#Laser Interferometer Space Antenna (LISA)
Explore tagged Tumblr posts
whats-in-a-sentence · 3 months ago
Text
With LIGO and its subsequent improvements,* we will view the cosmos in a completely new way.
* One of these is the planned Laser Interferometer Space Antenna (LISA), a space-based version of LIGO comprising multiple spacecraft, separated by millions of kilometers, playing the role of LIGO's four-kilometer tubes. There are also other detectors that are playing a critical role in the search for gravitational waves, including the German-British detector GEO600, the French-Italian detector VIRGO, and the Japanese detector TAMA300.
"The Fabric of the Cosmos" - Brian Greene
1 note · View note
xtruss · 1 year ago
Text
Capturing The Ripples of Spacetime: LISA Gets Go-ahead
— January 25th, 2024
Today, ESA’s Science Programme Committee approved the Laser Interferometer Space Antenna (LISA) mission, the first scientific endeavour to detect and study gravitational waves from space.
This important step, formally called ‘adoption’, recognises that the mission concept and technology are sufficiently advanced, and gives the go-ahead to build the instruments and spacecraft. This work will start in January 2025 once a European industrial contractor has been chosen.
LISA is not just one spacecraft but a constellation of three. They will trail Earth in its orbit around the Sun, forming an exquisitely accurate equilateral triangle in space. Each side of the triangle will be 2.5 million km long (more than six times the Earth-Moon distance), and the spacecraft will exchange laser beams over this distance. The launch of the three spacecraft is planned for 2035, on an Ariane 6 rocket.
Led by ESA, LISA is made possible by a collaboration between ESA, its Member State space agencies, NASA, and an international consortium of scientists (the LISA consortium).
Tumblr media
LISA – Measuring Gravitational Waves
Bringing ‘Sound’ To The Cosmic Movie
Just over a century ago, Einstein made the revolutionary prediction that when massive objects accelerate, they shake the fabric of spacetime, producing miniscule ripples known as gravitational waves. Thanks to modern technological developments, we are now able to detect these most elusive of signals.
“LISA is an endeavour that has never been tried before. Using laser beams over distances of several kilometres, ground-based instrumentation can detect gravitational waves coming from events involving star-sized objects – such as supernova explosions or merging of hyper-dense stars and stellar-mass black holes. To expand the frontier of gravitational studies we must go to space,” explains LISA lead project scientist Nora Lützgendorf.
“Thanks to the huge distance travelled by the laser signals on LISA, and the superb stability of its instrumentation, we will probe gravitational waves of lower frequencies than is possible on Earth, uncovering events of a different scale, all the way back to the dawn of time.”
Tumblr media
The Spectrum of Gravitational Waves
LISA will detect, across the entire Universe, the ripples in spacetime caused when huge black holes at the centres of galaxies collide. This will enable scientists to trace the origin of these monstrous objects, to chart how they grow to be millions of times more massive than the Sun and to establish the role they play in the evolution of galaxies.
The mission is poised to capture the predicted gravitational ‘ringing’ from the initial moments of our Universe and offer a direct glimpse into the very first seconds after the Big Bang. Additionally, because gravitational waves carry information on the distance of the objects that emitted them, LISA will help researchers measure the change in the expansion of the Universe with a different type of yardstick from the techniques used by Euclid and other surveys, validating their results.
Closer to home, in our own galaxy, LISA will detect many merging pairs of compact objects like white dwarfs or neutron stars and give us a unique insight into the final stages of the evolution of these systems. By pinpointing their position and distances, LISA will further our grasp of the structure of the Milky Way, building upon the findings from ESA's Gaia mission.
“For centuries we have been studying our cosmos through capturing light. Coupling this with the detection of gravitational waves is bringing a totally new dimension to our perception of the Universe,” remarks LISA project scientist Oliver Jennrich.
“If we imagine that, so far, with our astrophysics missions, we have been watching the cosmos like a silent movie, capturing the ripples of spacetime with LISA will be a real game-changer, like when sound was added to motion pictures.”
Tumblr media
Golden Cubes For LISA
Golden Cubes and Laser Beams
To detect gravitational waves, LISA will use pairs of solid gold-platinum cubes – so called test masses (slightly smaller than Rubik’s cubes), free-floating in special housing at the heart of each spacecraft. Gravitational waves will cause tiny changes in the distances between the masses in the different spacecraft, and the mission will track these variations using laser interferometry.
This technique requires shooting laser beams from one spacecraft to the other and then superimposing their signal to determine changes in the masses’ distances down to a few billionths of a millimetre.
The spacecraft must be designed to ensure that nothing, besides the geometry of spacetime itself, affects the movement of the masses, which are in freefall.
Solid Heritage and Future Teamwork
The spacecraft follows in the footsteps of LISA Pathfinder, which demonstrated that it is possible to keep the test masses in freefall to an astonishing level of precision. The same precision propulsion system that has also been flown on ESA’s Gaia and Euclid missions will ensure that each spacecraft maintains the required position and orientation with the highest accuracy.
