#Cleantech Batteries
Explore tagged Tumblr posts
Text
Why Clean Solutions Matter: The Future of Eco-Friendly Batteries in India
As the world moves toward sustainable living, India is at the forefront of this shift, especially in the realm of energy storage solutions. With a rapidly growing economy and a population exceeding 1.4 billion, the need for clean energy solutions has never been more pressing. Eco-friendly batteries play a crucial role in this transformation, aligning with India’s ambitious goals for renewable energy adoption and carbon reduction.
The Growing Demand for Eco-Friendly Batteries
India’s energy consumption is expected to increase by 4.5% annually over the next decade, according to the International Energy Agency (IEA). With electric vehicles (EVs) gaining popularity and renewable energy sources like solar and wind becoming more mainstream, the demand for high-performance, eco-friendly batteries is surging. The Indian government has set a target of achieving 30% electric vehicle penetration by 2030, which translates to a need for approximately 25 million EVs on the roads. This unprecedented demand for clean solutions is driving innovation in battery technology.
Cleantech and Its Role in the Battery Revolution
In this context, Cleantech emerges as a pivotal player in the battery manufacturing industry. Specializing in clean energy storage solutions, Cleantech is dedicated to developing eco-friendly batteries that minimize environmental impact. Their commitment extends beyond manufacturing; they also provide essential services to ensure optimal performance and longevity of their products.
Statistics from 2024 indicate that Cleantech has successfully reduced the carbon footprint of their battery production by over 30% compared to traditional manufacturing processes. This achievement reflects the company’s dedication to sustainable practices, making them a vital component of India's clean energy ecosystem.
The Role of Evolute in Advancing Clean Solutions
Evolute, the umbrella organization for innovative companies like Cleantech and Fintech, is actively reshaping the Indian battery landscape. Each company under Evolute focuses on specific areas within the clean energy sector:
Fintech: Specializes in manufacturing finance-related electronic devices that streamline operations for battery manufacturers and energy providers. By enhancing financial transparency and efficiency, Fintech contributes to the overall sustainability of the industry.
Innovation and the Future of Battery Technology
The push for clean solutions has sparked significant advancements in battery technology. Research conducted by the Indian Institute of Technology (IIT) has shown that lithium-sulfur batteries, which offer higher energy density and lower environmental impact compared to traditional lithium-ion batteries, could revolutionize the market. These batteries have the potential to increase electric vehicle range by up to 30%, making them a game changer in the industry.
Furthermore, the recent surge in battery recycling initiatives across India highlights a growing awareness of the importance of sustainable practices. As of 2024, it’s estimated that the battery recycling market in India will reach ₹30 billion, driven by a commitment to reducing waste and recovering valuable materials. This initiative aligns seamlessly with the goals of Cleantech and other Evolute companies, emphasizing their focus on clean systems.
The Economic Impact of Eco-Friendly Batteries
Investing in clean solutions not only benefits the environment but also stimulates economic growth. The Indian battery market is projected to reach ₹1.2 trillion by 2025, with eco-friendly batteries making up a significant portion of this growth. Jobs in the renewable energy sector are expected to increase by 25% over the next five years, providing new opportunities for skilled workers across the country.
Moreover, with rising fuel prices and increasing electricity tariffs, consumers are more inclined to invest in electric vehicles powered by sustainable batteries. This shift not only helps reduce the country's dependence on fossil fuels but also promotes energy security.
Community Engagement and Awareness
The role of local communities in promoting clean energy solutions cannot be overstated. Educational initiatives and awareness campaigns are essential to inform the public about the benefits of eco-friendly batteries. Collaborations between Cleantech, Evolute, and grassroots organizations can foster a culture of sustainability, encouraging more individuals and businesses to adopt clean technologies.
In 2024, surveys indicated that approximately 70% of urban residents in cities like Bangalore, Mumbai, and Delhi are willing to switch to electric vehicles if provided with adequate charging infrastructure. This statistic reflects a growing consciousness about sustainability, driving demand for innovative solutions like those offered by Cleantech and its sister companies.
Conclusion
As India moves toward a more sustainable future, the importance of clean solutions cannot be overstated. Eco-friendly batteries manufactured by companies like Cleantech are not just a technological advancement; they are a necessity for the country's economic and environmental well-being. The commitment of Evolute and its companies to innovate and implement sustainable practices positions India as a leader in the global energy transition.
Investing in clean energy solutions today will ensure a greener, more sustainable tomorrow for future generations. The success of this transition relies on collaborative efforts among businesses, government, and the community, paving the way for a cleaner, more sustainable India.
#Cleantech Batteries#Cleantech Solutions#Clean Solutions#Clean System Solution#Evolute#Fintech Innovations
0 notes
Text
Circular battery self-sufficiency
I'm coming to DEFCON! On FRIDAY (Aug 9), I'm emceeing the EFF POKER TOURNAMENT (noon at the Horseshoe Poker Room), and appearing on the BRICKED AND ABANDONED panel (5PM, LVCC - L1 - HW1–11–01). On SATURDAY (Aug 10), I'm giving a keynote called "DISENSHITTIFY OR DIE! How hackers can seize the means of computation and build a new, good internet that is hardened against our asshole bosses' insatiable horniness for enshittification" (noon, LVCC - L1 - HW1–11–01).
If we are going to survive the climate emergency, we will have to electrify – that is, transition from burning fossil fuels to collecting, storing, transmitting and using renewable energy generated by e.g. the tides, the wind, and (especially) the Sun.
Electrification is a big project, but it's not an insurmountable one. Planning and executing an electric future is like eating the elephant: we do it one step at a time. This is characteristic of big engineering projects, which explains why so many people find it hard to imagine pulling this off.
As a layperson, you are far more likely to be exposed to a work of popular science than you are a work of popular engineering. Pop science is great, but its role is to familiarize you with theory, not practice. Popular engineering is a minuscule and obscure genre, which is a pity, because it's one of my favorites.
Weathering the climate emergency is going to require a lot of politics, to be sure, but it's also going to require a lot of engineering, which is why I'm grateful for the nascent but vital (and growing) field of popular engineering. Not to mention, the practitioners of popular engineering tend to be a lot of fun, like the hosts of the Well That's Your Problem podcast, a superb long-form leftist podcast about engineering disasters (with slides!):
https://www.youtube.com/@welltheresyourproblempodca1465
If you want to get started on popular engineering and the climate, your first stop should be the "Without the Hot Air" series, which tackles sustainable energy, materials, transportation and food as engineering problems. You'll never think about climate the same way again:
https://pluralistic.net/2021/01/06/methane-diet/#3kg-per-day
Then there's Saul Griffith's 2021 book Electrify, which is basically a roadmap for carrying out the electrification of America and the world:
https://pluralistic.net/2021/12/09/practical-visionary/#popular-engineering
Griffith's book is inspiring and visionary, but to really get a sense of how fantastic an electrified world can be, it's gotta be Deb Chachra's How Infrastructure Works:
https://pluralistic.net/2023/10/17/care-work/#charismatic-megaprojects
Chachra is a material scientist who teaches at Olin College, and her book is a hymn to the historical and philosophical underpinnings of infrastructure, but more than anything, it's a popular engineering book about what is possible. For example, if we want to give every person on Earth the energy budget of a Canadian (like an American, but colder), we would only have to capture 0.4% of the solar energy that reaches the Earth's surface.
