#Glycobiology
Explore tagged Tumblr posts
Text
youtube
#Glycobiology#Carbohydrates#Glycosylation#Glycomimetics#Glycoconjugates#Glycolipids#Glycoproteins#ChemicalSynthesis#CarbohydrateDrugs#Therapeutics#ProteinInteractions#CancerTherapy#InfectiousDiseases#AutoimmuneDisorders#SyntheticBiology#Immunotherapy#Glycoscience#DrugDiscovery#BiomedicalResearch#MolecularRecognition#You said:#oncology#cancer#youtube#cancerawareness#cancerresearch#Youtube
0 notes
Text
Advancing Glycobiology: Projections and Analysis 2023-2027
Originally Published on: TechnavioGlycobiology Market by Application, Product and Geography - Forecast and Analysis 2023-2027
The Global Glycobiology Market is gearing up for substantial expansion, foreseeing a projected surge of USD 1,473.84 million and an estimated CAGR of 15.06% from 2022 to 2027.
Key Catalysts for Growth
Pharmaceutical and biotechnology sectors are witnessing a notable upswing, propelled by increased R&D activities in glycomics, glycobiology, and proteomics research. Glycobiology is gaining traction in critical areas such as neurobiology, development, immunology, and diverse applications, including biotherapy, antibodies, and heparin analog production.
Carbohydrates intricately bound to glycolipids or glycoproteins play a crucial role in steering the properties and destiny of living cells. The study of glycobiology becomes pivotal in drug discovery, diagnosis, and therapeutic applications, supported by advancements in mass spectrometry for mapping glycan attachment sites and profiling structural variations.
In-Depth Segmentation Analysis
Application Analysis
Drug Discovery and Development: Experiencing substantial growth with the widespread use of glycobiology. Carbohydrates play a pivotal role in biological processes, influencing glycoprotein stability, solubility, and transport.
Product Analysis
Enzymes: Vital in glycobiology, with transferases playing a crucial role in complex carbohydrate generation. These enzymes serve as tools for understanding carbohydrate structure and function.
Instruments: Essential for studying glycans' structure, biology, and function, including microscopes, flow cytometric cell sorting, ELISA, and fluorescent immunohistochemistry. Increasing adoption in disease diagnosis contributes to segment growth.
Regional Analysis
North America is poised to contribute 43% to global market growth, driven by the presence of key pharmaceutical and biopharmaceutical companies, robust healthcare infrastructure, and expanding applications in cancer treatments.
Leading Market Players
Companies deploy diverse strategies like alliances, partnerships, mergers, acquisitions, geographical expansion, and product/service launches. Key players encompass Agilent Technologies Inc., Asparia Glycomics, Bio-Techne Corp, Bruker Corp., CD BioGlyco, Chemily Glycoscience, and more.
Major Drivers, Trends, Challenges, and Customer Landscape
Key Market Drivers
The surge in pharmaceutical companies' R&D expenditure, averaging 15%-20% of revenue, emerges as a significant growth factor. Adoption of pharmaceutical contract packaging minimizes capital and operating costs.
Prominent Market Trends
The escalating demand for glycomics products in drug discovery and development underscores the critical role of glycans in biological processes. Glycans become biomedical hotspots, leading to technological advancements and effective therapies.
Primary Market Challenges
Scarce availability of skilled professionals poses a challenge. Well-trained professionals are imperative for the intricate and risky drug development process in glycobiology.
Customer Landscape
The adoption lifecycle spans from innovators to laggards, encompassing penetration rates in various regions based on key purchase criteria and drivers of price sensitivity.
Segment Overview
The market report predicts revenue growth at global, regional, and country levels, offering insights into trends and opportunities from 2017 to 2027.
Contact us.
#Glycobiology#MarketInsights#BiotechAdvancements#DrugDiscovery#InnovationsInHealthcare#R&D#GlobalMarketTrends
0 notes
Text
QS24-25. Cathleen Beerkens. Your Creator Matrix
Quantum Spirituality with Sara Troy and her guest Cathleen Berrkens, on air from June 18th Nurse and integrative health coach Cathleen Beerkens is the founder of A Wellness Revolution, an institute for integrative nutrition, and author of the new book, YOUR CREATOR MATRIX: How to Use Optimal Wellness and Quantum Healing to Master Your Story and Create Your Reality (World Changers Media; April…
View On WordPress
#Cathleen Beerkens#new sciences of epigenetics and glycobiology#Orchard of Wisdom#Quantum healing#Quantum Spirituality with Sara Troy#Sara Troy#www.selfdiscoverywisdom.com#YOUR CREATOR MATRIX
0 notes
Text
I’m completely unqualified for the one relevant internship my uni is offering and I don’t have any references. But they’ve had no applications whatsoever. So I think I could get in. Thoughts? It’s glycobiology - the interactions between sugars on cells - eg, the pneumococcal vaccine is a vaccine made from the sugars on the bacteria that causes pneumonia. In the UK we offer this vaccine to people when they’re 65 years old.