Selected to be the third large mission of ESA’s Cosmic Vision 2015–2025, LISA will join ESA’s science fleet of cosmic observers to address two essential questions at the heart of the programme: What are the fundamental physical laws of the Universe? How did the Universe originate and what is it made of?
In this quest, LISA will work together with ESA’s other large mission currently under study: NewAthena. With a launch date foreseen for 2037, NewAthena is set to be the largest X-ray observatory ever built.
Notes For Editors:
ESA leads the LISA mission and will provide the spacecraft, launch, mission operations and data handling. Key instrumental elements are the free-falling test masses shielded from external forces, provided by Italy and Switzerland; the picometre-accuracy systems to detect the interferometric signal, provided by Germany, the UK, France, the Netherlands, Belgium, Poland and the Czech Republic; and the Science Diagnostics Subsystem (an arsenal of sensors across the spacecraft), provided by Spain. The ultra-stable lasers, the 30 cm telescopes to collect their light, and the sources of UV light (to discharge the test masses) will be provided by NASA.
1 note · View note
spacetimewithstuartgary · 5 months ago
Text
Tumblr media Tumblr media Tumblr media Tumblr media
Origin of supermassive black hole Sagittarius A*
The origins of aptly named supermassive black holes – which can weigh in at more than a million times the mass of the sun and reside in the center of most galaxies – remain one of the great mysteries of the cosmos. 
Now, researchers from the Nevada Center for Astrophysics at UNLV (NCfA) have discovered compelling evidence suggesting that the supermassive black hole at the center of our Milky Way galaxy, known as Sagittarius A* (Sgr A*), is likely the result of a past cosmic merger. 
The study, published Sept. 6 in the journal Nature Astronomy, builds on recent observations from the Event Horizon Telescope (EHT), which captured the first direct image of Sgr A* in 2022. The EHT, the result of a global research collaboration, syncs data from eight existing radio observatories worldwide to create a massive, Earth-sized virtual telescope. 
UNLV astrophysicists Yihan Wang and Bing Zhang utilized the data from the EHT observation of Sgr A* to look for evidence on how it may have formed. Supermassive black holes are thought to grow either by the accretion of matter over time, or by the merger of two existing black holes. 
The UNLV team investigated various growth models to understand the peculiar rapid spin and misalignment of Sgr A* relative to the Milky Way’s angular momentum. The team demonstrated that these unusual characteristics are best explained by a major merger event involving Sgr A* and another supermassive black hole, likely from a satellite galaxy.
“This discovery paves the way for our understanding of how supermassive black holes grow and evolve,” said Wang, the lead author of the study and an NCfA postdoctoral fellow at UNLV. “The misaligned high spin of Sgr A* indicates that it may have merged with another black hole, dramatically altering its amplitude and orientation of spin.”
Using sophisticated simulations, the researchers modeled the impact of a merger, considering various scenarios that align with the observed spin properties of Sgr A*. Their results indicate that a 4:1 mass ratio merger with a highly inclined orbital configuration could reproduce the spin properties observed by the EHT. 
“This merger likely occurred around 9 billion years ago, following the Milky Way’s merger with the Gaia-Enceladus galaxy,” said Zhang, a distinguished professor of physics and astronomy at UNLV and the founding director of the NCfA. “This event not only provides evidence of the hierarchical black hole merger theory but also provides insights into the dynamical history of our galaxy.” 
Sgr A* sits at the center of the galaxy more than 27,000 light years away from Earth, and sophisticated tools like the EHT provide direct imaging that helps scientists put predictive theories to the test. 
Researchers say that the findings from the study will have significant implications for future observations with upcoming space-borne gravitational wave detectors, such as the Laser Interferometer Space Antenna (LISA), which is planned to launch in 2035 and is expected to detect similar supermassive black hole mergers across the universe.
16 notes · View notes
blasteffect · 1 year ago
Text
Tumblr media
The LISA
The Lisa (Laser Interferometer Space Antenna) mission, led by ESA (European Space Agency) with NASA contributions, will detect gravitational waves in space using three spacecraft, separated by more than a million miles, flying in a triangular formation.
Lasers fired between the satellites, shown in this artist's concept, will measure how gravitational waves alter their relative distances.