Now, this is a gigantic task, but it's a tractable one. Resolving it will require a very careful – and massive – marshaling of materials, particularly copper, but also a large number of conflict minerals and rare earths. It's gonna be hard.
But it's not impossible, let alone inconceivable. Indeed, Chachra's biggest contribution in this book is to make a compelling case for reconceiving our relationship to energy and materials. As a species, we have always treated energy as scarce, trying to wring every erg and therm that we can out of our energy sources. Meanwhile, we've treated materials as abundant, digging them up or chopping them down, using them briefly, then tossing them on a midden or burying them in a pit.
Chachra argues that this is precisely backwards. Our planet gets a fresh supply of energy twice a day, with sunrise (solar) and moonrise (tides). On the other hand, we've only got one Earth's worth of materials, supplemented very sporadically when a meteor survives entry into our atmosphere. Mining asteroids, the Moon and other planets is a losing proposition for the long foreseeable future:
https://pluralistic.net/2024/01/09/astrobezzle/#send-robots-instead
The promise of marshaling a very large amount of materials is that it will deliver effectively limitless, clean energy. This project will take a lot of time and its benefits will primarily accrue to people who come after its builders, which is why it is infrastructure. As Chachra says, infrastructure is inherently altruistic, a gift to our neighbors and our descendants. If all you want is a place to stick your own poop, you don't need to build a citywide sanitation system.
What's more, we can trade energy for materials. Manufacturing goods so that they gracefully decompose back into the material stream at the end of their lives is energy intensive. Harvesting materials from badly designed goods is also energy intensive. But if once we build out the renewables grid (which will take a lot of materials), we will have all the energy we need (to preserve and re-use our materials).
Our species' historical approach to materials is not (ahem) carved in stone. It is contingent. It has changed. It can change again. It needs to change, because the way we extract materials today is both unjust and unsustainable.
The horrific nature of material extraction under capitalism – and its geopolitics (e.g. "We will coup whoever we want! Deal with it.") – has many made comrades in the climate fight skeptical (or worse, cynical) about a clean energy transition. They do the back-of-the-envelope math about the material budget for electrification, mentally convert that to the number of wildlife preserves, low-income communities, unspoiled habitat and indigenous lands that we would destroy in the process of gathering those materials, and conclude that the whole thing is a farce.
That analysis is important, but it's incomplete. Yes, marshaling all those materials in the way that we do today would be catastrophic. But the point of a climate transition is that we will transition our approach to our planet, our energy, and our materials. That transition can and should challenge all the assumptions underpinning electrification doomerism.
Take the material bill itself: the assumption that a transition will require a linearly scaled quantity of materials includes the assumption that cleantech won't find substantial efficiencies in its material usage. Thankfully, that's a very bad assumption! Cleantech is just getting started. It's at the stage where we're still uncovering massive improvements to production (unlike fossil fuel technology, whose available efficiencies have been discovered and exploited, so that progress is glacial and negligible).
Take copper: electrification requires a lot of copper. But the amount of copper needed for each part of the cleantech revolution is declining faster than the demand for cleantech is rising. Just one example: between the first and second iteration of the Rivian electric vehicle, designers figured out how to remove 1.6 miles of copper wire from each vehicle:
https://insideevs.com/news/722265/rivian-r1s-r1t-wiring/
That's just one iteration and one technology! And yeah, EVs are only peripheral to a cleantech transition; for one thing, geometry hates cars. We're going to have to build a lot of mass transit, and we're going to be realizing these efficiencies with every generation of train, bus, and tram:
https://pluralistic.net/2024/02/29/geometry-hates-uber/#toronto-the-gullible
We have just lived through a massive surge in electrification, with unimaginable quantities of new renewables coming online and a stunning replacement of conventional vehicles with EVs, and throughout that surge, demand for copper remained flat:
https://www.chemanalyst.com/NewsAndDeals/NewsDetails/copper-wire-price-remains-stable-amidst-surplus-supply-and-expanding-mining-25416#:~:text=Global%20Copper%20wire%20Price%20Remains%20Stable%20Amidst%20Surplus%20Supply%20and%20Expanding%20Mining%20Activities
This isn't to say that cleantech is a solved problem. There are many political aspects to cleantech that remain pernicious, like the fact that so many of the cleantech offerings on the market are built around extractive financial arrangements (like lease-back rooftop solar) and "smart" appliances (like heat pumps and induction tops) that require enshittification-ready apps:
https://pluralistic.net/2024/06/26/unplanned-obsolescence/#better-micetraps
There's a quiet struggle going on between cleantech efficiencies and the finance sector's predation, from lease-back to apps to the carbon-credit scam, but many of those conflicts are cashing out in favor of a sustainable future and it doesn't help our cause to ignore those: we should be cheering them on!
https://pluralistic.net/2024/06/12/s-curve/#anything-that-cant-go-on-forever-eventually-stops
Take "innovation." Silicon Valley's string of pump-and-dump nonsense – cryptocurrency, NFTs, metaverse, web3, and now AI – have made "innovation" into a dirty word. As the AI bubble bursts, the very idea of innovation is turning into a punchline:
https://www.wheresyoured.at/burst-damage/
But cleantech is excitingly, wonderfully innovative. The contrast between the fake innovation of Silicon Valley and the real – and vital – innovation of cleantech couldn't be starker, or more inspiring:
https://pluralistic.net/2024/05/30/posiwid/#social-cost-of-carbon
Like the "battery problem." Whenever the renewables future is raised, there's always a doomer insisting that batteries are an unsolved – and unsolvable – problem, and without massive batteries, there's no sense in trying, because the public won't accept brownouts when the sun goes down and the wind stops blowing.
Sometimes, these people are shilling boondoggles like nuclear power (reminder: this is Hiroshima Day):
https://theconversation.com/dutton-wants-australia-to-join-the-nuclear-renaissance-but-this-dream-has-failed-before-209584
Other times, they're just trying to foreclose on the conversation about a renewables transition altogether. But sometimes, these doubts are raised by comrades who really do want a transition and have serious questions about power storage.