11 notes
·
View notes
Text
0 notes
Text
0 notes
Text
CD BioGlyco has rich experience in lectin microarray assay. Our multiple technology platforms and well-trained researchers can provide customers with various forms of sample testing. We have confidence to be your essential research assistant in the field of glycobiology.
0 notes
Text
PhD student in biochemistry/microbiology CIC biomaGUNE PhD call! Join us to assemble a mimetic biofilm matrix – an exciting topic to work on combined with life in one of the most attractive cities in EU See the full job description on jobRxiv: https://jobrxiv.org/job/cic-biomagune-27778-phd-student-in-biochemistry-2/?feed_id=80832 #2D_materials #biochemistry #biofilms #biophysics #glycobiology #ScienceJobs #hiring #research
0 notes
Text
0 notes
Text
0 notes
Text
https://www.verifiedmarketreports.com/product/glycomics-glycobiology-market/
0 notes
Text
0 notes
Text
Fully Funded PhD Position in Plant Biology; Interferometric Microscopy of Live Plants at University of Copenhagen in Denmark
Fully Funded PhD Position in Plant Biology; Interferometric Microscopy of Live Plants at University of Copenhagen in Denmark Department of Plant and Environmental Sciences (PLEN; Section of Plant Glycobiology) & the Niels Bohr Institute, Faculty of Science at University of Copenhagen is offering a PhD position. The position is a joint position between the Plant Cellulose/Cell Biology research group (Prof. Staffan Persson & Ass. Prof. Guillermo Moreno Pescador) at the Glycobiology Section and the Niels Bohr Institute (Assoc. Prof. Poul- Martin Bendix). The work is in the field of microscopy and experimental biophysics and will aim to address important questions in plant biology. More specifically, the work aims to decipher certain aspects of cell wall and plasma membrane Read the full article
0 notes
Text
0 notes
Text
Explained: The sugar coating of life
New Post has been published on https://thedigitalinsider.com/explained-the-sugar-coating-of-life/
Explained: The sugar coating of life
In the narrowest sense, glycobiology is the study of the structure, biology, and evolution of glycans, the carbohydrates and sugar-coated molecules found in every living organism. As a recent symposium at MIT made clear, the field is in the midst of a renaissance that could reshape scientists’ understanding of the building blocks of life.
Originally coined in the 1980s to describe the merging of traditional research in carbohydrate chemistry and biochemistry, glycobiology has come to encompass a much broader and multidisciplinary set of ideas. “Glycoscience” may actually be a more appropriate name for the rapidly growing field, reflecting its broad application not just to biology and chemistry but also to bioengineering, medicine, materials science, and more.
“It’s becoming increasingly clear that these glycans have a very important role to play in health and disease,” says Laura Kiessling, the Novartis Professor of Chemistry. “It may seem daunting initially, but devising new tools and identifying new kinds of interactions requires exactly the sort of creative problem-solving skills that people have at MIT.”
The sugar coat of the body
Glycans include a diverse set of molecules with linear and branched structures that are critical for basic biological functions. With no known exception, all cells in nature are coated with these sugar molecules — from the intricate chains of sugars surrounding most cellular surfaces to the conjugated molecules formed when sugars attach like scaffolding to lipids and proteins. They’re absolutely fundamental to life. For example, Kiessling points out that the most abundant organic molecule on the planet is the carbohydrate cellulose.
“Sperm-egg binding is mediated by an interaction between a protein and a carbohydrate,” she says. “None of us would exist without these interactions.”
Though talking about carbs and sugars might leave some people focused on their diet, glycans are actually among the most important biomolecules out there. They store energy and, in some cases like cellulose, provide the structural framework for multicellular organisms. They mediate communication between cells; influence interactions like that between a host and parasite; and shape immune responses, disease progression, development, and physiology.
“It turns out that some of these structures, which we didn’t even know existed in the body in such abundance until recently, have so many different biological functions,” says Andrew and Erna Viterbi Professor of Biological Engineering Katharina Ribbeck. “With this rapid expansion of knowledge, it feels like we’re just beginning to understand how diverse and important those functions are to biology.”