AEI/MM/Exozet
33 notes · View notes
michaelgabrill · 4 months ago
Text
NASA Reveals Prototype Telescope for Gravitational Wave Observatory
NASA has revealed the first look at a full-scale prototype for six telescopes that will enable, in the next decade, the space-based detection of gravitational waves — ripples in space-time caused by merging black holes and other cosmic sources. The LISA (Laser Interferometer Space Antenna) mission is led by ESA (European Space Agency) in partnership […] from NASA https://ift.tt/BeUP295
5 notes · View notes
spacenutspod · 4 months ago
Link
2 min read NASA Reveals Prototype Telescope for Gravitational Wave Observatory NASA has revealed the first look at a full-scale prototype for six telescopes that will enable, in the next decade, the space-based detection of gravitational waves — ripples in space-time caused by merging black holes and other cosmic sources. On May 20, the full-scale Engineering Development Unit Telescope for the LISA (Laser Interferometer Space Antenna) mission, still in its shipping frame, was moved within a clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA/Dennis Henry The LISA (Laser Interferometer Space Antenna) mission is led by ESA (European Space Agency) in partnership with NASA to detect gravitational waves by using lasers to measure precise distances — down to picometers, or trillionths of a meter — between a trio of spacecraft distributed in a vast configuration larger than the Sun. Each side of the triangular array will measure nearly 1.6 million miles, or 2.5 million kilometers. “Twin telescopes aboard each spacecraft will both transmit and receive infrared laser beams to track their companions, and NASA is supplying all six of them to the LISA mission,” said Ryan DeRosa, a researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The prototype, called the Engineering Development Unit Telescope, will guide us as we work toward building the flight hardware.” The prototype LISA telescope undergoes post-delivery inspection in a darkened NASA Goddard clean room on May 20. The entire telescope is made from an amber-colored glass-ceramic that resists changes in shape over a wide temperature range, and the mirror’s surface is coated in gold. NASA/Dennis Henry The Engineering Development Unit Telescope, which was manufactured and assembled by L3Harris Technologies in Rochester, New York, arrived at Goddard in May. The primary mirror is coated in gold to better reflect the infrared lasers and to reduce heat loss from a surface exposed to cold space since the telescope will operate best when close to room temperature. The prototype is made entirely from an amber-colored glass-ceramic called Zerodur, manufactured by Schott in Mainz, Germany. The material is widely used for telescope mirrors and other applications requiring high precision because its shape changes very little over a wide range of temperatures. The LISA mission is slated to launch in the mid-2030s. Download additional images from NASA’s Scientific Visualization Studio By Francis ReddyNASA’s Goddard Space Flight Center, Greenbelt, Md. Media Contact:Claire [email protected]’s Goddard Space Flight Center, Greenbelt, Md. Share Details Last Updated Oct 22, 2024 Related Terms Astrophysics Black Holes Galaxies, Stars, & Black Holes Goddard Space Flight Center Gravitational Waves LISA (Laser Interferometer Space Antenna) The Universe Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System
3 notes · View notes
the-telescope-times · 2 years ago
Link
6 notes · View notes
downloadednews · 2 days ago
Text
LISA: Co Tak Naprawdę Zobaczy Rewolucyjne Obserwatorium Fal Grawitacyjnych?
Rewolucja w badaniach fal grawitacyjnych – projekt LISA Kosmiczne obserwatorium za 6,4 miliarda złotych LISA (Laser Interferometer Space Antenna) to ambitny projekt badawczy, którego celem jest rewolucja w detekcji fal grawitacyjnych – niewielkich zaburzeń czasoprzestrzeni, przewidzianych teoretycznie ponad sto lat temu i po raz pierwszy wykrytych dopiero osiem lat temu. Koszt misji szacowany…
0 notes
sunaleisocial · 28 days ago
Text
X-ray flashes from a nearby supermassive black hole accelerate mysteriously
New Post has been published on https://sunalei.org/news/x-ray-flashes-from-a-nearby-supermassive-black-hole-accelerate-mysteriously/
X-ray flashes from a nearby supermassive black hole accelerate mysteriously
One supermassive black hole has kept astronomers glued to their scopes for the last several years. First came a surprise disappearance, and now, a precarious spinning act.
The black hole in question is 1ES 1927+654, which is about as massive as a million suns and sits in a galaxy that is 270 million light-years away. In 2018, astronomers at MIT and elsewhere observed that the black hole’s corona — a cloud of whirling, white-hot plasma — suddenly disappeared, before reassembling months later. The brief though dramatic shut-off was a first in black hole astronomy.
Members of the MIT team have now caught the same black hole exhibiting more unprecedented behavior.
The astronomers have detected flashes of X-rays coming from the black hole at a steadily increasing clip. Over a period of two years, the flashes, at millihertz frequencies, increased from every 18 minutes to every seven minutes. This dramatic speed-up in X-rays has not been seen from a black hole until now.
The researchers explored a number of scenarios for what might explain the flashes. They believe the most likely culprit is a spinning white dwarf — an extremely compact core of a dead star that is orbiting around the black hole and getting precariously closer to its event horizon, the boundary beyond which nothing can escape the black hole’s gravitational pull. If this is the case, the white dwarf must be pulling off an impressive balancing act, as it could be coming right up to the black hole’s edge without actually falling in.
“This would be the closest thing we know of around any black hole,” says Megan Masterson, a graduate student in physics at MIT, who co-led the discovery. “This tells us that objects like white dwarfs may be able to live very close to an event horizon for a relatively extended period of time.”
The researchers present their findings today at the 245th meeting of the American Astronomical Society.
If a white dwarf is at the root of the black hole’s mysterious flashing, it would also give off gravitational waves, in a range that would be detectable by next-generation observatories such as NASA’s Laser Interferometer Space Antenna (LISA).
“These new detectors are designed to detect oscillations on the scale of minutes, so this black hole system is in that sweet spot,” says co-author Erin Kara, associate professor of physics at MIT.
The study’s other co-authors include MIT Kavli members Christos Panagiotou, Joheen Chakraborty, Kevin Burdge, Riccardo Arcodia, Ronald Remillard, and Jingyi Wang, along with collaborators from multiple other institutions.
