrics reported that nearly half of children ages 2 months to 24 months in the United States either aren’t getting all the necessary vaccines or have not been vaccinated at all. Vaccines are not just for kids. Adolescents and adults need them, too, whether to “boost” earlier immunizations that provided immunity against diphtheria, pertussis and tetanus or to protect against other diseases, such asinfluenza, pneumonia, shingles, bacterial meningitis or, for those traveling abroad,yellow fever and typhoid. Preteen girls and boys can now be vaccinated against several strains of the human papillomavirus (HPV), which cause most cervical cancers, as well as cancer of the anus, vagina and vulva. Vaccines are also being developed to prevent malaria and HIV, the virus that causes AIDS, as well as to harness the power of the immune system to fight cancer and other diseases. The History of Vaccines The roots of modern vaccines stretch halfway across the world to ancient China and India where, as early as the 10th century BC, people inhaled pus from smallpox blisters to inoculate themselves against the deadly disease. But it wasn’t until 1796 that a country doctor from England named Edward Jenner formally vaccinated a child against the disease. Rather than using pus or scabs from individuals infected with smallpox, he used pus from a similar, but less virulent pox disease called cowpox. He hypothesized this would protect against smallpox because milkmaids infected with cowpox never caught smallpox, even during epidemics. Two weeks after inoculating an 8-year-old boy, Jenner tried to infect him with smallpox. Nothing happened. Voila! The first successful vaccination. (Indeed, the word vaccine comes from the Latin word “vacca” for cow). It, however, would be nearly two centuries later before smallpox was eradicated worldwide (the last known case occurred in Somalia in 1977). Its banishment (except for samples held in Russian and American laboratories) has been heralded as one of the most significant medical achievements in history. We’ve come a long way from Jenner’s days, when “vaccines” were given by using a quill or ivory point to transfer the infected pus into a healthy person’s skin. Today, safe, hair-thin needles deliver nearly painless injections, while some vaccines can be given orally with drops or nasally through a spray. Today we have vaccines against childhood illnesses like diphtheria, mumps, rubella and measles, which used to kill millions of children each year; against tetanus and rabies; and even against cancer. Some are designed to protect against infection in the first place; others to prevent the pathogen’s replication and halt its ability to infect normal cells. In all, more than 300 approved vaccines protect against 30 diseases. Not only have vaccines saved lives, they have changed the very world in which we live. Vaccine Basics To understand how vaccines work, you first need to understand how your immune system works. There are two types of immunity: innate and adaptive. The innate immune system is a nonspecific response to any threat. Invaders such as bacteria, viruses and other pathogens display “signs” on their surface called antigens that signal immune system cells to action. The innate immune system includes visible protection, like skin and the mucus membranes in your nose and mouth that strain out pathogens, and invisible protection in the form of white blood cells like macrophages, which release inflammatory chemicals such as histamine and leukotrienes to destroy invaders. Sometimes this process runs amok, as when the innate immune system launches an all-out attack against harmless proteins like those from pollen or peanuts, resulting in an allergic reaction. A more targeted approach to threats comes from your adaptive immune system, which responds to specific antigens. The foundation of this system exists in T and Blymphocytes. These immune cells learn to recognize certain antigens. Once they identify a non–self invader, they generate specific responses to destroy that invader. B cells mature into specialized cells with antigen-specific antibodies on their surfaces that lock onto the antigen to annihilate it. T cells release toxins to destroy the invader or call other immune system cells into action. Once T and B cells are activated, they leave behind copies of themselves that are ready to spring into action again if the specific antigen appears. This is known as immunologic memory. These mature T and B cells enable your immune system to launch an attack against, say, a measles virus so quickly that the virus never has time to infect healthy cells and make you sick. Thus, the adaptive immune system, unlike the innate immune system, protects against reinfection. The problem with the adaptive immune system is that the first time it can take several days to get up to speed once it encounters a new antigen. That’s more than enough time for most pathogens to replicate and make you sick. Enter vaccines. A vaccine is designed to stimulate the adaptive immune system before you’re exposed to the virus and bacteria so when you do encounter it, specialized T and B cells already exist, ready to spring into action before the pathogen can make you sick. Types of Vaccines Vaccines may be produced in several ways:
Live, attenuated vaccines Inactivated vaccines Subunit vaccines Toxoid vaccines Conjugate vaccines DNA vaccines Recombinant vector vaccines
Live, attenuated vaccines. These vaccines contain a live, although significantly weakened, version of the pathogen. Measles, mumps and chicken pox vaccines are made with live viruses. The only bacterial vaccine made with live pathogens in the United States is the typhoid vaccine. The benefit of a live vaccine is that a single dose often provides lifelong immunity. The downside is that because viruses and other pathogens naturally mutate, or change, the virus within the vaccine could also change, possibly creating a more virulent version of itself that the immune system would have difficulty combatting. This was an issue with the early oral polio vaccines but is generally not a problem with current live vaccines, which are much safer than the virus they protect against. Only people with a suppressed immune system (such as those who have HIV/AIDS, are taking immunosuppressant drugs or are being treated for cancer) should be concerned about receiving live vaccines because they could, conceivably, become infected with the virus. Live vaccines also usually require refrigeration. Inactivated vaccines. These vaccines contain a killed version of the pathogen. They are more stable (meaning they don’t need refrigeration) and safer than attenuated viruses, but they don’t elicit as strong an immune response. Thus, the immunity they provide may not last as long and you might need a “booster” vaccine down the road. Subunit vaccines. These vaccines are made with bits and pieces of the inactivated antigen called epitopes. The advantage is that by using fewer molecules of the virus or bacteria, there is less risk of side effects. The disadvantage is that it is challenging and time consuming to identify the exact epitopes needed to stimulate the immune system. Toxoid vaccines. These vaccines are designed to protect against bacteria that secrete toxins. Treating the bacteria with formalin renders the toxins harmless but still retains enough of their structure to “teach” immune cells to recognize the bacteria and train them to lock onto the toxin antigen before the bacteria can release the chemical. Toxoid vaccines are used for diphtheria and tetanus. Conjugate vaccines. Conjugate vaccines are typically used to provide protection against certain types of bacterial infection, particularly in very young children. These bacteria, including those that cause bacterial meningitis, are surrounded by a thick capsule called a polysaccharide coating. This coating helps the bacteria hide from the immune system. Thus, antigen-presenting T cells can’t “show” the antigen to B cells. B cells can still produce antibodies against the bacterial antigens and provide some protection, albeit short-lived, but this type of protection doesn’t develop until children are about 2 years old. So many polysaccharide vaccines for adults and older children don’t work in younger children, leaving children highly susceptible to the illnesses those bacteria cause. Enter the conjugate vaccine. Antigens or toxoids that the baby’s immune system does recognize are attached to the polysaccharide coating. The infant’s immune system learns to recognize polysaccharide coatings as dangerous and to defend against such pathogens. DNA vaccines. DNA vaccines are not yet in use, though they are being tested for influenza and herpes. These vaccines are made of the organism’s genetic material, which carries the code, or recipe, for antigens. Once in the body, normal cells take up the DNA and begin making the microbe’s antigens, displaying them on their surface and stimulating the immune system to respond. Recombinant vector vaccines. These vaccines also are not yet approved for widespread use but are being evaluated for HIV, rabies and measles and are thought to be even safer than existing vaccines. With recombinant vector vaccines, the microbe’s DNA is inserted into another virus or bacteria that transports the DNA, enters cells and releases the DNA into the healthy cell, which then can provoke the immune response.
When to Vaccinate
These charts contain recommendations from the U.S. Centers for Disease Control and Prevention (CDC) for preventive vaccines. Don’t panic if you or your child has not received all vaccinations on time; the CDC has guidelines for “catch-up” vaccinations that your health care professional should be aware of. If you are traveling out of the country, make an appointment with your health care professional at least four to six weeks before your trip to see if you need any travel-related vaccines. Travel is also a good time to make sure you’re up-to-date on your other vaccines, as well. The only vaccines required by law are: Yellow fever: Required for travel to countries in sub-Saharan Africa and tropical South America Meningococcal vaccine: Required for travel to Saudi Arabia during the Hajj, an annual pilgrimage Other travel-related vaccines include typhoid, hepatitis A (for adults not vaccinated as children), Japanese encephalitis vaccine and rabies.
