#Airbo
Explore tagged Tumblr posts
Text
#military aircraft#aircraft#airforce#airplanes#paratroopers#spec ops#army#army rangers#c 130j super hercules#Airbo#pinterest
87 notes
·
View notes
Text
A silly comic I've been wanting to make for a while is Airboarder realizing his Space Kicker boyfriend is bald the entire time and his suit only goes up to his neck. At first he thinks SK's suit obscures his hair like his Airbo uniform does, but no, SK's species just has no hair.
#rhythm heaven#space kicker#airboarder#sorry to everyone who hcs space kickers to be furry but i just can't get behind it#they're weird bald creatures to me#txt
19 notes
·
View notes
Text
Bir Billing Paragliding: Catch the Breeze to Feel the Freedom!
Let’s Talk
For those seeking an unforgettable adventure in the skies, Bir Billing Paragliding is an experience like no other. Nestled in the scenic Himachal Pradesh, Bir Billing is a paragliding paradise that attracts thrill-seekers from all over the world. Known as the “Paragliding Capital of India,” this location offers not just a thrilling ride but also breathtaking views of the Himalayas and lush landscapes below. If you’ve ever dreamed of flying like a bird and catching the breeze to feel true freedom, Bir Billing is the perfect place to turn that dream into reality.
In this blog, we’ll explore the magic of paragliding in Bir Billing, break down the costs, and give you all the details you need for your next adventure.
The Ultimate Bir Billing Paragliding Experience
When you take off from the heights of Billing and glide down to Bir, you’re treated to an aerial journey that lasts between 15–20 minutes. The sheer beauty of the region, with the towering Dhauladhar range as your backdrop and expansive valleys below, makes every second in the sky worth it.
Paragliding in Bir Billing is not just about adrenaline — it’s also about immersing yourself in nature. The tranquil yet thrilling sensation of floating through the air offers an unmatched sense of freedom, making you feel connected to the skies.
Bir Billing Paragliding Cost: What’s Included?
If you’re wondering how much this once-in-a-lifetime adventure will cost, the Bir Billing paragliding price varies depending on the season and the package you choose. Universal Adventures offers an incredible paragliding experience with videos, as well as pickup and drop-off services for just ₹2,749 per person.
This Bir Paragliding cost includes:
15–20 minutes of paragliding
Pickup and drop-off from your location in Bir
High-quality videos of your flight, allowing you to relive the memories
All necessary safety equipment, including a helmet and harness
Professional guidance from experienced pilots
Why Choose Bir for Paragliding?
World-Class Paragliding Destination: Bir Billing is recognized globally for its ideal paragliding conditions. Thanks to its reliable weather, favourable wind currents, and high-altitude takeoff (Billing at 2,400 metres), this location offers an experience that’s hard to match anywhere else.
Stunning Views: One of the most rewarding parts of Bir Billing paragliding is the stunning landscape. The panoramic views of the Himalayas, forests, and monasteries make the entire experience mesmerising. Few places offer the natural beauty that Bir Billing provides from the air.
Safety and Expertise: Whether you’re a first-time flyer or a seasoned paraglider, Bir offers a safe and controlled environment. The pilots are highly trained and experienced, ensuring that your flight is not only thrilling but also safe.
Bir Billing Paragliding Price: Is It Worth It?
Absolutely! The Bir Billing paragliding cost is an incredible deal, considering what’s included in the package. Not only do you get to enjoy the thrill of flying, but you also receive a video of your experience — something you can share with friends and family or keep as a cherished memory.
What to Expect During Your Paragliding Adventure?
Pre-Flight Briefing: Before your flight, the team will give you a quick briefing about the safety protocols, what to expect during the flight, and how to position yourself during takeoff and landing.
Takeoff from Billing: You’ll take off from Billing, which sits at an altitude of 2,400 metres. The moment your feet leave the ground and you start soaring into the air is exhilarating.
Incredible Flight: For the next 15–20 minutes, you’ll glide smoothly over the valley, enjoying the serene beauty of Bir and its surrounding landscapes. The cool breeze, coupled with the thrill of being airborne, creates an unforgettable sensation of freedom.
Landing in Bir: After your flight, you’ll gently land in Bir, where the team will greet you and ensure a safe landing.
Best Time for Bir Billing Paragliding
The best time to enjoy paragliding in Bir Billing is from October to June. These months offer optimal weather conditions, with clear skies and consistent wind currents, making your flight smooth and enjoyable.