Nothing normal
Kara and Masterson were part of the team that observed 1ES 1927+654 in 2018, as the black hole’s corona went dark, then slowly rebuilt itself over time. For a while, the newly reformed corona — a cloud of highly energetic plasma and X-rays — was the brightest X-ray-emitting object in the sky.
“It was still extremely bright, though it wasn’t doing anything new for a couple years and was kind of gurgling along. But we felt we had to keep monitoring it because it was so beautiful,” Kara says. “Then we noticed something that has never really been seen before.”
In 2022, the team looked through observations of the black hole taken by the European Space Agency’s XMM-Newton, a space-based observatory that detects and measures X-ray emissions from black holes, neutron stars, galactic clusters, and other extreme cosmic sources. They noticed that X-rays from the black hole appeared to pulse with increasing frequency. Such “quasi-periodic oscillations” have only been observed in a handful of other supermassive black holes, where X-ray flashes appear with regular frequency.
Radio images of 1ES 1927+654 reveal emerging structures that appear to be jets of plasma erupting from both sides of the galaxy’s central black hole following a strong radio flare. The first image, taken in June 2023, shows no sign of the jet, likely because hot gas screened it from view. Then, starting in February 2024, the features emerge and expand away from the galaxy’s center, covering a total distance of about half a light-year as measured from the center of each structure.
Credit: NRAO/Meyer at al. 2025
Previous item Next item
In the case of 1ES 1927+654, the flickering seemed to steadily ramp up, from every 18 minutes to every seven minutes over the span of two years.
“We’ve never seen this dramatic variability in the rate at which it’s flashing,” Masterson says. “This looked absolutely nothing like a normal supermassive black hole.”
The fact that the flashing was detected in the X-ray band points to the strong possibility that the source is somewhere very close to the black hole. The innermost regions of a black hole are extremely high-energy environments, where X-rays are produced by fast-moving, hot plasma. X-rays are less likely to be seen at farther distances, where gas can circle more slowly in an accretion disk. The cooler environment of the disk can emit optical and ultraviolet light, but rarely gives off X-rays.
“Seeing something in the X-rays is already telling you you’re pretty close to the black hole,” Kara says. “When you see variability on the timescale of minutes, that’s close to the event horizon, and the first thing your mind goes to is circular motion, and whether something could be orbiting around the black hole.”
X-ray kick-up
Whatever was producing the X-ray flashes was doing so at an extremely close distance from the black hole, which the researchers estimate to be within a few million miles of the event horizon.
Masterson and Kara explored models for various astrophysical phenomena that could explain the X-ray patterns that they observed, including a possibility relating to the black hole’s corona.
“One idea is that this corona is oscillating, maybe blobbing back and forth, and if it starts to shrink, those oscillations get faster as the scales get smaller,” Masterson says. “But we’re in the very early stages of understanding coronal oscillations.”
Another promising scenario, and one that scientists have a better grasp on in terms of the physics involved, has to do with a daredevil of a white dwarf. According to their modeling, the researchers estimate the white dwarf could have been about one-tenth the mass of the sun. In contrast, the supermassive black hole itself is on the order of 1 million solar masses.
When any object gets this close to a supermassive black hole, gravitational waves are expected to be emitted, dragging the object closer to the black hole. As it circles closer, the white dwarf moves at a faster rate, which can explain the increasing frequency of X-ray oscillations that the team observed.
The white dwarf is practically at the precipice of no return and is estimated to be just a few million miles from the event horizon. However, the researchers predict that the star will not fall in. While the black hole’s gravity may pull the white dwarf inward, the star is also shedding part of its outer layer into the black hole. This shedding acts as a small kick-back, such that the white dwarf — an incredibly compact object itself — can resist crossing the black hole’s boundary.
“Because white dwarfs are small and compact, they’re very difficult to shred apart, so they can be very close to a black hole,” Kara says. “If this scenario is correct, this white dwarf is right at the turn around point, and we may see it get further away.”
The team plans to continue observing the system, with existing and future telescopes, to better understand the extreme physics at work in a black hole’s innermost environments. They are particularly excited to study the system once the space-based gravitational-wave detector LISA launches — currently planned for the mid 2030s — as the gravitational waves that the system should give off will be in a sweet spot that LISA can clearly detect.
“The one thing I’ve learned with this source is to never stop looking at it because it will probably teach us something new,” Masterson says. “The next step is just to keep our eyes open.”
0 notes
world-of-news · 2 months ago
Text
0 notes
petrosolgas · 4 months ago
Text
LISA: O telescópio da NASA que vai “ouvir” o universo!