The Truth About Vaccines
Untruths and myths about vaccines have been circulated for hundreds of years. Complaints and concerns range from invasion of privacy and “bodily integrity” to concerns about safety, the use of animals to prepare and test vaccines and religious issues. But if only a few people vaccinate their children, vaccines would not be very effective in reducing or eliminating disease. Between 85 percent and 95 percent of a population must be vaccinated to provide protection for all (herd immunity). That’s why most states in the United States require vaccination before children enter school. The Supreme Court has upheld such laws since the early part of the 20th century. Even today, however, some parents refuse to vaccinate their children. The most recent controversy around vaccines stems from suspicion of a possible link to the rising rates of autism of either the preservative thimerosal, which contains mercury, or the measles component of the MMR (measles/mumps/rubella) vaccine. Parental concern led to numerous scientific investigations regarding such links, with study after study finding no connections. Nonetheless, thimerosal was phased out of most vaccines in 2001. Autism rates, however, have continued to rise. Vaccines are extremely safe. The Centers for Disease Control and Prevention operates an Immunization Safety Office, which continuously monitors vaccine safety, including side effects. Part of its mission is managing the vaccine adverse event reporting system, which serves as an “early warning” system to detect vaccine-related problems. About 30,000 adverse event reports are filed annually, but just 10 percent to 15 percent are classified as serious (causing disability, hospitalization, life-threatening illness or death), and most of the incidents are ultimately not linked to vaccination. Anyone can file a report, including health care providers, manufacturers, personal injury lawyers and vaccine recipients or their parents or guardians. Children or adults who are harmed by a vaccine may apply for compensation from theNational Childhood Vaccine Injury Compensation Fund. Other vaccine myths and truths: Myth: The flu vaccine can cause the flu. Fact: The vaccine cannot cause the flu if you’re vaccinated with the inactivated trivalent vaccine, made with killed virus. However, fever and achiness can occur after a flu vaccine. This is not the flu, however, but the result of an activated immune system. The nasal flu vaccine, which contains a weakened live virus, could, conceivably, cause the flu in someone with a suppressed immune system. Thus, it is only approved for use in healthy people between 2 and 49 years of age (younger and older people tend to have weaker immune systems). Studies involving hundreds of healthy children and adults showed no evidence that the nasal flu vaccine resulted in the flu. However, you can get the flu after being vaccinated if the viral types used to make the vaccine do not match the circulating flu viruses. These viruses change every year, which is why the vaccine changes every year and why you need an annual vaccine. Nonetheless, in any given year the flu vaccine typically protects about 60 percent of healthy adults under 65. The older you are the less effective it is, likely because of a weaker immune system. Even when the vaccine and viruses aren’t well matched, the vaccine still protects a considerable number of people. Plus, if you get the flu, having had a vaccine means a quicker recovery with fewer complications. And don’t forget it takes about two weeks after you’re vaccinated before the vaccine fully engages your immune system. During those two weeks, you’re still susceptible to an influenza virus, even one the vaccine should protect against. Myth: Adolescents don’t need vaccines. Truth: Adolescents (and adults) definitely need vaccines and regular boosters. Children 11 or 12 need the tetanus-diphtheria-acellular pertussis (Tdap) vaccine; the meningococcal conjugate vaccine; the influenza vaccine; and the human papillomavirus (HPV) vaccine, which helps protect against cancers of the cervix, anus, vagina and vulva. Plus, teens (and adults) who haven’t had chicken pox or been immunized against the disease should get a varicella vaccine. Unfortunately, while vaccination rates for young children are very good, those for adolescents are far below what they should be, though some of these rates are improving. According to the CDC, vaccination rates have been rising for tetanus-diphtheria (Tdap) and meningococcal-conjugate vaccine (MCV4). The increase in vaccine coverage rates for human papillomavirus (HPV) vaccine, however, is only about half the rate of the increases seen for Tdap and MCV4. Myth: Vaccines provide 100 percent protection forever. Truth: It depends on the vaccine. Most vaccines that children get in their early years provide lifetime immunity. Some, like the influenza vaccine, are required annually because the viruses causing influenza change every year. Others, like the diphtheria-tetanus-acellular pertussis (DTaP) vaccine, require “booster” shots to maintain immunity. For instance, immunity from pertussis (whooping cough) vaccination wears off, making adults and adolescents particularly susceptible to the disease. The bacterial disease can lead to significant time lost from work and school. More worrisome is the fact that it can be transmitted to children who have not been vaccinated, particularly newborns, in whom the disease can be fatal. Because booster shots are needed in adolescents and adults—who are less likely to get vaccinated than children—pertussis is the only vaccine-preventable infectious disease increasing in prevalence in the United States. In 2010, nearly 28,000 cases were reported to the CDC. The number of actual cases is likely triple that. That’s why the CDC added a recommendation for the adolescent booster of Tdap in 2005. Myth: It’s OK not to vaccinate your child if other parents vaccinate theirs. Truth: In our global world, it’s important to vaccinate all children. Each year, an average of 60 people in the United States contract measles. But in 2011, the number of measles cases was higher than usual at 222. Most of these cases occurred in people who were not vaccinated, and 40 percent got measles in other countries and brought the disease back to the United States and spread it to others. High vaccine rates are necessary to provide “herd immunity” (protecting those who have not been immunized). For instance, children under 12 months cannot receive the measles vaccine, so they are particularly vulnerable. Plus, some people cannot be vaccinated for medical reasons; high rates of vaccination in the community help protect them. Measles should not be taken lightly: it is one of the most infectious diseases known to man, able to be transmitted for up to two hours after an infected person has left the room. Before the vaccine became available in the mid-1960s, up to 450 deaths and 4,000 cases of measles-related encephalitis occurred each year in the United States. Myth: Giving a child multiple vaccinations for different diseases at the same time increases the risk of harmful side effects and can overload the immune system. Truth: There is no problem vaccinating children for different diseases at the same time. Numerous studies evaluating the effects of combinations of vaccines and of giving children several vaccines at once show this approach is as effective as giving children individual vaccines with no greater risk for side effects. Giving a child two or more vaccines during one health care visit not only provides maximum protection but reduces required office visits, saves time and money and minimizes trauma (from the shots) to the child. There are also combination vaccines, in which multiple vaccines are delivered in one shot.
Therapeutic Vaccines
Cancer Vaccines When you think of a vaccine, you think of something designed to protect you from a disease. These are called prophylactic vaccines. But vaccines are also being investigated as a way to harness the power of the immune system to fight existing disease, particularly cancer. These vaccines are called therapeutic vaccines. Cancer cells proliferate for two main reasons: They develop from normal cells, so they don’t register as “foreign” to the immune system, and they have developed ways to prevent detection by the immune system. The goal of therapeutic cancer vaccines is to enhance the “foreignness” of the tumor and train the immune system to recognize similar antigens as foreign. There is currently one vaccine approved by the United States Food and Drug Administration to help treat cancer. The vaccine, called sipuleucel-t (Provenge), is a dendritic cell vaccine that treats advanced prostate cancer that no longer responds to hormone therapy. Researchers also have several cancer vaccines in late-stage clinical trials, including one to treat breast cancer. Click each type to learn more.
Antigen vaccines. These vaccines are created by mass producing a few antigens from the tumor cell, altering them so they are more easily recognized by the patient’s immune system and injecting them into the patient. Tumor cell vaccines. These vaccines are composed of cells from the patient’s tumor that have been modified so they cannot reproduce. By injecting them into the patient, it is hoped they will stimulate the immune system to attack the specific antigen for that cancer and destroy original cancer cells that are replicating. Dendritic cell vaccines. Dendritic cells are immune system cells that show antigens to T cells so they can produce antibodies. A dendritic cell vaccine trains the patient’s dendritic cells to recognize the tumor antigen as foreign, then injects the “trained” dendritic cells into the patient so they can “train” T cells. DNA vaccines. DNA vaccines use genetic material from the tumor that encodes for one or more antigens to stimulate the immune response. Vector-based vaccine. A vector-based cancer vaccine uses a virus, bacteria or yeast cell to “deliver” cancer antigens or DNA. The immune system responds to the vector as well as the cancer antigen, triggering a stronger immune response. Autoimmune Vaccines Therapeutic vaccines are also under investigation to treat autoimmune diseases like multiple sclerosis (MS) and lupus. These diseases result from an overactive immune system, one that fails to differentiate between “self” and “nonself” cells and attacks the body’s own tissue. Vaccines to treat such conditions are designed to “downregulate” the immune system by training certain immune cells to attack disease-causing immune cells. One such vaccine that has shown good results in early clinical trials is a DNA vaccine that targets the T cells that attack myelin, nerve cell sheathing, in people with MS. Vaccines in the Future Although we have made great strides in providing vaccines for many major illnesses, particularly childhood diseases, several other serious conditions remain. In addition tocancer vaccines researchers are working on vaccines to prevent malaria and HIV, the virus that causes AIDS. Vaccines are also being investigated to prevent hepatitis C, tuberculosis, Alzheimer’s disease, Parkinson’s disease and numerous other neurological and autoimmune diseases. Malaria vaccine. Malaria is one of the most devastating diseases in the world, affecting more than 300 million people a year and killing more than 1 million, primarily in sub-Saharan Africa. The actual figures, however, are likely up to three times higher, given the difficulty of diagnosing and tracking the disease in these countries. Scientists at the CDC have an ongoing malaria vaccine development and evaluation program that is testing potential malaria vaccines in small New World monkeys. HIV vaccine. Researchers throughout the world have been working on an HIV vaccine for more than 20 years without success. In the United States alone, the National Institute of Allergy and Infectious Diseases at the National Institutes of Health has conducted more than 117 HIV vaccine clinical trials to test more than 70 possible vaccines. The U.S. Military HIV Research Program and the CDC are also researching HIV vaccines. The challenge in developing a vaccine against HIV is that our immune system is weak when it comes to eradicating the virus. The virus also takes over the DNA of normal immune system cells, often lying dormant for months or even years. When it is activated, it’s too late for an immune response to be of use because the virus has co-opted cells to churn out millions of HIV copies. Another problem is that the virus mutates easily. A vaccine designed against today’s virus may be irrelevant in a couple of years. Even when the immune system recognizes antigens on the virus and produces antibodies against it, the virus mutates before those antibodies can do much good. This is why existing drugs against the infection eventually fail; the virus mutates and becomes resistant to them. However, scientists still believe a vaccine to prevent HIV is possible, and they are building on what they have learned and moving forward with the research process.