With a better understanding of how ubiquitous and critical these molecules are, researchers in applied fields like biotechnology and medicine have turned their attention to glycoscience as a tool to pinpoint the drivers of disease.
Many conditions have been linked to defects in how glycans are produced in the body or issues with glycosylation, the process by which carbohydrates attach to proteins and other molecules. That includes certain forms of cancer. Cancer cells have even been shown to cloak themselves in certain glycoproteins to evade an immune response.
On the flip side, glycans may be a repository of potential therapeutics. The blood thinner Heparin, one of the world’s best-selling prescription drugs, for example, is a carbohydrate-based drug.
Glycans and sugar-binding proteins like lectins even help influence the exchange of microbes across mucus layers in the human body, from the brain to the gut. Glycans dangling off mucus interact with microbes, letting good ones in and reducing the virulence of problematic ones by interrupting cell signaling or stopping pathogens from releasing toxins.
New tools to advance old science
Despite how crucial this “sugar coat” is, for a long time, molecular biologists focused on nucleic acids and proteins, paying relatively little attention to the sugars that coated them.
“The tools we have to examine the functions of other molecules are largely absent for glycans,” Kiessling says.
For example, the DNA and RNA sequences of a cell predict what proteins that cell makes, so scientists can track where a protein is and what it’s doing using a genetically-encoded tag. But the structure of glycans isn’t so obviously encoded in a cell’s DNA, and a single protein can be decorated with many different chains of carbohydrates.
In addition, the immense diversity of forms carbohydrates can take, and the fact that they break down quickly in the bloodstream, has made it challenging to synthesize glycans or target them for drug development. So, creative new methods are needed to track them.
It’s a classic chicken-and-egg situation. As scientists better understand the importance of glycans for so many biological processes, it has incentivized them to develop better tools for studying glycans, in turn, producing even more data on just what these molecules can do. In 2022, in fact, the Nobel Prize was awarded to Carolyn Bertozzi at Stanford University, a pioneer in glycobiology, for her work on tracking molecules in cells, which she and others have applied to glycans.
But artificial intelligence could facilitate an evolutionary leap in the field.
“I think glycobiology is, more than almost any other field, ripe and ready for an AI interpretation,” Ribbeck says, explaining how AI might enable scientists to read the “glycan code” in the same way they have with the human genome. That would allow researchers to predict the actual function of a glycan based on data about its structure. From there, they could identify what changes lead to disease or increase disease susceptibility — and, most importantly, come up with ways to repair those defects.
An inter- and trans-disciplinary effort
The increasing interest in computation reflects the inherent interdisciplinarity that has defined glycoscience from the beginning.
Just at MIT, for example, related research is happening across the Institute. Kiessling describes MIT as a “playground for interdisciplinary research,” which has enabled significant advances in the field with applications to biotechnology, cancer research, brain science, immunology, and more.
In the Department of Chemistry, Kiessling is studying carbohydrate-binding proteins, and how their interactions with glycans affect the immune system. She’s also working with Bryan Bryson, an associate professor in the Department of Biological Engineering, and Deborah Hung, a core faculty member at The Broad Institute of MIT and Harvard, using carbohydrate analogs to test differences in strains of tuberculosis in South Africa. Meanwhile, assistant professor of biological engineering Jessica Stark is pioneering approaches to better understand the roles of glycans in the immune system. Tobi Oni, a fellow at the Whitehead Institute for Biomedical Research, is looking to glycans to help detect and target tumors in pancreatic cancer. Barbara Imperiali, the Class of 1922 Professor of Biology and Chemistry, is studying the carbohydrates that envelop the cells of microbes like bacteria, and Professor Matthew Shoulders in the Department of Chemistry is studying the role of glycans in synthesizing and folding proteins.
“We’re at a very exciting and unique position combining disciplines to address and answer entirely new questions relevant for disease and health,” says Ribbeck.”The field in and of itself is not new, but what is new is the contribution that MIT, in particular, could make with a creative combination of science, engineering, and computation.”
#1980s#2022#Abdul Latif Jameel Poverty Action Lab (J-PAL)#acids#Africa#ai#applications#artificial#Artificial Intelligence#Bacteria#biochemistry#Biological engineering#Biology#Biomolecules#biotechnology#blood#bloodstream#Brain#Broad Institute#Building#Cancer#cancer cells#cell#Cells#cellulose#chemistry#chicken#code#communication#computation
0 notes
Text
0 notes