A NASA acaba de dar um grande passo na exploração espacial com a apresentação do primeiro protótipo em escala real do telescópio LISA (Laser Interferometer Space Antenna). Este ambicioso projeto, desenvolvido em colaboração com a ESA (Agência Espacial Europeia), visa criar o primeiro detector de ondas gravitacionais no espaço, permitindo a exploração de alguns dos eventos mais extraordinários do…
Tumblr media
View On WordPress
0 notes
dailyreportonline · 4 months ago
Text
NASA Unveils Prototype Telescope for LISA Mission, Gravitational Wave Detection from Space | Daily Reports Online
NASA has provided a first glimpse of the full-scale prototype for six telescopes that are set to detect gravitational waves from space. These waves, caused by cosmic events such as black hole collisions, are set to be observed by the LISA (Laser Interferometer Space Antenna) mission. This mission is a collaboration between NASA and the European Space Agency (ESA) and aims to advance our…
0 notes
spacetimewithstuartgary · 4 months ago
Text
Tumblr media Tumblr media
NASA reveals prototype telescope for gravitational wave observatory
NASA has revealed the first look at a full-scale prototype for six telescopes that will enable, in the next decade, the space-based detection of gravitational waves — ripples in space-time caused by merging black holes and other cosmic sources.
The LISA (Laser Interferometer Space Antenna) mission is led by ESA (European Space Agency) in partnership with NASA to detect gravitational waves by using lasers to measure precise distances — down to picometers, or trillionths of a meter — between a trio of spacecraft distributed in a vast configuration larger than the Sun. Each side of the triangular array will measure nearly 1.6 million miles, or 2.5 million kilometers.
“Twin telescopes aboard each spacecraft will both transmit and receive infrared laser beams to track their companions, and NASA is supplying all six of them to the LISA mission,” said Ryan DeRosa, a researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The prototype, called the Engineering Development Unit Telescope, will guide us as we work toward building the flight hardware.”
The Engineering Development Unit Telescope, which was manufactured and assembled by L3Harris Technologies in Rochester, New York, arrived at Goddard in May. The primary mirror is coated in gold to better reflect the infrared lasers and to reduce heat loss from a surface exposed to cold space since the telescope will operate best when close to room temperature.
The prototype is made entirely from an amber-colored glass-ceramic called Zerodur, manufactured by Schott in Mainz, Germany. The material is widely used for telescope mirrors and other applications requiring high precision because its shape changes very little over a wide range of temperatures.
The LISA mission is slated to launch in the mid-2030s.
TOP IMAGE: On May 20, the full-scale Engineering Development Unit Telescope for the LISA (Laser Interferometer Space Antenna) mission, still in its shipping frame, was moved within a clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit NASA/Dennis Henry
LOWER IMAGE: The prototype LISA telescope undergoes post-delivery inspection in a darkened NASA Goddard clean room on May 20. The entire telescope is made from an amber-colored glass-ceramic that resists changes in shape over a wide temperature range, and the mirror’s surface is coated in gold. Credit NASA/Dennis Henry
5 notes · View notes
swissforextrading · 6 months ago
Text
The universe on display
09.08.24 - Starting today, the Earth will be passing through a meteor shower. But in astronomy, the human eye is very much a limited tool. But increasingly powerful instruments are allowing us to peer ever deeper into the cosmos and ever further back in time, shedding new light on the origins of the universe.  Today, scientists are able to observe an exoplanet orbiting its star, an individual galaxy and even the entire universe. “The universe is actually mostly empty space,” says Jean-Paul Kneib, a professor at EPFL’s Laboratory of Astrophysics. “There isn’t much that’s hidden.” The key is to know what you’re looking for, build the right instrument, and look in the right direction. And then to do a little housekeeping. “Our galaxy sits in the foreground of our field of vision, blocking our view beyond it,” explains Kneib. “So if we want to map hydrogen in the early universe, for example, we first have to model this entire foreground then remove it from our images until we obtain a signal a million times smaller than the one emitted by the Milky Way.” Galileo could draw only what he saw with his telescope. But today, astronomers can see the universe in its entirety, right back to its very beginnings. This is largely because of rapid advancements in the instruments they use. And more developments are expected in the years ahead. The James Webb Space Telescope (JWST), launched in December 2021, aims to observe events that happened 13 billion years ago when the first stars and galaxies were forming. The Square Kilometre Array (SKA) radio telescope – currently under construction and scheduled for completion by the end of the decade – will look back even further to a time when there were no stars and the cosmos contained mainly hydrogen – the element that makes up 92% of all atoms in the universe. “An easy way to detect this gas is to operate in the radio frequency range, which is exactly what the SKA will do,” says Kneib. “The aim is to detect a signal a million times smaller than the foreground signals.” Another project in the pipeline is the Laser Interferometer Space Antenna (LISA), run by the European Space Agency (ESA). Scheduled for launch in 2035, the antenna will observe gravitational waves, shedding light on the growth of black holes and possibly the waves created just after the Big Bang. Playing digital catch-up These new instruments wouldn’t be so enlightening without advancements in other fields. “As things stand, we don’t have the software to process data from the SKA,” says Kneib, who’s confident that we’ll get there eventually thanks to progress in computer and computational science, artificial intelligence (AI) and processing power. AI is invaluable for sorting through vast quantities of data to find an interesting anomaly and for calculating the mass of galaxies, for example. “Scientists can use the gravitational lensing effect, whereby a large object bends light from a distant source, to calculate the mass of galaxy clusters to within a range of one percent, just as if they were using a scale,” explains Kneib. “And we can train AI models to spot distortions in images caused by gravitational lenses. Given that there are probably 200 billion galaxies in the universe, that’s a huge help – even if we can measure the mass of only one galaxy in every thousand.” But do the images we see depict what’s really out there? A famous image published in 2019 showed a donut-shaped ring of light surrounding a black hole. Would we actually see that ring if we got close to it? “It wasn’t an optical photo,” says Kneib. “It was a purely digital rendering. In order to accurately observe the millimeter-wavelength signals emitted by the black hole, scientists had to combine multiple ground-based telescopes to create one roughly the size of the globe. The image was then reconstructed via interferometry [a measurement method using wave interference]. But the image nevertheless represents a real signal, linked to the amount of matter in… http://actu.epfl.ch/news/the-universe-on-display (Source of the original content)
0 notes
enterprisewired · 9 months ago
Text
Landmark Discovery: Ancient Black Hole Collision Unveiled
Source – The Verge
James Webb Space Telescope Observations Shed Light on Cosmic Collision
In a groundbreaking discovery, the James Webb Space Telescope has captured the first-ever observation of a pair of black hole collisions in the early universe. These observations offer a rare glimpse into a momentous event—a merger of two galaxies and the colossal black holes residing at their cores—dating back to when the universe was a mere 740 million years old, just a fraction of its current age.