Facts to Know
1. Today, more than 300 approved vaccines provide protection against 30 diseases. 2. The immune system has two components: the innate immune system, in which inflammation destroys invading pathogens; and the adaptive immune system, which “learns” to recognize certain pathogens and retains an immunologic memory so it can quickly mount a defense the next time the pathogen appears. 3. A vaccine is designed to stimulate the adaptive immune system before you’re exposed to the virus or bacteria so you’re already protected when you encounter it. 4. There are two main types of vaccine: prophylactic, which prevents disease; and therapeutic, which treats disease. 5. There are several types of vaccines, including live, attenuated vaccines and inactivated vaccines. The former are made with live, although weakened pathogens, while the latter are made with killed pathogens, or parts of them. 6. Adolescents and adults also require vaccination, including vaccines designed to protect against human papillomaviruses (HPV), which cause cervical cancer; influenza; pneumonia; and shingles. Adolescents and adults also require regular “booster” vaccines against diphtheria, tetanus and pertussis (whooping cough). 7. Prophylactic vaccines are extremely safe, although some may have mild side effects. The most common side effects are redness, soreness and irritation at the injection site and fever. 8. People with compromised immune systems, moderate-to-severe illnesses and/or those who have had a previous reaction to a vaccine should consult with their health care professional before getting vaccinated. 9. Researchers are working on vaccines that treat malaria, cancer, autoimmune diseases and neurological conditions like Alzheimer’s disease and Parkinson’s disease. 10. While many vaccines provide lifelong immunity, some require regular boosters.
Key Q&A
1. What is the difference between the innate and adaptive immune system? The innate immune system is designed to provide a kind of “shock and awe” protection against bacteria, viruses and other pathogens. When cells in the innate immune system “see” an invader, they rush in to destroy it, often by releasing inflammatory chemicals like histamines and leukotrienes. These invaders display “signs” on their surface called antigens that signal immune system cells to action. The adaptive immune system provides a more targeted approach. As immature T and B lymphocytes encounter antigens, they develop specific antibodies against those antigens. These “mature” lymphocytes hang out in tissue, ready to quickly spring to action when they encounter the same antigens. This creates immunologic memory and prevents reinfection. 2. How do vaccines work? All vaccines are designed to affect the immune system in some way. Prophylactic vaccines are designed to stimulate a response of the adaptive immune system to a modified version of the pathogen so that when you are infected with the actual virus or bacteria, it can quickly mount a major offense against the invader before you become sick. Therapeutic vaccines are designed to strengthen the immune system’s response to a cancer or other abnormal cell. 3. What is the difference between live and “killed” vaccines? Live, attenuated vaccines contain a live, although significantly weakened, version of the virus or bacteria. Measles, mumps and chicken pox vaccines are made with live viruses. The benefit of a live vaccine is that a single dose often provides lifelong immunity. The downside is that because viruses and other pathogens naturally mutate, or change, the virus within the vaccine could also change, creating a more virulent version of itself that the immune system would have difficulty combatting. This was an issue with the early oral polio vaccines, but is generally not a problem with current live vaccines, which are much safer than the virus they protect against. Only people with a suppressed immune system (such as those who have HIV, are taking immunosuppressant drugs or are being treated for cancer) should be concerned about receiving live vaccines because they could, conceivably, become infected with the virus. These vaccines also usually require refrigeration. Inactivated vaccines contain a killed version of the pathogen. They are more stable (meaning they don’t need refrigeration) and safer than attenuated viruses, but they don’t elicit as strong an immune response. Thus, the immunity they provide may not last as long and you might need a “booster” vaccine down the road. 4. What types of vaccines protect against bacterial infections? Typically, inactivated vaccines. Many bacteria secrete toxins that damage healthy cells. Toxoid vaccines treat the bacteria with formalin, which renders the toxins harmless but still retains enough of their structure to “teach” immune cells to recognize the bacteria and train them to lock onto the toxin antigen before the bacteria can release it. Toxoid vaccines are used for diphtheria and tetanus. Conjugate vaccines are also used in young children to protect against infections caused by Haemophilus influenzae type b (such as meningitis and lung infections) and pneumococcal disease. 5. What should I do if my child misses a vaccine? Call your health care professional. Children can “catch up” on nearly all vaccines, regardless of their age, except for the rotavirus vaccine, which protects infants against the severe vomiting and diarrhea caused by rotavirus. 6. What vaccines do adolescents require? Preteens and adolescents should receive vaccines against the human papillomavirus, meningococcal disease and tetanus/diphtheria/acellular pertussis (Tdap). Depending on what vaccines your child received when younger, he or she may also need “catch-up” vaccines for hepatitis B, mumps/measles/rubella, polio or varicella (chicken pox). Additionally, everyone 6 months and older should receive an annual influenza vaccine. 7. I’m traveling out of the country. What vaccines do I need? Make an appointment with your health care professional at least four to six weeks before your trip to see if you need any travel-related vaccines. The only required vaccines are yellow fever for those traveling to countries in sub-Saharan Africa and tropical South America and the meningococcal vaccine for travel to Saudi Arabia during the Hajj. You can learn more about vaccines required for overseas travel at theCenters for Disease Control website. Your local health department can typically provide the vaccines. 8. I’m worried about the safety of vaccines. Vaccines are extremely safe. The Centers for Disease Control and Prevention operates an Immunization Safety Office that continuously monitors vaccine safety, including side effects. Part of its mission is managing the vaccine adverse event reporting system, which serves as an “early warning” system to detect vaccine-related problems. About 30,000 reports are filed annually, but just 10 percent to 15 percent are classified as serious (causing disability, hospitalization, life-threatening illness or death), and most of the incidents are ultimately not linked to vaccination. Anyone can file a report, including health care providers, manufacturers, personal injury lawyers and vaccine recipients or their parents or guardians. 9. I heard that vaccines can cause autism. Some parents insist that their children developed autism after having early childhood vaccines, such as the measles/mumps/rubella (MMR) vaccine. Some suspect that a preservative once used in childhood vaccines that contained mercury caused autism. But numerous scientific investigations regarding a possible link found no connection. Today’s childhood vaccines do not have mercury-based preservatives; nonetheless, autism rates have continued to rise. 10. I have breast cancer. I heard there is a vaccine that can treat the cancer. How can I find out more? There are several vaccines under investigation for cancer. These are called therapeutic vaccines because they are designed to treat, rather than prevent, disease. However, none have been approved yet. So talk to your doctor about joining a clinical trial.
For more Information visit us our website: safegenericpharmacy.com
0 notes
Text
Know About Vaccines
Overview
The discovery and wide application of vaccines that protect against once-fatal childhood diseases like measles, mumps, rubella and diphtheria is one of the most significant medical contributions of the past two centuries. Today, newborns get their first vaccine soon after birth (hepatitis B), then, between one and two months begin a series of shots that will eventually protect them against 14 diseases. Worldwide, childhood vaccines prevent up to 3 million deaths each year. In recent years, however, parents are increasingly likely to under-vaccinate their children. A January 2013 study published in JAMA Pediatrics reported that nearly half of children ages 2 months to 24 months in the United States either aren't getting all the necessary vaccines or have not been vaccinated at all. Vaccines are not just for kids. Adolescents and adults need them, too, whether to "boost" earlier immunizations that provided immunity against diphtheria, pertussis and tetanus or to protect against other diseases, such asinfluenza, pneumonia, shingles, bacterial meningitis or, for those traveling abroad,yellow fever and typhoid. Preteen girls and boys can now be vaccinated against several strains of the human papillomavirus (HPV), which cause most cervical cancers, as well as cancer of the anus, vagina and vulva. Vaccines are also being developed to prevent malaria and HIV, the virus that causes AIDS, as well as to harness the power of the immune system to fight cancer and other diseases. The History of Vaccines The roots of modern vaccines stretch halfway across the world to ancient China and India where, as early as the 10th century BC, people inhaled pus from smallpox blisters to inoculate themselves against the deadly disease. But it wasn't until 1796 that a country doctor from England named Edward Jenner formally vaccinated a child against the disease. Rather than using pus or scabs from individuals infected with smallpox, he used pus from a similar, but less virulent pox disease called cowpox. He hypothesized this would protect against smallpox because milkmaids infected with cowpox never caught smallpox, even during epidemics. Two weeks after inoculating an 8-year-old boy, Jenner tried to infect him with smallpox. Nothing happened. Voila! The first successful vaccination. (Indeed, the word vaccine comes from the Latin word "vacca" for cow). It, however, would be nearly two centuries later before smallpox was eradicated worldwide (the last known case occurred in Somalia in 1977). Its banishment (except for samples held in Russian and American laboratories) has been heralded as one of the most significant medical achievements in history. We've come a long way from Jenner's days, when "vaccines" were given by using a quill or ivory point to transfer the infected pus into a healthy person's skin. Today, safe, hair-thin needles deliver nearly painless injections, while some vaccines can be given orally with drops or nasally through a spray. Today we have vaccines against childhood illnesses like diphtheria, mumps, rubella and measles, which used to kill millions of children each year; against tetanus and rabies; and even against cancer. Some are designed to protect against infection in the first place; others to prevent the pathogen's replication and halt its ability to infect normal cells. In all, more than 300 approved vaccines protect against 30 diseases. Not only have vaccines saved lives, they have changed the very world in which we live. Vaccine Basics To understand how vaccines work, you first need to understand how your immune system works. There are two types of immunity: innate and adaptive. The innate immune system is a nonspecific response to any threat. Invaders such as bacteria, viruses and other pathogens display "signs" on their surface called antigens that signal immune system cells to action. The innate immune system includes visible protection, like skin and the mucus membranes in your nose and mouth that strain out pathogens, and invisible protection in the form of white blood cells like macrophages, which release inflammatory chemicals such as histamine and leukotrienes to destroy invaders. Sometimes this process runs amok, as when the innate immune system launches an all-out attack against harmless proteins like those from pollen or peanuts, resulting in an allergic reaction. A more targeted approach to threats comes from your adaptive immune system, which responds to specific antigens. The foundation of this system exists in T and Blymphocytes. These immune cells learn to recognize certain antigens. Once they identify a non–self invader, they generate specific responses to destroy that invader. B cells mature into specialized cells with antigen-specific antibodies on their surfaces that lock onto the antigen to annihilate it. T cells release toxins to destroy the invader or call other immune system cells into action. Once T and B cells are activated, they leave behind copies of themselves that are ready to spring into action again if the specific antigen appears. This is known as immunologic memory. These mature T and B cells enable your immune system to launch an attack against, say, a measles virus so quickly that the virus never has time to infect healthy cells and make you sick. Thus, the adaptive immune system, unlike the innate immune system, protects against reinfection. The problem with the adaptive immune system is that the first time it can take several days to get up to speed once it encounters a new antigen. That's more than enough time for most pathogens to replicate and make you sick. Enter vaccines. A vaccine is designed to stimulate the adaptive immune system before you're exposed to the virus and bacteria so when you do encounter it, specialized T and B cells already exist, ready to spring into action before the pathogen can make you sick.