During the monsoon season (July to September), paragliding activities are usually suspended due to heavy rainfall and unpredictable winds, so it’s best to avoid these months.
What to Wear for Bir Paragliding?
It’s important to dress comfortably and appropriately for your paragliding adventure:
Light and Breathable Clothing: Wear comfortable clothing like t-shirts and track pants or light jackets. The weather at Billing can get a bit chilly due to the altitude, so layering is a good idea.
Sturdy Shoes: Closed-toe shoes like sneakers or trekking shoes are essential to ensure you have good grip during takeoff and landing.
Sunglasses: If it’s a sunny day, wearing sunglasses can help protect your eyes from the sun while you’re up in the air.
Is Bir Billing Paragliding Safe?
Safety is the top priority at Bir Billing, and all paragliding operators, including Universal Adventures, follow strict safety protocols. The equipment used is regularly maintained, and the pilots are highly skilled and experienced, ensuring you have a safe and thrilling experience.
Before your flight, the team will thoroughly check your harness, helmet, and other gear to make sure everything is in perfect working condition.
Feel the Freedom with Bir Billing Paragliding!
Bir paragliding is an adventure that promises the perfect blend of thrill, beauty, and serenity. Whether you’re a seasoned adventurer or trying paragliding for the first time, the experience of soaring over the Himalayas is bound to leave you spellbound.
With an affordable Bir Billing paragliding, including videos and transportation, there’s never been a better time to book your flight and feel the freedom that only paragliding can offer.
So what are you waiting for? Catch the breeze and experience the ultimate sense of freedom with Universal Adventures at Bir Billing!
#Bir Billing Paragliding#Bir Paragliding#Bir Paragliding Cost#bir billing paragliding cost#bir billing paragliding price
0 notes
Video
youtube
Airboating at night in the Fl Everglades AKA The River of Grass #airbo...
0 notes
Text
DOD Featured Photos
Night Ops Soldiers assigned to the 1st Battalion, 26th Infantry Regiment, 2nd Brigade Combat Team, 101st Airbo… Photo Details > View All Photos ABOUT NEWS HELP CENTER PRESS PRODUCTS Unsubscribe | Contact Us
View On WordPress
0 notes
Photo
Red Bull Show by KlausHuber
1 note
·
View note
Photo
Air-to-air photography of a T-38 Talon in supersonic flight over the Mojave desert reveals air density changes caused by flow regime transition around the aircraft, and the turbulent exhaust of the aircraft’s jet engines. This photo was acquired using a technique named Air-to-air Background-Oriented Schlieren (AirBOS). Source
36 notes
·
View notes
Photo
NASA has successfully tested an advanced air-to-air photographic technology in flight, capturing the first-ever images of the interaction of shockwaves from two supersonic aircraft in flight.
The images were captured during the fourth phase of Air-to-Air Background Oriented Schlieren flights, or AirBOS, which took place at NASA’s Armstrong Flight Research Center in Edwards, California. The flight series saw successful testing of an upgraded imaging system capable of capturing high-quality images of shockwaves, rapid pressure changes which are produced when an aircraft flies faster than the speed of sound, or supersonic. Shockwaves produced by aircraft merge together as they travel through the atmosphere and are responsible for what is heard on the ground as a sonic boom.
11 notes
·
View notes
Photo
The center of our home galaxy photographed on infrared by NASA's SOFIA airborne telescope a few days ago via /r/spaceporn https://ift.tt/2FyLkTI
0 notes
Photo
NASA Captures Supersonic Shock Interaction : One of the greatest challenges of the fourth phase of Air-to-Air Background Oriented Schlieren flights, or AirBOS flight series was timing. (via NASA)
351 notes
·
View notes
Text
NASA Captures First Air-to-Air Images of Supersonic Shockwave Interaction in Flight
NASA - Armstrong Flight Research Center patch. March 6, 2019 “We never dreamt that it would be this clear, this beautiful.” Physical Scientist J.T. Heineck of NASA’s Ames Research Center in Mountain View, California gets his first glimpse at a set of long-awaited images, and takes a moment to reflect on more than 10 years of technique development – an effort that has led to a milestone for NASA’s Aeronautics Research Mission Directorate. NASA has successfully tested an advanced air-to-air photographic technology in flight, capturing the first-ever images of the interaction of shockwaves from two supersonic aircraft in flight.