If you're one of those people, I have some very good news: battery tech is taking off. Some of that takes the form of wild and cool new approaches. In Finland, a Scottish company is converting a disused copper mine into a gravity battery. During the day, excess renewables hoist a platform piled with tons of rock up a 530m shaft. At night, the platform lowers slowly, driving a turbine and releasing its potential energy. This is incredibly efficient, has a tiny (and sustainable) bill of materials, and it's highly replicable. The world has sufficient abandoned mine-shafts to store 70TWh of power – that's the daily energy budget for the entire planet. What's more, every mine shaft has a beefy connection to the power grid, because you can't run a mine without a lot of power:
https://www.euronews.com/green/2024/02/06/this-disused-mine-in-finland-is-being-turned-into-a-gravity-battery-to-store-renewable-ene
Gravity batteries are great for utility-scale storage, but we also need a lot of batteries for things that we can't keep plugged into the wall, like vehicles, personal electronics, etc. There's great news on that score, too! "The Battery Mineral Loop" is a new report from the Rocky Mountain Institute that describes the path to "circular battery self-sufficiency":
https://rmi.org/wp-content/uploads/dlm_uploads/2024/07/the_battery_mineral_loop_report_July.pdf
The big idea: rather than digging up new minerals to make batteries, we can recycle minerals from dead batteries to make new ones. Remember, energy can be traded for materials: we can expend more energy on designs that are optimized to decompose back into their component materials, or we can expend more energy extracting materials from designs that aren't optimized for recycling.
Both things are already happening. From the executive summary:
The chemistry of batteries is rapidly improving: over the past decade, we've reduced per-using demand for lithium, nickle and cobalt by 60-140%, and most lithium batteries are being recycled, not landfilled.
Within a decade, we'll hit peak mineral demand for batteries. By the mid-2030s, the amount of new "virgin minerals" needed to meet our battery demand will stop growing and start declining.
By 2050, we could attain net zero mineral demand for batteries: that is, we could meet all our energy storage needs without digging up any more minerals.
We are on a path to a "one-off" extraction effort. We can already build batteries that work for 10-15 years and whose materials can be recycled with 90-94% efficiency.
The total quantity of minerals we need to extract to permanently satisfy the world's energy storage needs is about 125m tons.
This last point is the one that caught my eye. Extracting 125m tons of anything is a tall order, and depending on how it's done, it could wreak a terrible toll on people and the places they live.
But one question I learned to ask from Tim Harford and BBC More Or Less is "is that a big number?" 125m tons sure feels like a large number, but it is one seventeenth of the amount of fossil fuels we dig up every year just for road transport. In other words, we're talking about spending the next thirty years carefully, sustainably, humanely extracting about 5.8% of the materials we currently pump and dig every year for our cars. Do that, and we satisfy our battery needs more-or-less forever.
This is a big engineering project. We've done those before. Crisscrossing the world with roads, supplying billions of fossil-fuel vehicles, building the infrastructure for refueling them, pumping billions of gallons of oil – all of that was done in living memory. As Robin Sloan wrote:
Did people say, at the dawn of the automobile: are you kidding me? This technology will require a ubiquitous network of refueling stations, one or two at every major intersection … even if there WAS that much gas in the world, how would you move it around at that scale? If everybody buys a car, you’ll need to build highways, HUGE ones — you’ll need to dig up cities! Madness!
https://www.robinsloan.com/newsletters/room-for-everybody/
That big project cost trillions and required bending the productive capacity of many nations to its completion. It produced a ghastly geopolitics that elevated petrostates – a hole in the ground, surrounded by guns – to kingmakers whose autocrats can knock the world on its ass at will.
By contrast, this giant engineering project is relatively modest, and it will upend that global order, yielding energy sovereignty (and its handmaiden, national resliency) to every country on Earth. Doing it well will be hard, and require that we rethink our relationship to energy and materials, but that's a bonus, not a cost. Changing how we use materials and energy will make all our lives better, it will improve the lives of the living things we share the planet with, and it will strip the monsters who currently control our energy supply of their political, economic, and electric power.
If you'd like an essay-formatted version of this post to read or share, here's a link to it on pluralistic.net, my surveillance-free, ad-free, tracker-free blog:
https://pluralistic.net/2024/08/06/with-great-power/#comes-great-responsibility
#pluralistic#debcha#solarpunk#energy#cleantech#bill mckibben#material science#promethean climate transition#rocky mountain institute#battery mineral loop#climate#environment#peak minerals
297 notes
·
View notes
Text
The Growing Landscape of EV Battery Recycling: Opportunities and Insights 🌱🔋
The EV battery recycling market is rapidly expanding, driven by increasing demand for electric vehicles (EVs), regulatory support, and the need for sustainable practices in battery production and disposal. This sector is crucial for managing waste and strengthening the overall EV market. 🌱🔋 Market Overview Current Valuation: The global EV battery recycling market was valued at approximately…
#Battery Recycling#Circular economy#cleantech#ecofriendly#Electric Vehicles#EV Recycling#Future of Transport#Green energy#renewable energy#Sustainability
0 notes
Text
#American Battery Technology#AmericanBatteryTechnology#SustainableEnergy#BatteryRecycling#CleanTech#electricvehiclesnews#evnews#evtimes#autoevtimes#evbusiness
0 notes
Text
Smart Battery Swap Cabinet Safety Uncovered: The Real Deal
With the ever-growing popularity of electric bikes, their charging safety has become a major concern for society. In recent years, there have been numerous fires involving electric bikes and charging stations, with a shocking 14,000+ fires caused by electric bike and battery malfunctions nationwide in 2021, resulting in 41 deaths and 157 injuries.
Just recently, on February 23, 2023, a parking shed in Zhenjiang, Jiangsu, caught fire.
And in December 2022, a bike charging area in a Shenzhen, Guangdong community went up in flames late at night. These incidents are far from isolated.
One tragic case in Beijing Tongzhou saw a family's home destroyed by an exploding lithium battery being charged indoors, leading to 5 deaths. In another incident in Chaoyang District, Beijing, a fire broke out due to faulty electrical wiring during charging, thankfully without casualties but a stark reminder of the dangers.
Looking back, many of these disasters stem from unsafe charging practices or faulty charging stations.
But, Smart Battery Swap Cabinets Stand Out in Safety
Unlike the frequent fires linked to charging stations, smart battery swap cabinets demonstrate a clear advantage in safety. Take the case in Jinshan District where a battery swap cabinet suddenly caught fire. Thanks to the built-in sprinkler system, the fire was swiftly contained, preventing any casualties. This showcases the swift response and effective fire control of smart swap cabinets.