Types of Vaccines Vaccines may be produced in several ways:
Live, attenuated vaccines Inactivated vaccines Subunit vaccines Toxoid vaccines Conjugate vaccines DNA vaccines Recombinant vector vaccines Live, attenuated vaccines. These vaccines contain a live, although significantly weakened, version of the pathogen. Measles, mumps and chicken pox vaccines are made with live viruses. The only bacterial vaccine made with live pathogens in the United States is the typhoid vaccine. The benefit of a live vaccine is that a single dose often provides lifelong immunity. The downside is that because viruses and other pathogens naturally mutate, or change, the virus within the vaccine could also change, possibly creating a more virulent version of itself that the immune system would have difficulty combatting. This was an issue with the early oral polio vaccines but is generally not a problem with current live vaccines, which are much safer than the virus they protect against. Only people with a suppressed immune system (such as those who have HIV/AIDS, are taking immunosuppressant drugs or are being treated for cancer) should be concerned about receiving live vaccines because they could, conceivably, become infected with the virus. Live vaccines also usually require refrigeration. Inactivated vaccines. These vaccines contain a killed version of the pathogen. They are more stable (meaning they don't need refrigeration) and safer than attenuated viruses, but they don't elicit as strong an immune response. Thus, the immunity they provide may not last as long and you might need a "booster" vaccine down the road. Subunit vaccines. These vaccines are made with bits and pieces of the inactivated antigen called epitopes. The advantage is that by using fewer molecules of the virus or bacteria, there is less risk of side effects. The disadvantage is that it is challenging and time consuming to identify the exact epitopes needed to stimulate the immune system. Toxoid vaccines. These vaccines are designed to protect against bacteria that secrete toxins. Treating the bacteria with formalin renders the toxins harmless but still retains enough of their structure to "teach" immune cells to recognize the bacteria and train them to lock onto the toxin antigen before the bacteria can release the chemical. Toxoid vaccines are used for diphtheria and tetanus. Conjugate vaccines. Conjugate vaccines are typically used to provide protection against certain types of bacterial infection, particularly in very young children. These bacteria, including those that cause bacterial meningitis, are surrounded by a thick capsule called a polysaccharide coating. This coating helps the bacteria hide from the immune system. Thus, antigen-presenting T cells can't "show" the antigen to B cells. B cells can still produce antibodies against the bacterial antigens and provide some protection, albeit short-lived, but this type of protection doesn't develop until children are about 2 years old. So many polysaccharide vaccines for adults and older children don't work in younger children, leaving children highly susceptible to the illnesses those bacteria cause. Enter the conjugate vaccine. Antigens or toxoids that the baby's immune system does recognize are attached to the polysaccharide coating. The infant's immune system learns to recognize polysaccharide coatings as dangerous and to defend against such pathogens. DNA vaccines. DNA vaccines are not yet in use, though they are being tested for influenza and herpes. These vaccines are made of the organism's genetic material, which carries the code, or recipe, for antigens. Once in the body, normal cells take up the DNA and begin making the microbe's antigens, displaying them on their surface and stimulating the immune system to respond. Recombinant vector vaccines. These vaccines also are not yet approved for widespread use but are being evaluated for HIV, rabies and measles and are thought to be even safer than existing vaccines. With recombinant vector vaccines, the microbe's DNA is inserted into another virus or bacteria that transports the DNA, enters cells and releases the DNA into the healthy cell, which then can provoke the immune response.
When to Vaccinate
These charts contain recommendations from the U.S. Centers for Disease Control and Prevention (CDC) for preventive vaccines. Don't panic if you or your child has not received all vaccinations on time; the CDC has guidelines for "catch-up" vaccinations that your health care professional should be aware of. If you are traveling out of the country, make an appointment with your health care professional at least four to six weeks before your trip to see if you need any travel-related vaccines. Travel is also a good time to make sure you're up-to-date on your other vaccines, as well. The only vaccines required by law are: Yellow fever: Required for travel to countries in sub-Saharan Africa and tropical South America Meningococcal vaccine: Required for travel to Saudi Arabia during the Hajj, an annual pilgrimage Other travel-related vaccines include typhoid, hepatitis A (for adults not vaccinated as children), Japanese encephalitis vaccine and rabies.
The Truth About Vaccines
Untruths and myths about vaccines have been circulated for hundreds of years. Complaints and concerns range from invasion of privacy and "bodily integrity" to concerns about safety, the use of animals to prepare and test vaccines and religious issues. But if only a few people vaccinate their children, vaccines would not be very effective in reducing or eliminating disease. Between 85 percent and 95 percent of a population must be vaccinated to provide protection for all (herd immunity). That's why most states in the United States require vaccination before children enter school. The Supreme Court has upheld such laws since the early part of the 20th century. Even today, however, some parents refuse to vaccinate their children. The most recent controversy around vaccines stems from suspicion of a possible link to the rising rates of autism of either the preservative thimerosal, which contains mercury, or the measles component of the MMR (measles/mumps/rubella) vaccine. Parental concern led to numerous scientific investigations regarding such links, with study after study finding no connections. Nonetheless, thimerosal was phased out of most vaccines in 2001. Autism rates, however, have continued to rise. Vaccines are extremely safe. The Centers for Disease Control and Prevention operates an Immunization Safety Office, which continuously monitors vaccine safety, including side effects. Part of its mission is managing the vaccine adverse event reporting system, which serves as an "early warning" system to detect vaccine-related problems. About 30,000 adverse event reports are filed annually, but just 10 percent to 15 percent are classified as serious (causing disability, hospitalization, life-threatening illness or death), and most of the incidents are ultimately not linked to vaccination. Anyone can file a report, including health care providers, manufacturers, personal injury lawyers and vaccine recipients or their parents or guardians. Children or adults who are harmed by a vaccine may apply for compensation from theNational Childhood Vaccine Injury Compensation Fund. Other vaccine myths and truths: Myth: The flu vaccine can cause the flu. Fact: The vaccine cannot cause the flu if you're vaccinated with the inactivated trivalent vaccine, made with killed virus. However, fever and achiness can occur after a flu vaccine. This is not the flu, however, but the result of an activated immune system. The nasal flu vaccine, which contains a weakened live virus, could, conceivably, cause the flu in someone with a suppressed immune system. Thus, it is only approved for use in healthy people between 2 and 49 years of age (younger and older people tend to have weaker immune systems). Studies involving hundreds of healthy children and adults showed no evidence that the nasal flu vaccine resulted in the flu. However, you can get the flu after being vaccinated if the viral types used to make the vaccine do not match the circulating flu viruses. These viruses change every year, which is why the vaccine changes every year and why you need an annual vaccine. Nonetheless, in any given year the flu vaccine typically protects about 60 percent of healthy adults under 65. The older you are the less effective it is, likely because of a weaker immune system. Even when the vaccine and viruses aren't well matched, the vaccine still protects a considerable number of people. Plus, if you get the flu, having had a vaccine means a quicker recovery with fewer complications. And don't forget it takes about two weeks after you're vaccinated before the vaccine fully engages your immune system. During those two weeks, you're still susceptible to an influenza virus, even one the vaccine should protect against.
Myth: Adolescents don't need vaccines.
Truth: Adolescents (and adults) definitely need vaccines and regular boosters. Children 11 or 12 need the tetanus-diphtheria-acellular pertussis (Tdap) vaccine; the meningococcal conjugate vaccine; the influenza vaccine; and the human papillomavirus (HPV) vaccine, which helps protect against cancers of the cervix, anus, vagina and vulva. Plus, teens (and adults) who haven't had chicken pox or been immunized against the disease should get a varicella vaccine. Unfortunately, while vaccination rates for young children are very good, those for adolescents are far below what they should be, though some of these rates are improving. According to the CDC, vaccination rates have been rising for tetanus-diphtheria (Tdap) and meningococcal-conjugate vaccine (MCV4). The increase in vaccine coverage rates for human papillomavirus (HPV) vaccine, however, is only about half the rate of the increases seen for Tdap and MCV4.
Myth: Vaccines provide 100 percent protection forever.