Image above: One of the greatest challenges of the flight series was timing. In order to acquire this image, originally monochromatic and shown here as a colorized composite image, NASA flew a B-200, outfitted with an updated imaging system, at around 30,000 feet while the pair of T-38s were required to not only remain in formation, but to fly at supersonic speeds at the precise moment they were directly beneath the B-200. The images were captured as a result of all three aircraft being in the exact right place at the exact right time designated by NASA’s operations team. Image Credit: NASA Photo. “I am ecstatic about how these images turned out,” said Heineck. “With this upgraded system, we have, by an order of magnitude, improved both the speed and quality of our imagery from previous research.” The images were captured during the fourth phase of Air-to-Air Background Oriented Schlieren flights, or AirBOS, which took place at NASA’s Armstrong Flight Research Center in Edwards, California. The flight series saw successful testing of an upgraded imaging system capable of capturing high-quality images of shockwaves, rapid pressure changes which are produced when an aircraft flies faster than the speed of sound, or supersonic. Shockwaves produced by aircraft merge together as they travel through the atmosphere and are responsible for what is heard on the ground as a sonic boom. The system will be used to capture data crucial to confirming the design of the agency’s X-59 Quiet SuperSonic Technology X-plane, or X-59 QueSST, which will fly supersonic, but will produce shockwaves in such a way that, instead of a loud sonic boom, only a quiet rumble may be heard. The ability to fly supersonic without a sonic boom may one day result in lifting current restrictions on supersonic flight over land.
Image above: When aircraft fly faster than the speed of sound, shockwaves travel away from the vehicle, and are heard on the ground as a sonic boom. NASA researchers use this imagery to study these shockwaves as part of the effort to make sonic booms quieter, which may open the future to possible supersonic flight over land. The updated camera system used in the AirBOS flight series enabled the supersonic T-38 to be photographed from much closer, approximately 2,000 feet away, resulting in a much clearer image compared to previous flight series. Image Credit: NASA Photo. The images feature a pair of T-38s from the U.S. Air Force Test Pilot School at Edwards Air Force Base, flying in formation at supersonic speeds. The T-38s are flying approximately 30 feet away from each other, with the trailing aircraft flying about 10 feet lower than the leading T-38. With exceptional clarity, the flow of the shock waves from both aircraft is seen, and for the first time, the interaction of the shocks can be seen in flight. “We’re looking at a supersonic flow, which is why we’re getting these shockwaves,” said Neal Smith, a research engineer with AerospaceComputing Inc. at NASA Ames’ fluid mechanics laboratory. “What’s interesting is, if you look at the rear T-38, you see these shocks kind of interact in a curve,” he said. “This is because the trailing T-38 is flying in the wake of the leading aircraft, so the shocks are going to be shaped differently. This data is really going to help us advance our understanding of how these shocks interact.” The study of how shockwaves interact with each other, as well as with the exhaust plume of an aircraft, has been a topic of interest among researchers. Previous, subscale schlieren research in Ames’ wind tunnel, revealed distortion of the shocks, leading to further efforts to expand this research to full-scale flight testing. While the acquisition of these images for research marked one of the goals of AirBOS, one of the primary objectives was to flight test advanced equipment capable of high quality air-to-air schlieren imagery, to have ready for X-59’s Low-Boom Flight Demonstration, a mission that will use the X-59 to provide regulators with statistically valid data needed for potential regulation changes to enable quiet commercial supersonic flight over land. While NASA has previously used the schlieren photography technique to study shockwaves, the AirBOS 4 flights featured an upgraded version of the previous airborne schlieren systems, allowing researchers to capture three times the amount of data in the same amount of time. “We’re seeing a level of physical detail here that I don’t think anybody has ever seen before,” said Dan Banks, senior research engineer at NASA Armstrong. “Just looking at the data for the first time, I think things worked out better than we’d imagined. This is a very big step.”