Equipped with multiple safety features like temperature sensors, smoke detectors, and automatic fire suppression systems, these cabinets can quickly address battery abnormalities, averting fires. And if a fire does occur, their internal fire-fighting systems kick in immediately, limiting the damage.
Traditional Charging Stations Have Limitations
Traditional charging stations, often installed outdoors or in public areas, face challenges in 24/7 monitoring and maintenance. Plus, some users ignore safety rules, leading to haphazard charging and unauthorized wiring, drastically raising fire risks.
The Rise of Swap Cabinets as a Solution
To tackle illegal parking and charging of electric bikes, many cities have piloted swap cabinet programs. "Since April, we've set up 20 swap stations with 200 battery slots, serving over 800 users..." shared the director of Fengpu Community Management Office. Amazingly, this has reduced 110 emergency calls and 12345 hotline complaints related to illegal bike charging by 65%, with zero fire incidents reported.
Clearly, smart swap cabinets excel in safety through centralized management, standardized swapping, and robust safety measures, significantly reducing fire risks for users and their surroundings. With technological advancements and policy support, this swap model is poised to become the mainstream for electric bike charging.
0 notes
Text
Close to 40 percent of all global shipping is devoted to moving fossil fuels around, a gargantuan source of emissions (and strain on the ocean) that clean energy will almost wipe out. In a net-zero economy, there will be, on net, less digging, less transporting, less burning, less polluting. The fact is, fossil fuels are a wildly destructive and inefficient way to power a society. Two thirds of the energy embedded in them ends up wasted. That inefficiency has been rendered invisible by fossil fuels’ ubiquity and the lack of alternatives. Now that alternatives are coming into view, it’s clear that any shift away from mining, drilling, transporting, and combusting fossil fuels will dramatically ease human pressure on the biosphere and the atmosphere. Again — I can not emphasize enough — this is no reason to ignore or gloss over the very real environmental impacts of mineral mining, processing, and transport. Though overall environmental pressure will ease in a clean-energy world, it will be concentrated in new places, among people who may not necessarily enjoy the benefits of the transition. There are ugly and cruel ways to go about an energy transition, and there are sustainable and equitable ways to go about it. I’m strongly in favor of the latter and encourage everyone to do what they can to bring that about. Nonetheless, either way, the broader cause is environmentally righteous.
296 notes
·
View notes
Text
What You Want is an S Curve
Excerpt from Bill McKibben's Substack, "The Crucial Years."
Regular readers of this column know that I think we’re engaged in the most desperate race in human history—a race between a rapidly unraveling climate, and a rapid buildout of renewable energy. The outcome of that race will determine just how many people die, how many cities drown, how many species survive. Pretty much everything else—efforts to restore corals, say, or worries about how exactly we’ll power long-haul aircraft—is noise at the margins; the decisive question is how those two curves, of destruction and construction, will cross. Oh, and the relevant time frame is the next half-decade, the last five or six “crucial years.”
So even amidst all the desperate news from climate science, I have some legitimately good numbers to update you on this morning. They come from the veteran energy analyst Kingsmill Bond and colleagues at the Rocky Mountain Institute, and they demonstrate that the world has moved on to the steep part of the S curve, which will sweep us from minimal reliance on renewable energy to—we must hope and pray— minimal dependence on fossil fuel. The angle of that curve may prove to be the most significant geometry of our time on earth, competing only with the slope of the Keeling Curve which documents the growing accumulation of co2 in the atmosphere above Mauna Loa.
It seems pretty clear, according to Bond’s team, that last year or this we will hit peak fossil fuel demand on this planet—the advent of cheap solar and wind and batteries, combined with rapidly developing technologies like heat pumps and EVs, has finally caught up with the surging human demand for energy even as more Asian economies enter periods of rapid growth: the question is whether we’ll plateau out at current levels of fossil fuel use for a decade or more, or whether we can make fossil fuel use decline enough to begin to matter to the atmosphere.
And the numbers in the new report give at least some reason for hope: sun and wind are now growing faster than any other energy sources in history, and they are coming online faster that anyone had predicted, even in the last few years. In the last decade, “solar generation has grown 12 times, battery storage by 180 times, and EV sales by 100 times.” This charge has been led by China, where “solar generation up 37 times and EV sales up 700 time.” and which as a result is “poised to be the first major electrostate.” Europe, and indeed the whole OECD group, are now seeing rapid growth too, and the best news is that there are increasing signs that countries like India and Vietnam, where growth in demand will be fastest over the rest of the decade, are figuring out how to electrify their economies. Fossil fuel for generating electricity has peaked in Thailand, South Africa, and in all of Latin America.
Solar power in particular is about to become the most common way to produce electricity on this planet, and batteries will this year pass pumped-hydro as the biggest source of energy storage; the supply chain seems to be in place to continue this kind of hectic growth, as there are enough factories under construction to produce the stuff we need, and investment capital is increasingly underwriting cleantech (though a treacherously large supply of money continues to flow to fossil fuels). Pick your metric—the number of cleantech patents, the energy density of batteries, the size of wind turbine rotors—and we’re seeing rapid and continuing progress; the price of solar power is expected to drop by half again in the course of the decade, reinforcing all these trends. The adoption curves for cleantech look like the adoption curves for color tv, or cellphones—that is to say, from nothing to ubiquitous in a matter of years.
A big reason for the ongoing change—and for ongoing optimism—is the simple efficiency of the technologies now ascendant.
A second report from Bond’s Rocky Mountain Institute, this one published last week, focused on these numbers, and they’re equally astounding. By their calculations, we waste more than half of the energy we use:
Out of the 606 EJ (an exajoule is roughly the annual energy consumption of New York City) of primary energy that entered the global energy system in 2019, some 33% (196 EJ) was lost on the supply side due to energy production and transportation losses before it ever reached a consumer. Another 30% (183 EJ) was lost on the demand side turning final energy into useful energy. That means that of the 606 EJ we put into our energy system per annum, only 227 EJ ended up providing useful energy, like heating a home or moving a truck. That is only 37% efficient overall.
We’ve invested mostly in increasing the volume of energy we use, not its efficiency—because that was what made big money for Big Oil. But cleantech is inherently more efficient: when you burn fossil fuel to make power, you lose two-thirds of the power to heat, which simply doesn’t happen with wind and sun. An EV translates 80-90% of the power it uses into propulsion, compared with well less than half for a car that runs on gas. A gas boiler is 85 percent efficient, which isn’t bad���but a heat pump is 300% efficient, because its main “fuel source” is the ambient heat of the atmosphere, which it translates into heating and cooling for your home. That means that the higher upfront costs of these technologies quickly translate into serious savings. And these kind of numbers bend curves fast
5 notes
·
View notes
Text
youtube
This Crazy Wind Turbine May Be The Future of Wind Energy. Solar panels are a marvel, right? One of the neatest things about them is that they can be used almost anywhere, from big farms, to residential spaces and anything in between. If only we could make other renewables, like wind power, as versatile. Well that’s exactly what a company called AirLoom Energy is trying to do, they claim they’ve developed a radically different kind of wind energy device. One that’s much cheaper, more flexible, and has the backing of Bill Gates. Given his cleantech investing success rate, I’ll let you decide if that’s a badge or honor, or a sign that this device is all hot air. How does AirLoom work? And is their radically different wind turbine design going to change the game?