Truth: It depends on the vaccine. Most vaccines that children get in their early years provide lifetime immunity. Some, like the influenza vaccine, are required annually because the viruses causing influenza change every year. Others, like the diphtheria-tetanus-acellular pertussis (DTaP) vaccine, require "booster" shots to maintain immunity. For instance, immunity from pertussis (whooping cough) vaccination wears off, making adults and adolescents particularly susceptible to the disease. The bacterial disease can lead to significant time lost from work and school. More worrisome is the fact that it can be transmitted to children who have not been vaccinated, particularly newborns, in whom the disease can be fatal. Because booster shots are needed in adolescents and adults—who are less likely to get vaccinated than children—pertussis is the only vaccine-preventable infectious disease increasing in prevalence in the United States. In 2010, nearly 28,000 cases were reported to the CDC. The number of actual cases is likely triple that. That’s why the CDC added a recommendation for the adolescent booster of Tdap in 2005.
Myth: It's OK not to vaccinate your child if other parents vaccinate theirs.
Truth: In our global world, it's important to vaccinate all children. Each year, an average of 60 people in the United States contract measles. But in 2011, the number of measles cases was higher than usual at 222. Most of these cases occurred in people who were not vaccinated, and 40 percent got measles in other countries and brought the disease back to the United States and spread it to others. High vaccine rates are necessary to provide "herd immunity" (protecting those who have not been immunized). For instance, children under 12 months cannot receive the measles vaccine, so they are particularly vulnerable. Plus, some people cannot be vaccinated for medical reasons; high rates of vaccination in the community help protect them. Measles should not be taken lightly: it is one of the most infectious diseases known to man, able to be transmitted for up to two hours after an infected person has left the room. Before the vaccine became available in the mid-1960s, up to 450 deaths and 4,000 cases of measles-related encephalitis occurred each year in the United States.
Myth: Giving a child multiple vaccinations for different diseases at the same time increases the risk of harmful side effects and can overload the immune system.
Truth: There is no problem vaccinating children for different diseases at the same time. Numerous studies evaluating the effects of combinations of vaccines and of giving children several vaccines at once show this approach is as effective as giving children individual vaccines with no greater risk for side effects. Giving a child two or more vaccines during one health care visit not only provides maximum protection but reduces required office visits, saves time and money and minimizes trauma (from the shots) to the child. There are also combination vaccines, in which multiple vaccines are delivered in one shot.
Therapeutic Vaccines
Cancer Vaccines When you think of a vaccine, you think of something designed to protect you from a disease. These are called prophylactic vaccines. But vaccines are also being investigated as a way to harness the power of the immune system to fight existing disease, particularly cancer. These vaccines are called therapeutic vaccines. Cancer cells proliferate for two main reasons: They develop from normal cells, so they don't register as "foreign" to the immune system, and they have developed ways to prevent detection by the immune system. The goal of therapeutic cancer vaccines is to enhance the "foreignness" of the tumor and train the immune system to recognize similar antigens as foreign. There is currently one vaccine approved by the United States Food and Drug Administration to help treat cancer. The vaccine, called sipuleucel-t (Provenge), is a dendritic cell vaccine that treats advanced prostate cancer that no longer responds to hormone therapy. Researchers also have several cancer vaccines in late-stage clinical trials, including one to treat breast cancer. Click each type to learn more. Antigen vaccines. These vaccines are created by mass producing a few antigens from the tumor cell, altering them so they are more easily recognized by the patient's immune system and injecting them into the patient. Tumor cell vaccines. These vaccines are composed of cells from the patient's tumor that have been modified so they cannot reproduce. By injecting them into the patient, it is hoped they will stimulate the immune system to attack the specific antigen for that cancer and destroy original cancer cells that are replicating. Dendritic cell vaccines. Dendritic cells are immune system cells that show antigens to T cells so they can produce antibodies. A dendritic cell vaccine trains the patient's dendritic cells to recognize the tumor antigen as foreign, then injects the "trained" dendritic cells into the patient so they can "train" T cells. DNA vaccines. DNA vaccines use genetic material from the tumor that encodes for one or more antigens to stimulate the immune response. Vector-based vaccine. A vector-based cancer vaccine uses a virus, bacteria or yeast cell to "deliver" cancer antigens or DNA. The immune system responds to the vector as well as the cancer antigen, triggering a stronger immune response. Autoimmune Vaccines Therapeutic vaccines are also under investigation to treat autoimmune diseases like multiple sclerosis (MS) and lupus. These diseases result from an overactive immune system, one that fails to differentiate between "self" and "nonself" cells and attacks the body's own tissue. Vaccines to treat such conditions are designed to "downregulate" the immune system by training certain immune cells to attack disease-causing immune cells. One such vaccine that has shown good results in early clinical trials is a DNA vaccine that targets the T cells that attack myelin, nerve cell sheathing, in people with MS. Vaccines in the Future Although we have made great strides in providing vaccines for many major illnesses, particularly childhood diseases, several other serious conditions remain. In addition tocancer vaccines researchers are working on vaccines to prevent malaria and HIV, the virus that causes AIDS. Vaccines are also being investigated to prevent hepatitis C, tuberculosis, Alzheimer's disease, Parkinson's disease and numerous other neurological and autoimmune diseases. Malaria vaccine. Malaria is one of the most devastating diseases in the world, affecting more than 300 million people a year and killing more than 1 million, primarily in sub-Saharan Africa. The actual figures, however, are likely up to three times higher, given the difficulty of diagnosing and tracking the disease in these countries. Scientists at the CDC have an ongoing malaria vaccine development and evaluation program that is testing potential malaria vaccines in small New World monkeys. HIV vaccine. Researchers throughout the world have been working on an HIV vaccine for more than 20 years without success. In the United States alone, the National Institute of Allergy and Infectious Diseases at the National Institutes of Health has conducted more than 117 HIV vaccine clinical trials to test more than 70 possible vaccines. The U.S. Military HIV Research Program and the CDC are also researching HIV vaccines. The challenge in developing a vaccine against HIV is that our immune system is weak when it comes to eradicating the virus. The virus also takes over the DNA of normal immune system cells, often lying dormant for months or even years. When it is activated, it's too late for an immune response to be of use because the virus has co-opted cells to churn out millions of HIV copies. Another problem is that the virus mutates easily. A vaccine designed against today's virus may be irrelevant in a couple of years. Even when the immune system recognizes antigens on the virus and produces antibodies against it, the virus mutates before those antibodies can do much good. This is why existing drugs against the infection eventually fail; the virus mutates and becomes resistant to them. However, scientists still believe a vaccine to prevent HIV is possible, and they are building on what they have learned and moving forward with the research process.
Facts to Know
1. Today, more than 300 approved vaccines provide protection against 30 diseases. 2. The immune system has two components: the innate immune system, in which inflammation destroys invading pathogens; and the adaptive immune system, which "learns" to recognize certain pathogens and retains an immunologic memory so it can quickly mount a defense the next time the pathogen appears. 3. A vaccine is designed to stimulate the adaptive immune system before you're exposed to the virus or bacteria so you're already protected when you encounter it. 4. There are two main types of vaccine: prophylactic, which prevents disease; and therapeutic, which treats disease. 5. There are several types of vaccines, including live, attenuated vaccines and inactivated vaccines. The former are made with live, although weakened pathogens, while the latter are made with killed pathogens, or parts of them. 6. Adolescents and adults also require vaccination, including vaccines designed to protect against human papillomaviruses (HPV), which cause cervical cancer; influenza; pneumonia; and shingles. Adolescents and adults also require regular "booster" vaccines against diphtheria, tetanus and pertussis (whooping cough). 7. Prophylactic vaccines are extremely safe, although some may have mild side effects. The most common side effects are redness, soreness and irritation at the injection site and fever. 8. People with compromised immune systems, moderate-to-severe illnesses and/or those who have had a previous reaction to a vaccine should consult with their health care professional before getting vaccinated. 9. Researchers are working on vaccines that treat malaria, cancer, autoimmune diseases and neurological conditions like Alzheimer's disease and Parkinson's disease. 10. While many vaccines provide lifelong immunity, some require regular boosters. Key Q&A 1. What is the difference between the innate and adaptive immune system? The innate immune system is designed to provide a kind of "shock and awe" protection against bacteria, viruses and other pathogens. When cells in the innate immune system "see" an invader, they rush in to destroy it, often by releasing inflammatory chemicals like histamines and leukotrienes. These invaders display "signs" on their surface called antigens that signal immune system cells to action. The adaptive immune system provides a more targeted approach. As immature T and B lymphocytes encounter antigens, they develop specific antibodies against those antigens. These "mature" lymphocytes hang out in tissue, ready to quickly spring to action when they encounter the same antigens. This creates immunologic memory and prevents reinfection. 2. How do vaccines work? All vaccines are designed to affect the immune system in some way. Prophylactic vaccines are designed to stimulate a response of the adaptive immune system to a modified version of the pathogen so that when you are infected with the actual virus or bacteria, it can quickly mount a major offense against the invader before you become sick. Therapeutic vaccines are designed to strengthen the immune system's response to a cancer or other abnormal cell. 3. What is the difference between live and "killed" vaccines? Live, attenuated vaccines contain a live, although significantly weakened, version of the virus or bacteria. Measles, mumps and chicken pox vaccines are made with live viruses. The benefit of a live vaccine is that a single dose often provides lifelong immunity. The downside is that because viruses and other pathogens naturally mutate, or change, the virus within the vaccine could also change, creating a more virulent version of itself that the immune system would have difficulty combatting. This was an issue with the early oral polio vaccines, but is generally not a problem with current live vaccines, which are much safer than the virus they protect against. Only people with a suppressed immune system (such as those who have HIV, are taking immunosuppressant drugs or are being treated for cancer) should be concerned about receiving live vaccines because they could, conceivably, become infected with the virus. These vaccines also usually require refrigeration. Inactivated vaccines contain a killed version of the pathogen. They are more stable (meaning they don't need refrigeration) and safer than attenuated viruses, but they don't elicit as strong an immune response. Thus, the immunity they provide may not last as long and you might need a "booster" vaccine down the road. 4. What types of vaccines protect against bacterial infections? Typically, inactivated vaccines. Many bacteria secrete toxins that damage healthy cells. Toxoid vaccines treat the bacteria with formalin, which renders the toxins harmless but still retains enough of their structure to "teach" immune cells to recognize the bacteria and train them to lock onto the toxin antigen before the bacteria can release it. Toxoid vaccines are used for diphtheria and tetanus. Conjugate vaccines are also used in young children to protect against infections caused by Haemophilus influenzae type b (such as meningitis and lung infections) and pneumococcal disease. 