Unlocking Mysteries of Cosmic Evolution
The detection of massive galactic mergers in the ancient universe holds significant implications for our understanding of cosmic evolution. Professor Roberto Maiolino, an astrophysicist at the University of Cambridge and a key member of the research team, underscores the importance of this discovery in unraveling the enigma of supermassive black hole growth. The observation suggests that mergers between galaxies may have played a pivotal role in the rapid expansion of these cosmic behemoths, shedding light on their extraordinary proportions.
Only 740 Million Years after the Big Bang, JWST Finds 2 Supermassive Black Holes Colliding
Revealing the Cosmic Collision
Using the unparalleled capabilities of the Webb telescope, astronomers were able to peer into the distant cosmos and witness the spectacle of galactic mergers unfolding billions of years ago. The distinctive spectral signatures of black hole activity served as telltale signs of the collision in progress, with one of the black holes estimated to possess a staggering mass 50 million times that of the sun. While measuring the mass of the second black hole proved challenging due to dense gas obscuring it, subsequent observations revealed that around a third of black holes detected during this epoch were in the process of merging.
Implications for Cosmic History
Professor Andrew Pontzen, a cosmologist at University College London, underscores the significance of this discovery in filling crucial gaps in our understanding of cosmic history. The revelation that black hole collisions may have played a pivotal role in the formation of massive black holes challenges existing theories and points towards a new avenue for exploration. This indirect evidence underscores the potential for black hole collisions to shape the evolution of the universe and offers valuable insights into the origins of these cosmic giants.
Charting Future Exploration
As scientists continue to unravel the mysteries of the early universe, future missions such as the Laser Interferometer Space Antenna (Lisa) hold promise for making direct measurements of ancient black hole collisions. These groundbreaking endeavors pave the way for a deeper understanding of cosmic phenomena and further exploration of the universe’s remarkable evolution.
The findings of this groundbreaking study are detailed in the Monthly Notices of the Royal Astronomical Society, marking a significant milestone in our quest to unravel the mysteries of the cosmos.
0 notes
trend-report · 10 months ago
Text
LISA – Schwingungen der Raumzeit aufspüren
Tumblr media
Pressemitteilung: Das Observatorium LISA soll nach der Inbetriebnahme im All ab Ende 2035 niederfrequente Gravitationswellen aus dem Weltraum nachweisen und die Natur ihrer Quellen mit großer Genauigkeit bestimmen. Gravitationswellen als Schwingungen der Raumzeit werden durch schnelle zeitliche Änderungen in der räumlichen Verteilung sehr großer Massen wie zum Beispiel bei der Verschmelzung zweier stellarer oder auch super-massiver Schwarzer Löcher hervorgerufen. Die winzigen Amplituden einer Gravitationswelle lassen sich nur durch eine höchst empfindliche Laserinterferometrie nachweisen. Bei LISA wird dieses Laserinterferometer durch drei baugleiche Sonden aufgespannt, die ein nahezu gleichseitiges Dreieck mit rund 2,5 Millionen Kilometer Seitenlänge bilden. Damit wird LISA das bei weitem größte je von Menschen gebaute Observatorium sein. - Am 25. Januar 2024 wurden die Missionen LISA (Laser Interferometer Space Antenna) und EnVision im Wissenschaftsprogramm der Europäischen Weltraumorganisation ESA zur Umsetzung freigegeben. - Die Deutsche Raumfahrtagentur im Deutschen Zentrum für Luft- und Raumfahrt (DLR) ist finanziell maßgeblich an LISA, an EnVision mit einem substanziellen Zuschuss beteiligt. - Das DLR-Institut für Optische Sensorsysteme hat eine Multispektralkamera für EnVision entwickelt und gebaut. Die wissenschaftliche Leitung der Spektrometer-Suite liegt beim DLR-Institut für Planetenforschung. - Schwerpunkte: Raumfahrt, Erforschung des Weltraums Am 25. Januar 2024 haben die große Flaggschiffmission LISA (Laser Interferometer Space Antenna) und die M-Klasse-Mission EnVision im Wissenschaftsprogramm der Europäischen Weltraumorganisation ESA eine weitere, wichtige Hürde genommen. Das