Watch Why This NASA Battery May Be The Future of Energy Storage
• Why This NASA Battery ...
Video script and citations:
https://undecidedmf.com/this-crazy-wi...
Get my achieve energy security with solar guide:
https://link.undecidedmf.com/solar-guide
Follow-up podcast:
Video version -
/ @stilltbd
Audio version - http://bit.ly/stilltbdfm
#Undecided with Matt Ferrell#solarpunk#wind energy#clean energy#renewable energy#wind turbines#AirLoom Energy#Bill Gates#Youtube
4 notes
·
View notes
Link
The Net Zero Industrial Act proposes a production goal of 40% of the EU’s requirements for key green technologies – such as batteries – being made domestically in 2030. T&E said the goal would boost Europe’s strategic autonomy but more actions are needed. The proposed simplification of permitting processes will help set up new projects in Europe, but the EU should provide financial aid to scale up production quickly(..)
#EU#Europe#renewable energy#fossil fuel phase-out#very good news#energy safety#energy independence#defense of europe#russian defeat
4 notes
·
View notes
Text
Attero Secures ISO 14064 Certification, Setting a Benchmark in GHG Emissions Management
Attero, India’s leading cleantech company and the world’s largest recycler of lithium-ion batteries, has achieved a groundbreaking milestone by securing the ISO 14064 Certification for Greenhouse Gas (GHG) Emissions Verification. This accomplishment makes Attero the first Indian company in the e-waste recycling industry to earn this certification, underscoring its commitment to sustainability and environmental transparency.
ISO 14064 is an internationally recognized standard for verifying GHG emissions. The certification process involves meticulous carbon footprint assessments verified by independent third parties. By attaining this certification, Attero has validated its carbon emissions data, reinforcing its dedication to transparent and accountable environmental practices.
“The ISO 14064 certification is a testament to Attero’s unwavering commitment to a sustainable future,” said Nitin Gupta, Co-Founder and CEO of Attero. “We are setting a new industry standard in GHG emissions management while inspiring others to embrace transparent and impactful environmental practices. This achievement aligns with our mission to transform waste into resources and create a cleaner planet.”
As a pioneer in the circular economy, Attero collaborates with major Original Equipment Manufacturers (OEMs) to recycle e-waste and lithium-ion batteries. Utilizing advanced technology supported by 46+ patents, Attero achieves a 98% extraction efficiency and over 99% purity, recovering critical materials such as lithium, cobalt, and nickel.
The company plans to expand its annual e-waste processing capacity from 144,000 metric tonnes to 415,000 metric tonnes within five years. Attero is also the only organization certified by the United Nations Framework Convention on Climate Change (UNFCCC) for generating carbon credits, further validating its contributions to global sustainability.
In addition to recycling initiatives, Attero recently launched Selsmart, a direct-to-consumer platform designed to promote responsible e-waste disposal. With operations spanning six countries and a robust R&D pipeline, Attero is at the forefront of tackling e-waste challenges with innovative solutions.
This ISO certification represents a pivotal moment for the e-waste recycling industry. By prioritizing independently verified emissions data, Attero has raised the bar for sustainable practices, setting an inspiring example for businesses worldwide.
source - https://www.topgearmag.in/news/others/attero-secures-iso-14064-certification-setting-a-benchmark-in-ghg-emissions-management
0 notes
Text
Biometric Authentication: Securing Transactions with Evolute’s Innovations
The rise of digital transactions has brought both convenience and new security challenges. As more people in India turn to online banking, e-commerce, and digital wallets, the demand for robust security measures has never been higher. Biometric authentication stands out as a leading solution in this landscape, offering a seamless way to secure transactions. This article will explore how Evolute, a leading Embedded Systems company in India, is leveraging innovative biometric technologies to enhance transaction security across its subsidiaries—Fintech, Cleantech, and Glomore.
The Growing Need for Security in Digital Transactions
Recent statistics indicate that India is rapidly embracing digital payments, with the total number of digital transactions reaching 7.42 billion in 2023, according to the National Payments Corporation of India (NPCI). This represents a 41% increase from the previous year. However, this surge in digital transactions also opens the door to cyber threats. A report from CyberPeace Foundation revealed that 65% of Indians feel vulnerable while making online transactions, highlighting the need for stronger security measures.
What is Biometric Authentication?
Biometric authentication uses unique biological traits—such as fingerprints, facial recognition, and iris scans—to verify a user's identity. Unlike traditional methods, like passwords or PINs, which can be forgotten or stolen, biometric data is unique to each individual and cannot be easily replicated. This makes it an ideal solution for securing digital transactions.
Evolute’s Innovations in Biometric Authentication
Evolute is at the forefront of developing cutting-edge biometric solutions tailored for the Indian market. Here’s a closer look at how each subsidiary contributes to this innovative approach:
1. Fintech: Revolutionizing Payment Security
Fintech specializes in manufacturing finance-related electronic devices, incorporating biometric sensors that enhance transaction security. Their latest range of smart payment devices features fingerprint scanners, allowing users to authorize transactions with just a touch. A study from the Indian School of Business indicates that 70% of consumers prefer biometric authentication over traditional password methods, reflecting the growing trust in this technology.
2. Cleantech: Pioneering Safe Battery Solutions
Cleantech focuses on manufacturing and providing services for batteries, which are integral to many electronic devices. By integrating biometric authentication into battery management systems, Cleantech ensures that only authorized personnel can access and manage sensitive data regarding battery performance and usage. This adds an extra layer of security, especially for electric vehicles (EVs) and renewable energy solutions. With India aiming for 30% of all vehicles to be electric by 2030, Cleantech’s innovations are crucial for maintaining security in this growing sector.
3. Glomore: Industrial Products with Biometric Safeguards
Glomore manufactures batteries and industrial products, incorporating biometric solutions to ensure the safety and security of operational environments. For example, their advanced industrial equipment now includes facial recognition systems that restrict access to authorized users only. This significantly reduces the risk of unauthorized use and increases overall operational safety.
The Advantages of Biometric Authentication
Implementing biometric authentication systems offers several benefits:
Enhanced Security: Biometric traits are hard to forge, making it difficult for cybercriminals to gain unauthorized access.