5. What should I do if my child misses a vaccine? Call your health care professional. Children can "catch up" on nearly all vaccines, regardless of their age, except for the rotavirus vaccine, which protects infants against the severe vomiting and diarrhea caused by rotavirus. 6. What vaccines do adolescents require? Preteens and adolescents should receive vaccines against the human papillomavirus, meningococcal disease and tetanus/diphtheria/acellular pertussis (Tdap). Depending on what vaccines your child received when younger, he or she may also need "catch-up" vaccines for hepatitis B, mumps/measles/rubella, polio or varicella (chicken pox). Additionally, everyone 6 months and older should receive an annual influenza vaccine. 7. I'm traveling out of the country. What vaccines do I need? Make an appointment with your health care professional at least four to six weeks before your trip to see if you need any travel-related vaccines. The only required vaccines are yellow fever for those traveling to countries in sub-Saharan Africa and tropical South America and the meningococcal vaccine for travel to Saudi Arabia during the Hajj. You can learn more about vaccines required for overseas travel at theCenters for Disease Control website. Your local health department can typically provide the vaccines. 8. I'm worried about the safety of vaccines. Vaccines are extremely safe. The Centers for Disease Control and Prevention operates an Immunization Safety Office that continuously monitors vaccine safety, including side effects. Part of its mission is managing the vaccine adverse event reporting system, which serves as an "early warning" system to detect vaccine-related problems. About 30,000 reports are filed annually, but just 10 percent to 15 percent are classified as serious (causing disability, hospitalization, life-threatening illness or death), and most of the incidents are ultimately not linked to vaccination. Anyone can file a report, including health care providers, manufacturers, personal injury lawyers and vaccine recipients or their parents or guardians. 9. I heard that vaccines can cause autism. Some parents insist that their children developed autism after having early childhood vaccines, such as the measles/mumps/rubella (MMR) vaccine. Some suspect that a preservative once used in childhood vaccines that contained mercury caused autism. But numerous scientific investigations regarding a possible link found no connection. Today's childhood vaccines do not have mercury-based preservatives; nonetheless, autism rates have continued to rise. 10. I have breast cancer. I heard there is a vaccine that can treat the cancer. How can I find out more? There are several vaccines under investigation for cancer. These are called therapeutic vaccines because they are designed to treat, rather than prevent, disease. However, none have been approved yet. So talk to your doctor about joining a clinical trial. Read the full article
0 notes
Text
Know About Vaccines
Overview
The discovery and wide application of vaccines that protect against once-fatal childhood diseases like measles, mumps, rubella and diphtheria is one of the most significant medical contributions of the past two centuries. Today, newborns get their first vaccine soon after birth (hepatitis B), then, between one and two months begin a series of shots that will eventually protect them against 14 diseases. Worldwide, childhood vaccines prevent up to 3 million deaths each year. In recent years, however, parents are increasingly likely to under-vaccinate their children. A January 2013 study published in JAMA Pediatrics reported that nearly half of children ages 2 months to 24 months in the United States either aren't getting all the necessary vaccines or have not been vaccinated at all. Vaccines are not just for kids. Adolescents and adults need them, too, whether to "boost" earlier immunizations that provided immunity against diphtheria, pertussis and tetanus or to protect against other diseases, such asinfluenza, pneumonia, shingles, bacterial meningitis or, for those traveling abroad,yellow fever and typhoid. Preteen girls and boys can now be vaccinated against several strains of the human papillomavirus (HPV), which cause most cervical cancers, as well as cancer of the anus, vagina and vulva. Vaccines are also being developed to prevent malaria and HIV, the virus that causes AIDS, as well as to harness the power of the immune system to fight cancer and other diseases. The History of Vaccines The roots of modern vaccines stretch halfway across the world to ancient China and India where, as early as the 10th century BC, people inhaled pus from smallpox blisters to inoculate themselves against the deadly disease. But it wasn't until 1796 that a country doctor from England named Edward Jenner formally vaccinated a child against the disease. Rather than using pus or scabs from individuals infected with smallpox, he used pus from a similar, but less virulent pox disease called cowpox. He hypothesized this would protect against smallpox because milkmaids infected with cowpox never caught smallpox, even during epidemics. Two weeks after inoculating an 8-year-old boy, Jenner tried to infect him with smallpox. Nothing happened. Voila! The first successful vaccination. (Indeed, the word vaccine comes from the Latin word "vacca" for cow). It, however, would be nearly two centuries later before smallpox was eradicated worldwide (the last known case occurred in Somalia in 1977). Its banishment (except for samples held in Russian and American laboratories) has been heralded as one of the most significant medical achievements in history. We've come a long way from Jenner's days, when "vaccines" were given by using a quill or ivory point to transfer the infected pus into a healthy person's skin. Today, safe, hair-thin needles deliver nearly painless injections, while some vaccines can be given orally with drops or nasally through a spray. Today we have vaccines against childhood illnesses like diphtheria, mumps, rubella and measles, which used to kill millions of children each year; against tetanus and rabies; and even against cancer. Some are designed to protect against infection in the first place; others to prevent the pathogen's replication and halt its ability to infect normal cells. In all, more than 300 approved vaccines protect against 30 diseases. Not only have vaccines saved lives, they have changed the very world in which we live. Vaccine Basics To understand how vaccines work, you first need to understand how your immune system works. There are two types of immunity: innate and adaptive. The innate immune system is a nonspecific response to any threat. Invaders such as bacteria, viruses and other pathogens display "signs" on their surface called antigens that signal immune system cells to action. The innate immune system includes visible protection, like skin and the mucus membranes in your nose and mouth that strain out pathogens, and invisible protection in the form of white blood cells like macrophages, which release inflammatory chemicals such as histamine and leukotrienes to destroy invaders. Sometimes this process runs amok, as when the innate immune system launches an all-out attack against harmless proteins like those from pollen or peanuts, resulting in an allergic reaction. A more targeted approach to threats comes from your adaptive immune system, which responds to specific antigens. The foundation of this system exists in T and Blymphocytes. These immune cells learn to recognize certain antigens. Once they identify a non–self invader, they generate specific responses to destroy that invader. B cells mature into specialized cells with antigen-specific antibodies on their surfaces that lock onto the antigen to annihilate it. T cells release toxins to destroy the invader or call other immune system cells into action. Once T and B cells are activated, they leave behind copies of themselves that are ready to spring into action again if the specific antigen appears. This is known as immunologic memory. These mature T and B cells enable your immune system to launch an attack against, say, a measles virus so quickly that the virus never has time to infect healthy cells and make you sick. Thus, the adaptive immune system, unlike the innate immune system, protects against reinfection. The problem with the adaptive immune system is that the first time it can take several days to get up to speed once it encounters a new antigen. That's more than enough time for most pathogens to replicate and make you sick. Enter vaccines. A vaccine is designed to stimulate the adaptive immune system before you're exposed to the virus and bacteria so when you do encounter it, specialized T and B cells already exist, ready to spring into action before the pathogen can make you sick.
Types of Vaccines Vaccines may be produced in several ways:
Live, attenuated vaccines Inactivated vaccines Subunit vaccines Toxoid vaccines Conjugate vaccines DNA vaccines Recombinant vector vaccines Live, attenuated vaccines. These vaccines contain a live, although significantly weakened, version of the pathogen. Measles, mumps and chicken pox vaccines are made with live viruses. The only bacterial vaccine made with live pathogens in the United States is the typhoid vaccine. The benefit of a live vaccine is that a single dose often provides lifelong immunity. The downside is that because viruses and other pathogens naturally mutate, or change, the virus within the vaccine could also change, possibly creating a more virulent version of itself that the immune system would have difficulty combatting. This was an issue with the early oral polio vaccines but is generally not a problem with current live vaccines, which are much safer than the virus they protect against. Only people with a suppressed immune system (such as those who have HIV/AIDS, are taking immunosuppressant drugs or are being treated for cancer) should be concerned about receiving live vaccines because they could, conceivably, become infected with the virus. Live vaccines also usually require refrigeration. Inactivated vaccines. These vaccines contain a killed version of the pathogen. They are more stable (meaning they don't need refrigeration) and safer than attenuated viruses, but they don't elicit as strong an immune response. Thus, the immunity they provide may not last as long and you might need a "booster" vaccine down the road. Subunit vaccines. These vaccines are made with bits and pieces of the inactivated antigen called epitopes. The advantage is that by using fewer molecules of the virus or bacteria, there is less risk of side effects. The disadvantage is that it is challenging and time consuming to identify the exact epitopes needed to stimulate the immune system. Toxoid vaccines. These vaccines are designed to protect against bacteria that secrete toxins. Treating the bacteria with formalin renders the toxins harmless but still retains enough of their structure to "teach" immune cells to recognize the bacteria and train them to lock onto the toxin antigen before the bacteria can release the chemical. Toxoid vaccines are used for diphtheria and tetanus. Conjugate vaccines. Conjugate vaccines are typically used to provide protection against certain types of bacterial infection, particularly in very young children. These bacteria, including those that cause bacterial meningitis, are surrounded by a thick capsule called a polysaccharide coating. This coating helps the bacteria hide from the immune system. Thus, antigen-presenting T cells can't "show" the antigen to B cells. B cells can still produce antibodies against the bacterial antigens and provide some protection, albeit short-lived, but this type of protection doesn't develop until children are about 2 years old. So many polysaccharide vaccines for adults and older children don't work in younger children, leaving children highly susceptible to the illnesses those bacteria cause. Enter the conjugate vaccine. Antigens or toxoids that the baby's immune system does recognize are attached to the polysaccharide coating. The infant's immune system learns to recognize polysaccharide coatings as dangerous and to defend against such pathogens. DNA vaccines. DNA vaccines are not yet in use, though they are being tested for influenza and herpes. These vaccines are made of the organism's genetic material, which carries the code, or recipe, for antigens. Once in the body, normal cells take up the DNA and begin making the microbe's antigens, displaying them on their surface and stimulating the immune system to respond. Recombinant vector vaccines. These vaccines also are not yet approved for widespread use but are being evaluated for HIV, rabies and measles and are thought to be even safer than existing vaccines. With recombinant vector vaccines, the microbe's DNA is inserted into another virus or bacteria that transports the DNA, enters cells and releases the DNA into the healthy cell, which then can provoke the immune response.