LISA-Observatorium zum Aufspüren von sogenannten Gravitationswellen wurde nun zusammen mit der EnVision-Mission zur Erkundung der Venus durch das Science Programme Committee (SPC) der ESA in einer „Mission Adoption“ formal in die Umsetzungsphase überführt. Damit können nun das detaillierte Design, der Bau und später die umfangreichen Tests von Sonden, Nutzlast und Bodeninfrastruktur in vollem Umfang begonnen werden. Die Deutsche Raumfahrtagentur im Deutschen Zentrum für Luft- und Raumfahrt (DLR) ist der größte Beitragszahler im Wissenschaftsprogramm der ESA und dadurch finanziell maßgeblich an der LISA-Mission und in Teilen an EnVision beteiligt. Dadurch werden wichtige Teile dieser beiden europäischen Raumfahrtgroßprojekte in Deutschland umgesetzt. Bei EnVision ist das DLR in Berlin maßgeblich an einem Hauptinstrument beteiligt. Die Leitung und Koordination der gesamten sogenannten VenSpec Suite liegt beim DLR-Institut für Planetenforschung. Das DLR-Institut für Optische Sensorsysteme hat die Multispektralkamera zur Suche nach aktiven Vulkanen und zur Kartierung der Mineralogie entwickelt und gebaut. LISA – Schwingungen der Raumzeit aufspüren Bereits 2017 wurde LISA als eine der drei großen Flaggschiff-Missionen im Wissenschaftsprogramm der ESA ausgewählt. Seitdem haben intensive Arbeiten zum technischen Konzept und dessen Umsetzung stattgefunden. Auch die bereits seit den 1990er Jahren laufende wissenschaftliche Vorbereitung einschließlich der äußerst komplexen Datenverarbeitung und -analyse wurde seitdem in einem weltweiten Konsortium von mehr als 1500 Wissenschaftlerinnen und Wissenschaftlern intensiv fortgesetzt. Die ESA, wie auch die beteiligten nationalen Institutionen aus verschiedenen europäischen Ländern sowie der NASA in den USA und deren industrielle Auftragnehmer werden nun ihre jeweiligen Teams deutlich aufstocken, um die noch notwendigen, umfangreichen Entwicklungsarbeiten bis zum geplanten Start der Mission Mitte 2035 anzugehen. LISA soll nach der Inbetriebnahme im All ab Ende 2035 niederfrequente Gravitationswellen aus dem Weltraum nachweisen und die Natur ihrer Quellen mit großer Genauigkeit bestimmen. Gravitationswellen als Schwingungen der Raumzeit werden durch schnelle zeitliche Änderungen in der räumlichen Verteilung sehr großer Massen wie zum Beispiel bei der Verschmelzung zweier stellarer oder auch supermassiver Schwarzer Löcher hervorgerufen. Die winzigen Amplituden einer Gravitationswelle lassen sich nur durch eine höchst empfindliche Laserinterferometrie nachweisen. Bei LISA wird dieses Laserinterferometer durch drei baugleiche Sonden aufgespannt, die ein nahezu gleichseitiges Dreieck mit rund 2,5 Millionen Kilometer Seitenlänge bilden. Damit wird LISA das bei weitem größte je von Menschen gebaute Observatorium sein. LISA – größtes Observatorium wird mit maßgeblichem deutschen Anteil entwickelt und gebaut LISA wird im Wissenschaftsprogramm der ESA unter Beteiligung der NASA und mit Beistellungen zur Nutzlast aus mehr als zehn europäischen Ländern unter anderem in Deutschland entwickelt und gebaut. Der industrielle Hauptauftragnehmer der ESA für die Gesamtmission wird im Januar 2025 aus einem deutschen beziehungsweise einem deutsch-italienischen Industriekonsortium ausgewählt: Airbus in Friedrichshafen und OHB in Bremen und Oberpfaffenhofen zusammen mit Thales-Alenia in Italien. Ein wissenschaftliches Konsortium ist maßgeblich an der Entwicklung von LISA beteiligt und baut zudem die Datenverarbeitung und -archivierung der Mission auf. Dabei kommt dem deutschen Beitrag zur Mission eine entscheidende und missionskritische Bedeutung zu. Dieser umfangreiche Beitrag zu LISA besteht wesentlich aus der führenden Rolle des Max-Planck-Instituts für Gravitationsphysik / Albert-Einstein-Institut (AEI) in Hannover bei der Entwicklung des interfero-metrischen Nachweissystems (IDS – Interferometric Detection System), dessen Komponenten von verschiedenen Partnern in Europa bereitgestellt werden. Das vom AEI entwickelte Herzstück des IDS ist neben dem optischen System, das vom Partner aus Großbritannien geliefert werden soll, das zentrale Phasenmeter der Mission. Dabei besteht eine enge Kooperation mit der Dänischen Technischen Universität (DTU) in Kopenhagen. Außerdem wird das Institut in Hannover in Zusammenarbeit mit niederländischen Partnern einen