Convenience: Users can complete transactions quickly without remembering complex passwords.
User Trust: With increasing awareness of security threats, consumers are more likely to trust brands that prioritize biometric authentication.
According to a recent survey by Deloitte, 85% of Indian consumers expressed a preference for services that utilize biometric authentication, indicating a strong demand for this technology.
Future of Biometric Authentication in India
The future of biometric authentication looks promising in India. With the government pushing for digital India initiatives, and companies like Evolute leading the way in innovation, the adoption of biometric solutions is set to grow. A report by Statista predicts that the biometric authentication market in India will reach $4.1 billion by 2026, growing at a CAGR of 19.3%.
Conclusion
As digital transactions continue to rise, securing these transactions with innovative technologies becomes paramount. Evolute, through its subsidiaries—Fintech, Cleantech, and Glomore—is at the forefront of integrating biometric authentication into everyday transactions. This not only enhances security but also fosters consumer confidence in digital payment systems. As India marches toward a more digital future, the role of biometric authentication will only become more significant. Embracing this technology is essential for businesses and consumers alike, ensuring safe, secure, and seamless transactions for everyone.
#Evolute Embedded Systems Company#Fintech#Cleantech#Glomore#FIntech device#Cleantech EV#Cleantech batteries#Cleantech Battery Services#Glomore EV#Glomore Batteries#Glomore Battery Services#Glomore industry products#Fintech POS machine
0 notes
Text
Cleantech has an enshittification problem
On July 14, I'm giving the closing keynote for the fifteenth HACKERS ON PLANET EARTH, in QUEENS, NY. Happy Bastille Day! On July 20, I'm appearing in CHICAGO at Exile in Bookville.
EVs won't save the planet. Ultimately, the material bill for billions of individual vehicles and the unavoidable geometry of more cars-more traffic-more roads-greater distances-more cars dictate that the future of our cities and planet requires public transit – lots of it.
But no matter how much public transit we install, there's always going to be some personal vehicles on the road, and not just bikes, ebikes and scooters. Between deliveries, accessibility, and stubbornly low-density regions, there's going to be a lot of cars, vans and trucks on the road for the foreseeable future, and these should be electric.
Beyond that irreducible minimum of personal vehicles, there's the fact that individuals can't install their own public transit system; in places that lack the political will or means to create working transit, EVs are a way for people to significantly reduce their personal emissions.
In policy circles, EV adoption is treated as a logistical and financial issue, so governments have focused on making EVs affordable and increasing the density of charging stations. As an EV owner, I can affirm that affordability and logistics were important concerns when we were shopping for a car.
But there's a third EV problem that is almost entirely off policy radar: enshittification.
An EV is a rolling computer in a fancy case with a squishy person inside of it. While this can sound scary, there are lots of cool implications for this. For example, your EV could download your local power company's tariff schedule and preferentially charge itself when the rates are lowest; they could also coordinate with the utility to reduce charging when loads are peaking. You can start them with your phone. Your repair technician can run extensive remote diagnostics on them and help you solve many problems from the road. New features can be delivered over the air.
That's just for starters, but there's so much more in the future. After all, the signal virtue of a digital computer is its flexibility. The only computer we know how to make is the Turing complete, universal, Von Neumann machine, which can run every valid program. If a feature is computationally tractable – from automated parallel parking to advanced collision prevention – it can run on a car.
The problem is that this digital flexibility presents a moral hazard to EV manufacturers. EVs are designed to make any kind of unauthorized, owner-selected modification into an IP rights violation ("IP" in this case is "any law that lets me control the conduct of my customers or competitors"):
https://locusmag.com/2020/09/cory-doctorow-ip/
EVs are also designed so that the manufacturer can unilaterally exert control over them or alter their operation. EVs – even more than conventional vehicles – are designed to be remotely killswitched in order to help manufacturers and dealers pressure people into paying their car notes on time:
https://pluralistic.net/2023/07/24/rent-to-pwn/#kitt-is-a-demon
Manufacturers can reach into your car and change how much of your battery you can access:
https://pluralistic.net/2023/07/28/edison-not-tesla/#demon-haunted-world
They can lock your car and have it send its location to a repo man, then greet him by blinking its lights, honking its horn, and pulling out of its parking space:
https://tiremeetsroad.com/2021/03/18/tesla-allegedly-remotely-unlocks-model-3-owners-car-uses-smart-summon-to-help-repo-agent/
And of course, they can detect when you've asked independent mechanic to service your car and then punish you by degrading its functionality:
https://www.repairerdrivennews.com/2024/06/26/two-of-eight-claims-in-tesla-anti-trust-lawsuit-will-move-forward/
This is "twiddling" – unilaterally and irreversibly altering the functionality of a product or service, secure in the knowledge that IP law will prevent anyone from twiddling back by restoring the gadget to a preferred configuration:
https://pluralistic.net/2023/02/19/twiddler/
The thing is, for an EV, twiddling is the best case scenario. As bad as it is for the company that made your EV to change how it works whenever they feel like picking your pocket, that's infinitely preferable to the manufacturer going bankrupt and bricking your car.
That's what just happened to owners of Fisker EVs, cars that cost $40-70k. Cars are long-term purchases. An EV should last 12-20 years, or even longer if you pay to swap the battery pack. Fisker was founded in 2016 and shipped its first Ocean SUV in 2023. The company is now bankrupt:
https://insideevs.com/news/723669/fisker-inc-bankruptcy-chapter-11-official/
Fisker called its vehicles "software-based cars" and they weren't kidding. Without continuous software updates and server access, those Fisker Ocean SUVs are turning into bricks. What's more, the company designed the car from the ground up to make any kind of independent service and support into a felony, by wrapping the whole thing in overlapping layers of IP. That means that no one can step in with a module that jailbreaks the Fisker and drops in an alternative firmware that will keep the fleet rolling.
This is the third EV risk – not just finance, not just charger infrastructure, but the possibility that any whizzy, cool new EV company will go bust and brick your $70k cleantech investment, irreversibly transforming your car into 5,500 lb worth of e-waste.
This confers a huge advantage onto the big automakers like VW, Kia, Ford, etc. Tesla gets a pass, too, because it achieved critical mass before people started to wise up to the risk of twiddling and bricking. If you're making a serious investment in a product you expect to use for 20 years, are you really gonna buy it from a two-year old startup with six months' capital in the bank?