When to Vaccinate
These charts contain recommendations from the U.S. Centers for Disease Control and Prevention (CDC) for preventive vaccines. Don't panic if you or your child has not received all vaccinations on time; the CDC has guidelines for "catch-up" vaccinations that your health care professional should be aware of. If you are traveling out of the country, make an appointment with your health care professional at least four to six weeks before your trip to see if you need any travel-related vaccines. Travel is also a good time to make sure you're up-to-date on your other vaccines, as well. The only vaccines required by law are: Yellow fever: Required for travel to countries in sub-Saharan Africa and tropical South America Meningococcal vaccine: Required for travel to Saudi Arabia during the Hajj, an annual pilgrimage Other travel-related vaccines include typhoid, hepatitis A (for adults not vaccinated as children), Japanese encephalitis vaccine and rabies.
The Truth About Vaccines
Untruths and myths about vaccines have been circulated for hundreds of years. Complaints and concerns range from invasion of privacy and "bodily integrity" to concerns about safety, the use of animals to prepare and test vaccines and religious issues. But if only a few people vaccinate their children, vaccines would not be very effective in reducing or eliminating disease. Between 85 percent and 95 percent of a population must be vaccinated to provide protection for all (herd immunity). That's why most states in the United States require vaccination before children enter school. The Supreme Court has upheld such laws since the early part of the 20th century. Even today, however, some parents refuse to vaccinate their children. The most recent controversy around vaccines stems from suspicion of a possible link to the rising rates of autism of either the preservative thimerosal, which contains mercury, or the measles component of the MMR (measles/mumps/rubella) vaccine. Parental concern led to numerous scientific investigations regarding such links, with study after study finding no connections. Nonetheless, thimerosal was phased out of most vaccines in 2001. Autism rates, however, have continued to rise. Vaccines are extremely safe. The Centers for Disease Control and Prevention operates an Immunization Safety Office, which continuously monitors vaccine safety, including side effects. Part of its mission is managing the vaccine adverse event reporting system, which serves as an "early warning" system to detect vaccine-related problems. About 30,000 adverse event reports are filed annually, but just 10 percent to 15 percent are classified as serious (causing disability, hospitalization, life-threatening illness or death), and most of the incidents are ultimately not linked to vaccination. Anyone can file a report, including health care providers, manufacturers, personal injury lawyers and vaccine recipients or their parents or guardians. Children or adults who are harmed by a vaccine may apply for compensation from theNational Childhood Vaccine Injury Compensation Fund. Other vaccine myths and truths: Myth: The flu vaccine can cause the flu. Fact: The vaccine cannot cause the flu if you're vaccinated with the inactivated trivalent vaccine, made with killed virus. However, fever and achiness can occur after a flu vaccine. This is not the flu, however, but the result of an activated immune system. The nasal flu vaccine, which contains a weakened live virus, could, conceivably, cause the flu in someone with a suppressed immune system. Thus, it is only approved for use in healthy people between 2 and 49 years of age (younger and older people tend to have weaker immune systems). Studies involving hundreds of healthy children and adults showed no evidence that the nasal flu vaccine resulted in the flu. However, you can get the flu after being vaccinated if the viral types used to make the vaccine do not match the circulating flu viruses. These viruses change every year, which is why the vaccine changes every year and why you need an annual vaccine. Nonetheless, in any given year the flu vaccine typically protects about 60 percent of healthy adults under 65. The older you are the less effective it is, likely because of a weaker immune system. Even when the vaccine and viruses aren't well matched, the vaccine still protects a considerable number of people. Plus, if you get the flu, having had a vaccine means a quicker recovery with fewer complications. And don't forget it takes about two weeks after you're vaccinated before the vaccine fully engages your immune system. During those two weeks, you're still susceptible to an influenza virus, even one the vaccine should protect against.
Myth: Adolescents don't need vaccines.
Truth: Adolescents (and adults) definitely need vaccines and regular boosters. Children 11 or 12 need the tetanus-diphtheria-acellular pertussis (Tdap) vaccine; the meningococcal conjugate vaccine; the influenza vaccine; and the human papillomavirus (HPV) vaccine, which helps protect against cancers of the cervix, anus, vagina and vulva. Plus, teens (and adults) who haven't had chicken pox or been immunized against the disease should get a varicella vaccine. Unfortunately, while vaccination rates for young children are very good, those for adolescents are far below what they should be, though some of these rates are improving. According to the CDC, vaccination rates have been rising for tetanus-diphtheria (Tdap) and meningococcal-conjugate vaccine (MCV4). The increase in vaccine coverage rates for human papillomavirus (HPV) vaccine, however, is only about half the rate of the increases seen for Tdap and MCV4.
Myth: Vaccines provide 100 percent protection forever.
Truth: It depends on the vaccine. Most vaccines that children get in their early years provide lifetime immunity. Some, like the influenza vaccine, are required annually because the viruses causing influenza change every year. Others, like the diphtheria-tetanus-acellular pertussis (DTaP) vaccine, require "booster" shots to maintain immunity. For instance, immunity from pertussis (whooping cough) vaccination wears off, making adults and adolescents particularly susceptible to the disease. The bacterial disease can lead to significant time lost from work and school. More worrisome is the fact that it can be transmitted to children who have not been vaccinated, particularly newborns, in whom the disease can be fatal. Because booster shots are needed in adolescents and adults—who are less likely to get vaccinated than children—pertussis is the only vaccine-preventable infectious disease increasing in prevalence in the United States. In 2010, nearly 28,000 cases were reported to the CDC. The number of actual cases is likely triple that. That’s why the CDC added a recommendation for the adolescent booster of Tdap in 2005.
Myth: It's OK not to vaccinate your child if other parents vaccinate theirs.
Truth: In our global world, it's important to vaccinate all children. Each year, an average of 60 people in the United States contract measles. But in 2011, the number of measles cases was higher than usual at 222. Most of these cases occurred in people who were not vaccinated, and 40 percent got measles in other countries and brought the disease back to the United States and spread it to others. High vaccine rates are necessary to provide "herd immunity" (protecting those who have not been immunized). For instance, children under 12 months cannot receive the measles vaccine, so they are particularly vulnerable. Plus, some people cannot be vaccinated for medical reasons; high rates of vaccination in the community help protect them. Measles should not be taken lightly: it is one of the most infectious diseases known to man, able to be transmitted for up to two hours after an infected person has left the room. Before the vaccine became available in the mid-1960s, up to 450 deaths and 4,000 cases of measles-related encephalitis occurred each year in the United States.
Myth: Giving a child multiple vaccinations for different diseases at the same time increases the risk of harmful side effects and can overload the immune system.
Truth: There is no problem vaccinating children for different diseases at the same time. Numerous studies evaluating the effects of combinations of vaccines and of giving children several vaccines at once show this approach is as effective as giving children individual vaccines with no greater risk for side effects. Giving a child two or more vaccines during one health care visit not only provides maximum protection but reduces required office visits, saves time and money and minimizes trauma (from the shots) to the child. There are also combination vaccines, in which multiple vaccines are delivered in one shot.