kritischen Mechanismus für die Nutzlast liefern. Das AEI unterstützt zudem die Mission und die ESA bei vielen Fragestellungen zum Systemdesign, wobei deren umfangreiche Erfahrungen aus der Entwicklung und dem Betrieb des Technologiedemonstrators LISA Pathfinder einfließen. Mit dieser Vorläufer-mission wurden von 2015 bis 2017 die entscheidenden Messprinzipien für LISA sehr erfolgreich im All erprobt. Zusammen mit der deutschen Raumfahrtindustrie hat das Albert-Einstein-Institut auch bei dieser Mission eine führende Rolle gespielt. Die gesamte Beteiligung des AEI an LISA, das auch die wissenschaftliche Leitung (Principal Investigator) der Gravitationswellenmission stellt, wird maßgeblich durch Zuwendungen der Deutschen Raumfahrtagentur im DLR aus Mitteln des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK) unterstützt. EnVision – eine vielfältige Mission zu unserem Nachbarplaneten Venus EnVision wurde im Juni 2021 als fünfte M-Mission im sogenannten Cosmic Vision Programm der ESA ausgewählt und wurde nun ebenfalls zur Umsetzung freigegeben. Im Laufe des Jahres 2024 wird sie dazu einen industriellen Auftragnehmer in Europa auswählen, so dass die Arbeiten zur Fertigstellung des Designs und zum Bau des Raumfahrzeugs bald beginnen können. EnVision soll im Jahr 2031 mit einer Ariane-6-Rakete starten. Die Mission wird die Venus von ihrem inneren Kern bis zur äußeren Atmosphäre untersuchen und wichtige neue Erkenntnisse über die Entwicklung, die geologische Aktivität und das Klima des Planeten liefern. Dadurch soll EnVision die vielen, seit langem offenen Fragen zur Venus beantworten, insbesondere, wie und wann der Zwilling der Erde so unwirtlich geworden ist. Das DLR in Berlin wird dabei helfen, diese Fragen zu beantworten, denn sowohl das DLR-Institut für Planetenforschung als auch das DLR-Institut für Optische Sensorsysteme sind dabei maßgeblich an einem der vier großen Instrumente der Mission beteiligt. EnVision – DLR kartiert die Mineralogie und sucht aktive Vulkane Auch wenn die Atmosphäre der Venus mit ihren für das sichtbare Licht undurchdringlichen Schwefelsäurewolken keinen direkten Blick auf die Oberfläche des Planeten gestattet, so gibt es dennoch indirekte Möglichkeiten, sich ein „Bild“ von ihr machen zu können. Das geschieht zum einen mit Radar, das wie auch bei Flugzeugen auf der Erde die Wolken durchdringt, und zum anderen in bestimmten Wellenlängen vor allem des nahen Infrarots, sogenannten „atmosphärischen Fenstern“. Doch bei der Venus kann man die Oberfläche nicht verstehen ohne auch die Atmosphäre zu verstehen. Für EnVision wird hierzu eine Spektrometer-Suite entwickelt, welche aus drei Teilinstrumenten besteht. Sie trägt den Namen VenSpec und hat die Komponenten VenSpec-U zur Untersuchung der Hochatmosphäre, VenSpec-H für Messungen in der bodennahen Atmosphäre und dem vom DLR entwickelten VenSpec-M zur Messung der Wärmeabstrahlung und spektralen Eigenschaften der Oberfläche. Die Leitung und Koordination der gesamten VenSpec Suite liegt beim DLR-Institut für Planetenforschung. Durch die Kombination aller drei Kanäle können tiefere Einblicke in die enge „Kopplung“ zwischen der Oberfläche und der Atmosphäre der Venus gewonnen werden. So würde zum Beispiel VenSpec-M einen aktiven Vulkanausbruch durch die Detektion der heißen Lava erkennen, während VenSpec-H gleichzeitig messen würde, wie viel Wasserdampf der Vulkan in die Atmosphäre entlässt und VenSpec-U würde die Verteilung von Schwefeldioxid aus dem Vulkanausbruch in der oberen Atmosphäre erfassen. Mit VenSpec-M kann nicht nur die thermische Signatur eines heißen, aktiven Vulkans gemessen werden. Das Instrument wird auch erstmals die mineralogische Zusammensetzung der Oberfläche global kartieren. VenSpec-M wird unter der Leitung des DLR-Instituts für Optische Sensorsysteme entwickelt und gebaut, die wissenschaftliche Leitung des Experiments auf EnVision liegt beim DLR-Institut für Planetenforschung. Beide Institute sind am DLR-Standort Berlin-Adlershof angesiedelt. Neben dem DLR sind in Deutschland weitere wissenschaftliche Institute in die EnVision-Mission eingebunden. Verwandte Links - LISA-Missionsseite - ESA-Artikel zu LISA - ESA-Artikel zu EnVision Aufmacherbild / Quelle / Lizenz  Credit: NASA/JPL-Caltech / NASA / ESA / CXC / STScl / GSFCSVS / S.Barke (CC BY 4.0) Read the full article
0 notes