The incumbency advantage here means that the big automakers won't have any reason to sink a lot of money into R&D, because they won't have to worry about hungry startups with cool new ideas eating their lunches. They can maintain the cozy cartel that has seen cars stagnate for decades, with the majority of "innovation" taking the form of shitty, extractive and ill-starred ideas like touchscreen controls and an accelerator pedal that you have to rent by the month:
https://www.theverge.com/2022/11/23/23474969/mercedes-car-subscription-faster-acceleration-feature-price
Put that way, it's clear that this isn't an EV problem, it's a cleantech problem. Cleantech has all the problems of EVs: it requires a large capital expenditure, it will be "smart," and it is expected to last for decades. That's rooftop solar, heat-pumps, smart thermostat sensor arrays, and home storage batteries.
And just as with EVs, policymakers have focused on infrastructure and affordability without paying any attention to the enshittification risks. Your rooftop solar will likely be controlled via a Solaredge box – a terrible technology that stops working if it can't reach the internet for a protracted period (that's right, your home solar stops working if the grid fails!).
I found this out the hard way during the covid lockdowns, when Solaredge terminated its 3G cellular contract and notified me that I would have to replace the modem in my system or it would stop working. This was at the height of the supply-chain crisis and there was a long waiting list for any replacement modems, with wifi cards (that used your home internet rather than a cellular connection) completely sold out for most of a year.
There are good reasons to connect rooftop solar arrays to the internet – it's not just so that Solaredge can enshittify my service. Solar arrays that coordinate with the grid can make it much easier and safer to manage a grid that was designed for centralized power production and is being retrofitted for distributed generation, one roof at a time.
But when the imperatives of extraction and efficiency go to war, extraction always wins. After all, the Solaredge system is already in place and solar installers are largely ignorant of, and indifferent to, the reasons that a homeowner might want to directly control and monitor their system via local controls that don't roundtrip through the cloud.
Somewhere in the hindbrain of any prospective solar purchaser is the experience with bricked and enshittified "smart" gadgets, and the knowledge that anything they buy from a cool startup with lots of great ideas for improving production, monitoring, and/or costs poses the risk of having your 20 year investment bricked after just a few years – and, thanks to the extractive imperative, no one will be able to step in and restore your ex-solar array to good working order.
I make the majority of my living from books, which means that my pay is very "lumpy" – I get large sums when I publish a book and very little in between. For many years, I've used these payments to make big purchases, rather than financing them over long periods where I can't predict my income. We've used my book payments to put in solar, then an induction stove, then a battery. We used one to buy out the lease on our EV. And just a month ago, we used the money from my upcoming Enshittification book to put in a heat pump (with enough left over to pay for a pair of long-overdue cataract surgeries, scheduled for the fall).
When we started shopping for heat pumps, it was clear that this was a very exciting sector. First of all, heat pumps are kind of magic, so efficient and effective it's almost surreal. But beyond the basic tech – which has been around since the late 1940s – there is a vast ferment of cool digital features coming from exciting and innovative startups.
By nature, I'm the kid of person who likes these digital features. I started out as a computer programmer, and while I haven't written production code since the previous millennium, I've been in and around the tech industry for my whole adult life. But when it came time to buy a heat-pump – an investment that I expected to last for 20 years or more – there was no way I was going to buy one of these cool new digitally enhanced pumps, no matter how much the reviewers loved them. Sure, they'd work well, but it's precisely because I'm so knowledgeable about high tech that I could see that they would fail very, very badly.
You may think EVs are bullshit, and they are – though there will always be room for some personal vehicles, and it's better for people in transit deserts to drive EVs than gas-guzzlers. You may think rooftop solar is a dead-end and be all-in on utility scale solar (I think we need both, especially given the grid-disrupting extreme climate events on our horizon). But there's still a wide range of cleantech – induction tops, heat pumps, smart thermostats – that are capital intensive, have a long duty cycle, and have good reasons to be digitized and networked.
Take home storage batteries: your utility can push its rate card to your battery every time they change their prices, and your battery can use that information to decide when to let your house tap into the grid, and when to switch over to powering your home with the solar you've stored up during the day. This is a very old and proven pattern in tech: the old Fidonet BBS network used a version of this, with each BBS timing its calls to other nodes to coincide with the cheapest long-distance rates, so that messages for distant systems could be passed on:
https://en.wikipedia.org/wiki/FidoNet
Cleantech is a very dynamic sector, even if its triumphs are largely unheralded. There's a quiet revolution underway in generation, storage and transmission of renewable power, and a complimentary revolution in power-consumption in vehicles and homes:
https://pluralistic.net/2024/06/12/s-curve/#anything-that-cant-go-on-forever-eventually-stops
But cleantech is too important to leave to the incumbents, who are addicted to enshittification and planned obsolescence. These giant, financialized firms lack the discipline and culture to make products that have the features – and cost savings – to make them appealing to the very wide range of buyers who must transition as soon as possible, for the sake of the very planet.
It's not enough for our policymakers to focus on financing and infrastructure barriers to cleantech adoption. We also need a policy-level response to enshittification.
Ideally, every cleantech device would be designed so that it was impossible to enshittify – which would also make it impossible to brick:
Based on free software (best), or with source code escrowed with a trustee who must release the code if the company enters administration (distant second-best);
All patents in a royalty-free patent-pool (best); or in a trust that will release them into a royalty-free pool if the company enters administration (distant second-best);
No parts-pairing or other DRM permitted (best); or with parts-pairing utilities available to all parties on a reasonable and non-discriminatory basis (distant second-best);
All diagnostic and error codes in the public domain, with all codes in the clear within the device (best); or with decoding utilities available on demand to all comers on a reasonable and non-discriminatory basis (distant second-best).
There's an obvious business objection to this: it will reduce investment in innovative cleantech because investors will perceive these restrictions as limits on the expected profits of their portfolio companies. It's true: these measures are designed to prevent rent-extraction and other enshittificatory practices by cleantech companies, and to the extent that investors are counting on enshittification rents, this might prevent them from investing.
But that has to be balanced against the way that a general prohibition on enshittificatory practices will inspire consumer confidence in innovative and novel cleantech products, because buyers will know that their investments will be protected over the whole expected lifespan of the product, even if the startup goes bust (nearly every startup goes bust). These measures mean that a company with a cool product will have a much larger customer-base to sell to. Those additional sales more than offset the loss of expected revenue from cheating and screwing your customers by twiddling them to death.
There's also an obvious legal objection to this: creating these policies will require a huge amount of action from Congress and the executive branch, a whole whack of new rules and laws to make them happen, and each will attract court-challenges.
That's also true, though it shouldn't stop us from trying to get legal reforms. As a matter of public policy, it's terrible and fucked up that companies can enshittify the things we buy and leave us with no remedy.
However, we don't have to wait for legal reform to make this work. We can take a shortcut with procurement – the things governments buy with public money. The feds, the states and localities buy a lot of cleantech: for public facilities, for public housing, for public use. Prudent public policy dictates that governments should refuse to buy any tech unless it is designed to be enshittification-resistant.