Therapeutic Vaccines
Cancer Vaccines When you think of a vaccine, you think of something designed to protect you from a disease. These are called prophylactic vaccines. But vaccines are also being investigated as a way to harness the power of the immune system to fight existing disease, particularly cancer. These vaccines are called therapeutic vaccines. Cancer cells proliferate for two main reasons: They develop from normal cells, so they don't register as "foreign" to the immune system, and they have developed ways to prevent detection by the immune system. The goal of therapeutic cancer vaccines is to enhance the "foreignness" of the tumor and train the immune system to recognize similar antigens as foreign. There is currently one vaccine approved by the United States Food and Drug Administration to help treat cancer. The vaccine, called sipuleucel-t (Provenge), is a dendritic cell vaccine that treats advanced prostate cancer that no longer responds to hormone therapy. Researchers also have several cancer vaccines in late-stage clinical trials, including one to treat breast cancer. Click each type to learn more. Antigen vaccines. These vaccines are created by mass producing a few antigens from the tumor cell, altering them so they are more easily recognized by the patient's immune system and injecting them into the patient. Tumor cell vaccines. These vaccines are composed of cells from the patient's tumor that have been modified so they cannot reproduce. By injecting them into the patient, it is hoped they will stimulate the immune system to attack the specific antigen for that cancer and destroy original cancer cells that are replicating. Dendritic cell vaccines. Dendritic cells are immune system cells that show antigens to T cells so they can produce antibodies. A dendritic cell vaccine trains the patient's dendritic cells to recognize the tumor antigen as foreign, then injects the "trained" dendritic cells into the patient so they can "train" T cells. DNA vaccines. DNA vaccines use genetic material from the tumor that encodes for one or more antigens to stimulate the immune response. Vector-based vaccine. A vector-based cancer vaccine uses a virus, bacteria or yeast cell to "deliver" cancer antigens or DNA. The immune system responds to the vector as well as the cancer antigen, triggering a stronger immune response. Autoimmune Vaccines Therapeutic vaccines are also under investigation to treat autoimmune diseases like multiple sclerosis (MS) and lupus. These diseases result from an overactive immune system, one that fails to differentiate between "self" and "nonself" cells and attacks the body's own tissue. Vaccines to treat such conditions are designed to "downregulate" the immune system by training certain immune cells to attack disease-causing immune cells. One such vaccine that has shown good results in early clinical trials is a DNA vaccine that targets the T cells that attack myelin, nerve cell sheathing, in people with MS. Vaccines in the Future Although we have made great strides in providing vaccines for many major illnesses, particularly childhood diseases, several other serious conditions remain. In addition tocancer vaccines researchers are working on vaccines to prevent malaria and HIV, the virus that causes AIDS. Vaccines are also being investigated to prevent hepatitis C, tuberculosis, Alzheimer's disease, Parkinson's disease and numerous other neurological and autoimmune diseases. Malaria vaccine. Malaria is one of the most devastating diseases in the world, affecting more than 300 million people a year and killing more than 1 million, primarily in sub-Saharan Africa. The actual figures, however, are likely up to three times higher, given the difficulty of diagnosing and tracking the disease in these countries. Scientists at the CDC have an ongoing malaria vaccine development and evaluation program that is testing potential malaria vaccines in small New World monkeys. HIV vaccine. Researchers throughout the world have been working on an HIV vaccine for more than 20 years without success. In the United States alone, the National Institute of Allergy and Infectious Diseases at the National Institutes of Health has conducted more than 117 HIV vaccine clinical trials to test more than 70 possible vaccines. The U.S. Military HIV Research Program and the CDC are also researching HIV vaccines. The challenge in developing a vaccine against HIV is that our immune system is weak when it comes to eradicating the virus. The virus also takes over the DNA of normal immune system cells, often lying dormant for months or even years. When it is activated, it's too late for an immune response to be of use because the virus has co-opted cells to churn out millions of HIV copies. Another problem is that the virus mutates easily. A vaccine designed against today's virus may be irrelevant in a couple of years. Even when the immune system recognizes antigens on the virus and produces antibodies against it, the virus mutates before those antibodies can do much good. This is why existing drugs against the infection eventually fail; the virus mutates and becomes resistant to them. However, scientists still believe a vaccine to prevent HIV is possible, and they are building on what they have learned and moving forward with the research process.
Facts to Know
1. Today, more than 300 approved vaccines provide protection against 30 diseases. 2. The immune system has two components: the innate immune system, in which inflammation destroys invading pathogens; and the adaptive immune system, which "learns" to recognize certain pathogens and retains an immunologic memory so it can quickly mount a defense the next time the pathogen appears. 3. A vaccine is designed to stimulate the adaptive immune system before you're exposed to the virus or bacteria so you're already protected when you encounter it. 4. There are two main types of vaccine: prophylactic, which prevents disease; and therapeutic, which treats disease. 5. There are several types of vaccines, including live, attenuated vaccines and inactivated vaccines. The former are made with live, although weakened pathogens, while the latter are made with killed pathogens, or parts of them. 6. Adolescents and adults also require vaccination, including vaccines designed to protect against human papillomaviruses (HPV), which cause cervical cancer; influenza; pneumonia; and shingles. Adolescents and adults also require regular "booster" vaccines against diphtheria, tetanus and pertussis (whooping cough). 7. Prophylactic vaccines are extremely safe, although some may have mild side effects. The most common side effects are redness, soreness and irritation at the injection site and fever. 8. People with compromised immune systems, moderate-to-severe illnesses and/or those who have had a previous reaction to a vaccine should consult with their health care professional before getting vaccinated. 9. Researchers are working on vaccines that treat malaria, cancer, autoimmune diseases and neurological conditions like Alzheimer's disease and Parkinson's disease. 10. While many vaccines provide lifelong immunity, some require regular boosters. Key Q&A 1. What is the difference between the innate and adaptive immune system? The innate immune system is designed to provide a kind of "shock and awe" protection against bacteria, viruses and other pathogens. When cells in the innate immune system "see" an invader, they rush in to destroy it, often by releasing inflammatory chemicals like histamines and leukotrienes. These invaders display "signs" on their surface called antigens that signal immune system cells to action. The adaptive immune system provides a more targeted approach. As immature T and B lymphocytes encounter antigens, they develop specific antibodies against those antigens. These "mature" lymphocytes hang out in tissue, ready to quickly spring to action when they encounter the same antigens. This creates immunologic memory and prevents reinfection. 2. How do vaccines work? All vaccines are designed to affect the immune system in some way. Prophylactic vaccines are designed to stimulate a response of the adaptive immune system to a modified version of the pathogen so that when you are infected with the actual virus or bacteria, it can quickly mount a major offense against the invader before you become sick. Therapeutic vaccines are designed to strengthen the immune system's response to a cancer or other abnormal cell. 3. What is the difference between live and "killed" vaccines? Live, attenuated vaccines contain a live, although significantly weakened, version of the virus or bacteria. Measles, mumps and chicken pox vaccines are made with live viruses. The benefit of a live vaccine is that a single dose often provides lifelong immunity. The downside is that because viruses and other pathogens naturally mutate, or change, the virus within the vaccine could also change, creating a more virulent version of itself that the immune system would have difficulty combatting. This was an issue with the early oral polio vaccines, but is generally not a problem with current live vaccines, which are much safer than the virus they protect against. Only people with a suppressed immune system (such as those who have HIV, are taking immunosuppressant drugs or are being treated for cancer) should be concerned about receiving live vaccines because they could, conceivably, become infected with the virus. These vaccines also usually require refrigeration. Inactivated vaccines contain a killed version of the pathogen. They are more stable (meaning they don't need refrigeration) and safer than attenuated viruses, but they don't elicit as strong an immune response. Thus, the immunity they provide may not last as long and you might need a "booster" vaccine down the road. 4. What types of vaccines protect against bacterial infections? Typically, inactivated vaccines. Many bacteria secrete toxins that damage healthy cells. Toxoid vaccines treat the bacteria with formalin, which renders the toxins harmless but still retains enough of their structure to "teach" immune cells to recognize the bacteria and train them to lock onto the toxin antigen before the bacteria can release it. Toxoid vaccines are used for diphtheria and tetanus. Conjugate vaccines are also used in young children to protect against infections caused by Haemophilus influenzae type b (such as meningitis and lung infections) and pneumococcal disease. 5. What should I do if my child misses a vaccine? Call your health care professional. Children can "catch up" on nearly all vaccines, regardless of their age, except for the rotavirus vaccine, which protects infants against the severe vomiting and diarrhea caused by rotavirus. 6. What vaccines do adolescents require? Preteens and adolescents should receive vaccines against the human papillomavirus, meningococcal disease and tetanus/diphtheria/acellular pertussis (Tdap). Depending on what vaccines your child received when younger, he or she may also need "catch-up" vaccines for hepatitis B, mumps/measles/rubella, polio or varicella (chicken pox). Additionally, everyone 6 months and older should receive an annual influenza vaccine. 7. I'm traveling out of the country. What vaccines do I need? Make an appointment with your health care professional at least four to six weeks before your trip to see if you need any travel-related vaccines. The only required vaccines are yellow fever for those traveling to countries in sub-Saharan Africa and tropical South America and the meningococcal vaccine for travel to Saudi Arabia during the Hajj. You can learn more about vaccines required for overseas travel at theCenters for Disease Control website. Your local health department can typically provide the vaccines. 8. I'm worried about the safety of vaccines. Vaccines are extremely safe. The Centers for Disease Control and Prevention operates an Immunization Safety Office that continuously monitors vaccine safety, including side effects. Part of its mission is managing the vaccine adverse event reporting system, which serves as an "early warning" system to detect vaccine-related problems. About 30,000 reports are filed annually, but just 10 percent to 15 percent are classified as serious (causing disability, hospitalization, life-threatening illness or death), and most of the incidents are ultimately not linked to vaccination. Anyone can file a report, including health care providers, manufacturers, personal injury lawyers and vaccine recipients or their parents or guardians. 9. I heard that vaccines can cause autism. Some parents insist that their children developed autism after having early childhood vaccines, such as the measles/mumps/rubella (MMR) vaccine. Some suspect that a preservative once used in childhood vaccines that contained mercury caused autism. But numerous scientific investigations regarding a possible link found no connection. Today's childhood vaccines do not have mercury-based preservatives; nonetheless, autism rates have continued to rise. 10. I have breast cancer. I heard there is a vaccine that can treat the cancer. How can I find out more? There are several vaccines under investigation for cancer. These are called therapeutic vaccines because they are designed to treat, rather than prevent, disease. However, none have been approved yet. So talk to your doctor about joining a clinical trial. Read the full article
0 notes