Tumgik
Photo
Tumblr media
371 notes · View notes
Text
Юность
Ранимая юность, тебя завлекает К великим страданиям сущий пустяк.  Игривая юность, тебя забавляет  Порывистость красок. И музыке в такт
Ты сочиняешь свой дерзкий характер.  Улыбаться и плакать - не одно ли и то же? Дай мне в тебе утонуть, Бога ради... На секунду, на вечность. Мы с тобой так похожи.
Прозрачная юность с моими глазами, Ты мне не позволишь от чувств отказаться.  Капризная юность с моими чертами. Ты точно как я в мои восемнадцать. 
1 note · View note
Photo
Tumblr media
John William Waterhouse, The Lady of Shalott, 1888,
1K notes · View notes
Photo
Tumblr media
The souls of a wilted meadow by NataliaDrepina
898 notes · View notes
Photo
Tumblr media
710K notes · View notes
Photo
Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media
7K notes · View notes
Text
Обмен веществ
Энергетический обмен = Диссимиляция = Катаболизм
Этот процесс идет в несколько этапов, и нам нужно рассмотреть, как он проходи�� в различных организмах.
Организмов будет всего 2 — многоклеточный (человек, например) и одноклеточный (растительный и животный).
И запомните, сочетание букв АТФ (аденозинтрифосфат) — означает “энергию”. Просто эта энергия заключена в молекуле.
1. Значение АТФ в обмене веществ
Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам и состоит из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты.
Энергия, высвобождающаяся при гидролизе АТФ, используется клеткой для совершения всех видов работы. Значительные количества энергии расходуются на биологические синтезы. АТФ является универсальным источником энергообеспечения клетки. Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования, происходящему с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 минуты).
2. Энергетический обмен в клетке. Синтез АТФ
Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования, т.е. присоединения неорганического фосфата к АДФ. Энергия для фосфорилирования АДФ образуется в ходе энергетического обмена. Энергетический обмен, или диссимиляция, представляет собой совокупность реакции расщепления органических веществ, сопровождающихся выделением энергии. В зависимости от среды обитания диссимиляция может протекать в два или три этапа.
У большинства живых организмов ― аэробов, живущих в кислородной среде, ― в ходе диссимиляции осуществляется три этапа: подготовительный, бескислородный, кислородный. У анаэробов, обитающих в среде лишенной кислорода, или у аэробов при его недостатке, диссимиляция протекает лишь в два первых этапа с образованием промежуточных органических соединений, еще богатых энергией.
Первый этап — подготовительный. В желудочно-кишечном тракте многоклеточных организмов он осуществляется пищеварительными ферментами. У одноклеточных — ферментами лизосом. На первом этапе происходит расщепление белков доаминокислот, жиров до глицерина и жирных кислот, полисахаридов до моносахаридов, нуклеиновых кислот донуклеотидов. Этот процесс называется пищеварением.
Второй этап — бескислородный (гликолиз). Его биологический смысл заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде 2 молекул АТФ. Гликолиз происходит в цитоплазме клеток. Он состоит из нескольких последовательных реакций превращения молекулы глюкозы в две молекулы пировиноградной кислоты (пирувата) и две молекулы АТФ, в виде которой запасается часть энергии, выделившейся при гликолизе:
С6Н12O6+ 2АДФ + 2Ф → 2С3Н4O3+ 2АТФ.
Остальная энергия рассеивается в виде тепла.
В клетках дрожжей и растений (при недостатке кислорода) пируват распадается на этиловый спирт и углекислый газ. Этот процесс называется спиртовым брожением.
Энергии, накопленной при гликолизе, слишком мало для организмов, использующих кислород для своего дыхания. Вот почему в мышцах животных, в том числе и у человека, при больших нагрузках и нехватке кислорода образуется молочная кислота (С3Н6O3), которая накапливается в виде лактата. Появляется боль в мышцах. У нетренированных людей это происходит быстрее, чем у людей тренированных
Третий этап — кислородный, состоящий из двух последовательных процессов — цикла Кребса, названного по имени Нобелевского лауреата Ганса Кребса, и окислительного фосфорилирования. Его смысл заключается в том, что при кислородном дыхании пируват окисляется до окончательных продуктов — углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде 36 молекул АТФ. (34 молекулы в цикле Кребса и 2 молекулы в ходе окислительного фосфорилирования). Эта энергия распада органических соединений обеспечивает реакции их синтеза в пластическом обмене. Кислородный этап возник после накопления в атмосфере достаточного количества молекулярного кислорода и появления аэробных организмов.
Окислительное фосфорилирование, или клеточное дыхание происходит на внутренних мембранах митохондрий, в которые встроены молекулы-переносчики электронов. В ходе этой стадии освобождается большая часть метаболической энергии. Молекулы-переносчики транспортируют электроны к молекулярному кислороду. Часть энергии рассеивается в виде тепла, а часть расходуется на образование АТФ.
Суммарная реакция энергетического обмена:
С6Н12O6+ 6O2→ 6СO2+ 6Н2O + 38АТФ.
1. Подготовительный этап
2. Бескислородный этап
3. Кислородный этап
Где происходит расщепление?
1. В органах пищеварения. В лизосомах клетки.
2. В цитоплазме клетки
3. На кристах митохондрий
До каких веществ расщепляютсясоединения клетки?
1. Полимеры до мономеров
2. Глюкоза до двух молекул ПВК и энергии
3. ПВК до углекислого газа и воды
Сколько выделяется энергии?