This is an old and honorable tradition in policymaking. Lincoln insisted that the rifles he bought for the Union Army come with interoperable tooling and ammo, for obvious reasons. No one wants to be the Commander in Chief who shows up on the battlefield and says, "Sorry, boys, war's postponed, our sole supplier decided to stop making ammunition."
By creating a market for enshittification-proof cleantech, governments can ensure that the public always has the option of buying an EV that can't be bricked even if the maker goes bust, a heat-pump whose digital features can be replaced or maintained by a third party of your choosing, a solar controller that coordinates with the grid in ways that serve their owners – not the manufacturers' shareholders.
We're going to have to change a lot to survive the coming years. Sure, there's a lot of scary ways that things can go wrong, but there's plenty about our world that should change, and plenty of ways those changes could be for the better. It's not enough for policymakers to focus on ensuring that we can afford to buy whatever badly thought-through, extractive tech the biggest companies want to foist on us – we also need a focus on making cleantech fit for purpose, truly smart, reliable and resilient.
Support me this summer on the Clarion Write-A-Thon and help raise money for the Clarion Science Fiction and Fantasy Writers' Workshop!
If you'd like an essay-formatted version of this post to read or share, here's a link to it on pluralistic.net, my surveillance-free, ad-free, tracker-free blog:
https://pluralistic.net/2024/06/26/unplanned-obsolescence/#better-micetraps
Image: 臺灣古寫真上色 (modified) https://commons.wikimedia.org/wiki/File:Raid_on_Kagi_City_1945.jpg
Grendelkhan (modified) https://commons.wikimedia.org/wiki/File:Ground_mounted_solar_panels.gk.jpg
CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0/deed.en
#pluralistic#procurement#cleantech#evs#solar#solarpunk#policy#copyfight#copyright#felony contempt of business model#floss#free software#open source#oss#dmca 1201#interoperability#adversarial interoperability#solarization#electrification#enshittification#innovation#incumbency#climate#climate emergency
426 notes
·
View notes
Text
0 notes
Text
In a strategic shift aimed at bolstering its global influence, China has significantly increased its investments in cleantech sectors, pouring over $100 billion into overseas projects since 2023. This movement comes as a response to rising tariffs imposed by Western nations such as the United States, Canada, and the European Union, who are increasingly concerned about China's dominance in renewable energy technologies like solar panels, lithium batteries, and electric vehicles (EVs). Recent research by Climate Energy Finance (CEF), an Australian group, reveals the scale of this trend. With many of its exports facing hefty tariffs—most notably a proposed 40% tariff on Chinese electric vehicles by the EU—Chinese companies are compelled to look beyond domestic borders. They are establishing manufacturing plants and partnerships internationally to mitigate the impact of these trade barriers. Prominent players in this investment spree include electric vehicle manufacturer BYD and battery giant CATL. For instance, BYD is constructing a $1 billion EV factory in Turkey, while CATL has plans for multiple factories throughout Europe. These ventures not only circumvent tariffs but also position Chinese firms closer to burgeoning market opportunities in regions with increasing demand for clean energy technologies. The ramifications of these developments are significant. By relocating production facilities outside of China, these companies can avoid import duties and continue to offer products at competitive prices. This strategy not only allows them to maintain market share but also addresses fears of overcapacity in the Chinese market, which could lead to price drops and potential harm to local competitors abroad. The pushback from Western countries is grounded in concerns about market fairness. Officials argue that Chinese businesses have an unfair advantage, flooding their markets with low-cost products that threaten local industries. However, China counters that these tariffs hinder global efforts to combat climate change by making clean energy solutions less accessible. This geopolitical tug-of-war has broader implications as well. With China projected to have a surplus production capacity in the cleantech sector by 2030, the importance of international investments cannot be overstated. Chinese firms aim to create new avenues for sales by tapping into markets that are increasingly reliant on renewable energy sources and sustainability initiatives. The ongoing trade tensions and tariff disputes highlight not only the fragility of international relations but also the critical role that clean technology plays in future economic growth. By shifting its production strategy, China demonstrates a willingness to adapt to changing global dynamics while striving to maintain its leadership position in crucial energy markets. Looking ahead, it will be essential for businesses and policymakers in both the East and West to navigate these complexities. Understanding the motives behind China’s overseas investments will be key to developing competitive strategies that ensure the growth and sustainability of local industries in an increasingly interconnected world. In conclusion, the notable spike in China’s cleantech investments abroad is a clear indicator of its intent to maintain its growth trajectory while skillfully playmaking around trade barriers. As new plants rise in Turkey, Europe, and beyond, the global energy landscape will continue to evolve, pushing nations to rethink their strategies toward energy independence and competitiveness.
0 notes
Text
Battery Recycling: $17.2B (2023) to $35.5B (2033), CAGR 7.6%
Battery Recycling Market : Battery recycling has become a cornerstone of sustainable practices as industries and individuals seek greener solutions to manage electronic waste. By reclaiming valuable materials like lithium, cobalt, and nickel, battery recycling minimizes environmental impact and reduces dependence on newly mined resources. From smartphones to electric vehicles, used batteries are now being reprocessed and repurposed, offering a lifeline to both the environment and the economy. Advances in technology have made recycling processes more efficient, opening new avenues for innovation in how we power our devices and vehicles sustainably.
To Request Sample Report : https://www.globalinsightservices.com/request-sample/?id=GIS32184 &utm_source=SnehaPatil&utm_medium=Article
As demand for eco-friendly solutions grows, battery recycling is gaining traction worldwide. Governments, businesses, and environmental organizations are joining forces to promote responsible disposal and recycling practices, often incentivizing consumers to recycle their batteries. The positive impact extends beyond just waste reduction; recycled materials help lower production costs for new batteries, making sustainable energy more accessible. With rising concerns about resource depletion, battery recycling stands as a pivotal practice, empowering a circular economy that supports our planet and paves the way for a cleaner, greener future.
#BatteryRecycling #GreenEnergy #CircularEconomy #SustainableLiving #EcoInnovation #EwasteSolutions #CleanTech #FutureOfEnergy #RecyclingRevolution #LithiumRecovery #RenewableFuture #WasteToWealth #EnvironmentalImpact #GoGreen #BatteryReuse
0 notes
Text
India’s Lohum Cleantech to jointly set up $30 mn lithium-ion battery processing unit in US
Homegrown battery-tech startup company Lohum Cleantech on Thursday announced to set up a lithium-ion battery materials processing facility in the US with ReElement Technologies and American Metals for $30 million. The joint 15.5 gigawatt hours (GWh) facility will be set up with an initial investment of $30 million, creating 250 “green jobs”. The partnership is expected to initially supply over…
0 notes