Image above: The X-59 Quiet SuperSonic Technology X-plane, or QueSST, will test its quiet supersonic technologies by flying over communities in the United States. X-59 is designed so that when flying supersonic, people on the ground will hear nothing more than a quiet sonic thump – if anything at all. The scientifically valid data gathered from these community overflights will be presented to U.S. and international regulators, who will use the information to help them come up with rules based on noise levels that enable new commercial markets for supersonic flight over land. Image Credits: NASA Image. Additional images included a “knife-edge” shot of a single T-38 in supersonic flight, as well as a slow-speed T-34 aircraft, to test the feasibility of visualizing an aircraft’s wing and flap vortices using the AirBOS system. The images were captured from a NASA B-200 King Air, using an upgraded camera system to increase image quality. The upgraded system included the addition of a camera able to capture data with a wider field of view. This improved spatial awareness allowed for more accurate positioning of the aircraft. The system also included a memory upgrade for the cameras, permitting researchers to increase the frame rate to 1400 frames per second, making it easier to capture a larger number of samples. Finally, the system received an upgraded connection to data storage computers, which allowed for a much higher rate of data download. This also contributed to the team being able to capture more data per pass, boosting the quality of the images. In addition to a recent avionics upgrade for the King Air, which improved the ability of the aircraft to be in the exact right place at the exact right time, the team also developed a new installation system for the cameras, drastically reducing the time it took to integrate them with the aircraft. “With previous iterations of AirBOS, it took up to a week or more to integrate the camera system onto the aircraft and get it working. This time we were able to get it in and functioning within a day,” said Tiffany Titus, flight operations engineer. “That’s time the research team can use to go out and fly, and get that data.” While the updated camera system and avionics upgrade on the B-200 greatly improved the ability to conduct these flights more efficiently than in previous series, obtaining the images still required a great deal of skill and coordination from engineers, mission controllers, and pilots from both NASA and Edwards’ U.S. Air Force Test Pilot School.
Image above: Using the schlieren photography technique, NASA was able to capture the first air-to-air images of the interaction of shockwaves from two supersonic aircraft flying in formation. These two U.S. Air Force Test Pilot School T-38 aircraft are flying in formation, approximately 30 feet apart, at supersonic speeds, or faster than the speed of sound, producing shockwaves that are typically heard on the ground as a sonic boom. The images, originally monochromatic and shown here as colorized composite images, were captured during a supersonic flight series flown, in part, to better understand how shocks interact with aircraft plumes, as well as with each other. Image Credit: NASA Photo. In order to capture these images, the King Air, flying a pattern around 30,000 feet, had to arrive in a precise position as the pair of T-38s passed at supersonic speeds approximately 2,000 feet below. Meanwhile, the cameras, able to record for a total of three seconds, had to begin recording at the exact moment the supersonic T-38s came into frame. “The biggest challenge was trying to get the timing correct to make sure we could get these images,” said Heather Maliska, AirBOS sub-project manager. “I’m absolutely happy with how the team was able to pull this off. Our operations team has done this type of maneuver before. They know how to get the maneuver lined up, and our NASA pilots and the Air Force pilots did a great job being where they needed to be.” “They were rock stars.” The data from the AirBOS flights will continue to undergo analysis, helping NASA refine the techniques for these tests to improve data further, with future flights potentially taking place at higher altitudes. These efforts will help advance knowledge of the characteristics of shockwaves as NASA progresses toward quiet supersonic research flights with the X-59, and closer toward a major milestone in aviation. AirBOS was flown as a sub-project under NASA’s Commercial Supersonic Technology project. Related article: The future "Concorde" will have to be silent https://orbiterchspacenews.blogspot.com/2019/03/the-future-concorde-will-have-to-be.html Related links: Aeronautics Research Mission Directorate: https://www.nasa.gov/aeroresearch NASA’s Commercial Supersonic Technology project: https://www.nasa.gov/subject/7566/supersonic-flight/ Low-Boom Flight Demonstration (LBFD): https://www.nasa.gov/mission_pages/lowboom/index.html Aeronautics: https://www.nasa.gov/topics/aeronautics/index.html Images (mentioned), Text, Credits: NASA/Monroe Conner/Armstrong Flight Research Center/Matt Kamlet. Best regards, Orbiter.ch Full article
80 notes
·
View notes
Text
Thelonious Bone: Stoned and Alien
Opening reception: November 9, from 7 to 11 pm with special guest DJ Airbo Gallery hours: Saturdays from 1 to 6 through December 14
2 notes
·
View notes
Photo
Break by HariesAutoMoto
#air#speed#fly#canon#airshow#airplane#altitude#flying#belgium#display#sigma#rotor#aviation#demo#airbo
0 notes
Text
DOD Featured Photos
Night Exercise Soldiers assigned to the 1st Battalion, 26th Infantry Regiment, 2nd Brigade Combat Team, 101st Airbo… Photo Details > View All Photos ABOUT NEWS HELP CENTER PRESS PRODUCTS Unsubscribe | Contact Us
View On WordPress
0 notes
Photo
B-25 Tail section. by Candaloro
0 notes