1. Мало, рассеивается в виде тепла.
2. 2 молекулы АТФ
3. 36 молекул АТФ
Пластический обмен = ассимиляция = анаболизм
Пластический обмен, или ассимиляция, представляют собой совокупность реакций, обеспечивающих синтез сложных органических соединений в клетке. Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул.
Органические вещества пищи (белки, жиры, углеводы) → пищеварение → Простые органические молекулы (аминокислоты, жирные кислоты, моносахара) → биологические синтезы → Макромолекулы тела (белки, жиры, углеводы).
Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды. В процессе автотрофной ассимиляции реакции фото- и хемосинтеза, обеспечивающие образование простых органических соединений, предшествует биологическим синтезам молекул макромолекул:
Неорганические вещества (углекислый газ, вода) → фотосинтез, хемосинтез → Простые органические молекулы (аминокислоты, жирные кислоты, моносахара) → биологические синтезы → Макромолекулы тела (белки, жиры, углеводы).
1. Фотосинтез
Фотосинтез ― синтез органических соединении из неорганических, идущий за счет энергии клетки. Ведущую роль в процессах фотосинтеза играют фотосинтезирующие пигменты, обладающие уникальным свойством ― улавливать свет и превращать его энергию в химическую энергию. Фотосинтезирующие пигменты представляют собой довольно многочисленную группу белковоподобных веществ. Главным и наиболее важным в энергетическом плане является пигмент хлорофилл, встречающийся у всех фототрофов, кроме бактерий-фотосинтетиков. Фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид у эукариот или во впячивания цитоплазматической мембраны у прокариот.
В процессе фотосинтеза кроме моносахаридов (глюкоза и др.), которые превращаются в крахмал и запасаются растением, синтезируются мономеры других органических соединении ― аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растительные, а точнее ― хлорофиллосодержащие, клетки обеспечивают себя и все живое на Земле необходимыми органическими веществами и кислородом.
2. Хемосинтез
Хемосинтез также представляет собой процесс синтеза органических соединений из неорганических, но осуществляется он не за счет энергии света, а за счет химической энергии, получаемой при окислении неорганических веществ (серы, сероводорода, железа, аммиака, нитрита и др.). Наибольшее значение имеют нитрифицирующие, железо- и серобактерии.
Высвобождающаяся в ходе реакций окисления энергия запасается бактериями в виде АТФ и используется для синтеза органических соединений. Хемосинтезирующие бактерии играют очень важную роль в биосфере. Они участвуют в очистке сточных вод, способствуют накоплению в почве минеральных веществ, повышают плодородие почвы.
1 note · View note
Text
Действие ультрафиолета
Исследователи из Ecole Polytechnique Federale de Lausanne (EPFL) в Швейцарии показали, что некоторые пептиды (небольшие белки) могут распадаться под воздействием ультрафиолета, но перед этим проходить через триплетные квантовые состояния, которые могут привести к гораздо большим повреждениям, чем простой распад. Результаты изучения путей деградации белка и способов защиты от воздействия ультрафиолетового излучения изложены в статье, появившейся в JournalofChemicalPhysics.
Исследователи брали пептиды в газовой фазе, которые содержали тирозин или фениланалин, светопоглощающие аминокислоты, которые можно найти в человеческом теле, и подвергали их воздействию ультрафиолетового лазера. Затем использовалась ультрафиолетово-инфракрасная спектроскопия, позволяющая отследить структурные изменения со временем. Оказалось, что вместо немедленного распада некоторые молекулы образовывали промежуточные триплетные состояния.
Обычно электроны образуют пары так, что спин одного направлен в одну сторону, а другого — в другую. Но иногда оба спина могут быть направлены в одну сторону, именно это и называется триплетным состоянием.
«Триплетные состояния долго живут и могут участвовать в опасных химических реакциях, — объяснила Александра Забуга (Aleksandra V. Zabuga), одна из авторов упомянутой статьи. — Долгоживущие — это относительное понятие, они живут не более миллисекунды, но даже за это время могут принести немало вреда. Они могут передать свою энергию близлежащему кислороду и породить высокоактивный синглетный кислород или другие свободные радикалы. Подобные радикалы могут повреждать ДНК и быть гораздо более опасными, чем фрагменты пептидов. Исследовать этот эффект очень интересно, поскольку оказывается, что пептиды не могут защищать себя самостоятельно».
Все знают, что слишком долгое пребывание на Солнце может привести к вредным последствиям для кожи — покраснению, шелушению и т.п. Однако, некоторые последствия могут быть гораздо более глубокими: ультрафиолетовые лучи могут повреждать ДНК и приводить к расщеплению белков в теле на более мелкие, порой опасные части, которые также могут повреждать ДНК, увеличивая риск рака кожи и катаракты. Понимание всех тонкостей механизма происходящего может помочь бороться с этим процесcом.
В ближайшие планы исследователей входит изучение воздействия окружающей среды на обнаруженный эффект. Может быть какие-то аминокислоты или просто вода смогут гасить механизм фрагментации пептидов.
Источник: https://scientificrussia.ru/articles/trijnaja-ugroza-ot-solnca
1 note · View note
Text
Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media
Art By: Andrzej Dybowski
Instagram: @artwoonz
18K notes · View notes
Photo
Tumblr media
Drawlloween day 6: Ghost
Gouache, 5 x 7″
42K notes · View notes
Photo
Tumblr media
4K notes · View notes
Text
0 notes
Audio
Театр Яда - HH 05
8 notes · View notes